首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trajectory and attitude dynamics of an orbital spacecraft are defined by a unified state model, which enables efficient and rapid machine computation for mission analysis, orbit determination and prediction, satellite geodesy and reentry analysis. The state variables are momenta — a general form for attitude, and a parametric form for orbital motion. The orbital parameters are the velocity state characteristics of the orbital hodograph. The coordinate variables are sets of four Euler parameters, which define the rotation transformation by the quaternion algebra. The unified state model possesses many analytical properties which are invaluable for dynamical system synthesis, numerical analysis and machine solution: regularization, unified matrix algebra, state graphs and transforms. The analytic partials of position and velocity with the state and coordinate variables are presented, as well as representative perturbation functions such as air drag, gravitational potential harmonics, and propulsion thrust.  相似文献   

2.
Modeling the effects of atmospheric drag is one of the more important problems associated with the determination of the orbit of a near-earth satellite. Errors in the drag model can lead to significant errors in the determination and prediction of the satellite motion. The uncertainty in the drag acceleration can be attributed to three separate effects: (a) errors in the atmospheric density model, (b) errors in the ballistic coefficient, and (c) errors in the satellite relative velocity. In a number of contemporary satellite missions, the requirements for performing the orbit determination and predictions in near real-time has placed an emphasis on density model computation time as well as the model accuracy. In this investigation, a comparison is made of three contemporary atmospheric density models which are candidates for meeting the current orbit computation requirements. The models considered are the analytic Jacchia-Roberts model, the modified Harris-Priester model, and the USSR Cosmos satellite derived density model. The computational characteristics of each of the models are compared and a modification to the modified Harris-Priester model is proposed which improves its ability to represent the diurnal variation in the atmospheric density.This investigation was supported by the NASA Goddard Spaceflight Center under contract NAS5-20946 and Contract NSG 5154.  相似文献   

3.
The aim of the time distribution methodology presented in this paper is to generate constellations whose satellites share a set of relative trajectories in a given time, and maintain that property over time without orbit corrections. The model takes into account a series of orbital perturbations such as the gravitational potential of the Earth, the atmospheric drag, the Sun and the Moon as disturbing third bodies and the solar radiation pressure. These perturbations are included in the design process of the constellation. Moreover, the whole methodology allows to design constellations with multiple relative trajectories that can be distributed in a minimum number of inertial orbits.  相似文献   

4.
Orbit propagation algorithms for satellite relative motion relying on Runge–Kutta integrators are non-symplectic—a situation that leads to incorrect global behavior and degraded accuracy. Thus, attempts have been made to apply symplectic methods to integrate satellite relative motion. However, so far all these symplectic propagation schemes have not taken into account the effect of atmospheric drag. In this paper, drag-generalized symplectic and variational algorithms for satellite relative orbit propagation are developed in different reference frames, and numerical simulations with and without the effect of atmospheric drag are presented. It is also shown that high-order versions of the newly-developed variational and symplectic propagators are more accurate and are significantly faster than Runge–Kutta-based integrators, even in the presence of atmospheric drag.  相似文献   

5.
Theory of the motion of an artificial Earth satellite   总被引:1,自引:0,他引:1  
An improved analytical solution is obtained for the motion of an artificial Earth satellite under the combined influences of gravity and atmospheric drag. The gravitational model includes zonal harmonics throughJ 4, and the atmospheric model assumes a nonrotating spherical power density function. The differential equations are developed through second order under the assumption that the second zonal harmonic and the drag coefficient are both first-order terms, while the remaining zonal harmonics are of second order.Canonical transformations and the method of averaging are used to obtain transformations of variables which significantly simplify the transformed differential equations. A solution for these transformed equations is found; and this solution, in conjunction with the transformations cited above, gives equations for computing the six osculating orbital elements which describe the orbital motion of the satellite. The solution is valid for all eccentricities greater than 0 and less than 0.1 and all inclinations not near 0o or the critical inclination. Approximately ninety percent of the satellites currently in orbit satisfy all these restrictions.  相似文献   

6.
吴连大 《天文学进展》2001,19(2):277-278
利用12万组大气阻力资料,对DTM-1994模式进行改造,获得了一个新的大气模式,该模式的特点是:1.利用2阶周日峰效应,代替了原来模式中的复杂的周日效应表达式,减少了模式参数(少于50个),并使模式参数均具有明确的物理意义,2.分清了模式的主要参数和次要参数,在主要参数中,又分清了利用了阻力资料可以改进的参数和可能改不好的参数.3.与MSIS-1990和DTM-1994模式相比,其互差可以被接受,说明使用卫星阻力资料可以进行大气模式动态改正,不仅能测定大气总密度,并且能测定大气的分密度,4.与卫星轨道相比较,改进有显优于MSIS-1990模式,在120km轨道附近,改进模式密度比MSIS-1990模式大10%,同时我们在卫星陨落期预报中发现,MSIS-1990模式密度比实际大气密度小9%,这说明改进模式的密度与实际大气的密度基本接近。  相似文献   

7.
卫星圆轨道假设对GPS无线电掩星反演地球大气参数的影响   总被引:3,自引:0,他引:3  
蒋虎 《天文学报》2001,42(3):243-247
给出GPS无线电掩星反演地球大气参数过程中计算大气折射角的解析表达式,以圆轨道假设下的大气折射角计算值为先验约束,采用迭代法对不引入圆轨道假设情况的大气折射角进行归算,在此基础,利用反演方法得到了引入和不引入圆轨道假定两种情况下大气参数(气压和温度)的差分序列,结果表明:卫星圆轨道假设对GPS无线电掩星反演大气参数的影响,在气压方面为1mbar左右,而在气温方面为1K左右,这一结果支持了目前无线电掩星定性误差估计研究中通常引入卫星圆轨道假设这个近似处理方法的合理性,同时也表明:若在高精度反演地球大气参数时,摒弃圆轨道是必要的。  相似文献   

8.
在不同的轨道预报场景中, 使用的动力学模型也不同. 例如, 在低轨空间碎片的预报中大气阻力是十分重要的摄动力, 而到了中高轨, 大气阻力就可以忽略不计. 如何为不同轨道类型的空间碎片选择最优(满足精度要求下的最简)动力学模型还没有系统、详尽的研究. 将对不同精度需求、不同轨道类型下的大批量轨道进行预报, 通过比较不同动力学模型下的预报结果, 给出各种预报场景的最优动力学模型建议. 可以为不同轨道类型的空间碎片在轨道预报时选择基准动力学模型提供参考或标准.  相似文献   

9.
An analytical solution is given for the motion of an artifical Earth satellite under the combined influences of gravity and atmospheric drag. The gravitational effects of the zonal harmonicsJ 2,J 3, andJ 4 are included, and the drag effects of any arbitrary dynamic atmosphere are included. By a dynamic atmosphere, we mean any of the modern empirical models which use various observed solar and geophysical parameters as inputs to produce a dynamically varying atmosphere model. The subtleties of using such an atmosphere model with an analytic theory are explored, and real world data is used to determine the optimum implementation. Performance is measured by predictions against real world satellites. As a point of reference, predictions against a special perturbations model are also given.  相似文献   

10.
The solution of a feedback optimal control problem arising in orbital mechanics is addressed in this paper. The dynamics is that of a massless body moving in a central gravitational force field subject also to a drag and a radial modulated force. The drag is linearly proportional to the velocity and inversely proportional to the square of the distance from the center of attraction. The problem is tackled by exploiting the properties of a suitably devised linearizing map that transforms the nonlinear dynamics into an inhomogeneous linear system of differential equations supplemented by a quadratic objective function. The generating function method is then applied to this new system, and the solution is back transformed in the old variables. The proposed technique, in contrast to the classical optimal control problem, allows us to derive analytic closed-loop solutions without solving any two-point boundary value problem. Applications are discussed.  相似文献   

11.
This paper begins with a brief review of a form of the Lie series transformation, and then reports some new results in the study, using Lie series methods, of the orbit of Saturn's satellite Hyperion. In particular, improved expressions are given for the long-period perturbations of the orbital elements which describe the motion in the orbit plane, and also first results for expressions for the short-period perturbations in the apse longitude, derived from the Lie series generating function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A new semianalytical theory of asteroid motion is presented. The theory is developed on the basis of Kaula's expansion of the disturbing function including terms up to the second order with respect to the masses of disturbing bodies. The theory is constructed in explicit form that gives the possibility to study separately the influence of different perturbations in the dynamics of minor planets. The mean-motion resonances with major planets as well as mixed three-body resonances can also be taken into account. For the non-resonant case the formulas obtained can be used for deriving the second transformation to calculate the proper elements of an asteroid orbit in closed form with respect to inclinations and eccentricities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Taking the re-entry object CZ-3B R/B (COSPAR identifier 2012-018D, NORAD catalog number 38253) as an example, retrieval of atmospheric mass densities in lower thermosphere below 200 km from its rebuilt precise orbit is studied in this paper. Two methodologies, i.e. analytical and numerical methods, are adopted in the retrieval. Basic principles of these two methodologies are briefly introduced. Based on the short-arc sparse observational data accumulated in the high accuracy re-entry prediction, orbit determinations of re-entry object CZ-3B R/B are performed sectionally, and then its precise orbit is rebuilt. According to the orbit theory, the variation of orbital semi-major axis of re-entry object CZ-3B R/B induced by atmospheric drag perturbation only is derived from the rebuilt precise orbit. In the derivation of secular change of the orbital semi-major axis of re-entry object CZ-3B R/B induced by atmospheric drag perturbation only, the time-span is set as one minute tentatively. And then retrieval results of atmospheric mass densities in lower thermosphere below 200 km by analytical and numerical methods are presented, as well as their bias deviations from the calculated results of the NRLMSISE-00 empirical model of the atmosphere. Setting bias deviation bands, the corresponding ‘confidence coefficients’ of the retrieved atmospheric mass densities with respect to the model values are given. Average bias deviations of the retrieved atmospheric mass densities by analytical and numerical methods from the model values are also calculated respectively. On the whole, the retrieved atmospheric mass densities by numerical method approach to the model values more closely; the differences between the retrieved results and the model values are relatively smaller at the peaks of atmospheric mass densities than the other places.  相似文献   

14.
Based on the theory of intermediate orbits developed earlier by the author of this paper, a new approach is proposed to the solution of the problem of finding the orbit of a celestial body with the use of two position vectors of this body and the corresponding time interval. This approach makes it possible to take into account the main part of perturbations. The orbit is constructed, the motion along which is a combination of two motions: the uniform motion along a straight line of a fictitious attracting center, whose mass varies according to the first Meshchersky law, and the motion around this center. The latter is described by the equations of the Gylden–Meshchersky problem. The parameters of the constructed orbit are chosen so that their limiting values at any reference epoch determine a superosculating intermediate orbit with third-order tangency. The accuracy of approximation of the perturbed motion by the orbits calculated by the classical Gauss method and the new method is illustrated by an example of the motion of the unusual minor planet 1566 Icarus. Comparison of the results obtained shows that the new method has obvious advantages over the Gauss method. These advantages are especially prominent in cases where the angular distances between the reference positions are small.  相似文献   

15.
回顾了作为实用天文学和大地测量学中基本研究课题之一的大气折射映射函数研究的进展。介绍了近几年上海天文台发展的大气折射母函数方法 ,以及由此导出的大气折射解析解。对如今广泛地应用在空间测量技术中的几种映射函数做出评述 ;分析了NMF模型的优点和不足之处。介绍了由大气折射母函数方法引出的大气延迟新连分式映射函数和天文大气折射的映射函数方法。利用VLBI实验中高度截止角与基线长度重复率的关系、探空气球 (radiosonde)观测资料、PRARE资料比较了各种映射函数的结果。特别指出了映射函数方法对天文大气折射和光学波段测距精度的改进。讨论了大气折射计算中的主要误差源。  相似文献   

16.
The influence of gas drag and gravitational perturbations by a planetary embryo on the orbit of a planetesimal in the solar nebula was examined. Non-Keplerian rotation of the gas causes secular decay of the orbit. If the planetesimal's orbit is exterior to the perturber's, resonant perturbations oppose this drag and can cause it to be trapped in a stable orbit at a commensurability of order j/(j + 1), where j is an integer. Numerical and analytical demonstrations show that resonant trapping occurs for wide ranges of perturbing mass, planetesimal size, and j. Induced eccentricities are large, causing overlap of orbits for bodies in different resonances with j > 2. Collisions between planetesimals in different resonances, or between resonant and nonresonant bodies, result in their disruption. Fragments smaller than a critical size can pass through resonances under the influence of drag and be accreted by the embryo. This effect speeds accretion and tends to prevent dynamical isolation of planetary embryos, making gas-rich scenarios for planetary formation more plausible.  相似文献   

17.
Estimation is made of the possibility of clustering of debris particles in circular and elliptical orbits around the Earth due to the change in drag, caused by quasi-periodic variations of the atmospheric density in the orbit. The estimations show that the collective behavior of particles has time to be manifested in highly elliptical orbits, where the relative change in the atmospheric density along the orbital path is greater and characteristic lifetimes of the particles are longer. However, in this case the limit distributions of the particles are not realized, because the clusters form and break down several times during the lifetime of the particles in the orbit.  相似文献   

18.
We describe an approximate numerical-analytical method for calculating the perturbations of the elements of distant satellite orbits. The model for the motion of a distant satellite includes the solar attraction and the eccentricity and ecliptic inclination of the orbit of the central planet. In addition, we take into account the variations in planetary orbital elements with time due to secular perturbations. Our work is based on Zeipel’s method for constructing the canonical transformations that relate osculating satellite orbital elements to the mean ones. The corresponding transformation of the Hamiltonian is used to construct an evolution system of equations for mean elements. The numerical solution of this system free from rapidly oscillating functions and the inverse transformation from the mean to osculating elements allows the evolution of distant satellite orbits to be studied on long time scales on the order of several hundred or thousand satellite orbital periods.  相似文献   

19.
An approximate semi-analytic solution of a two-body problem with drag is presented. The solution describesnon-lifting orbital motion in a central, inverse-square gravitational field. Drag deceleration is a non-linear function of velocity relative to a rotating atmosphere due to dynamic pressure and velocity-dependent drag coefficient. Neglected are aerodynamic lift, gravitational perturbations of the inverse-square field, and kinematic accelerations due to coordinate frame rotation at earth angular rate. With these simplifications, it is shown that (i) orbital motion occurs in an earth-fixed invariable plane defined by the radius and relative velocity vectors, and (ii) the simplified equations of motion are autonomous and independent of central angle measured in the invariable plane. Consequently, reduction of the differential equations from sixth to second-order is possible. Solutions for the radial and circumferential components of relative velocity are reduced to quadratures with respect to radial distance. Since the independent variable is radial distance, the solutions are singular at zero radial velocity (e. g., for circular orbits). General atmospheric density and drag coefficient models may be used to evaluate the velocity quadratures. The central angle and time variables are recovered from two additional quadratures involving the velocity quadratures. Theoretical results are compared with numerical simulation results.Presently affiliated with AVCO Systems Division, Wilmington, MA 01887, U.S.A.  相似文献   

20.
For precise control, to minimize the fuel consumption, and to maximize the lifetime of satellite formations a precise analytic solution is needed for the relative motion of satellites. Based on the relationship between the relative states and the differential orbital elements, the state transition matrix for the linearized relative motion that includes the effects due to the reference orbit eccentricity and the gravitational perturbations is derived. This method is called the Geometric Method. To avoid any singularities at zero eccentricity and zero inclination, equinoctial variables are used to derive the relative motion state transition matrices for both mean and osculating elements. This approach can be extended easily to include other perturbing forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号