首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
VLBI在GEO卫星精密定轨中的应用   总被引:1,自引:0,他引:1  
影响GEO轨道确定精度的原因主要有两方面:一是高轨卫星的几何跟踪条件受到局部测轨网的限制;二是卫星相对于地面的动力学约束信息较弱.利用一个针对GEO卫星的简化动力法定轨的协方差分析模型,研究了联合测距跟踪网和甚长基线干涉测量(VLBI)对定轨精度的改善情况.指出测距系统的校正误差是常规测距跟踪网定轨精度的主要误差源;当附加一条东西向VLBI基线时,仅利用不定期的少量VLBI高精度数据就能够显著改善测距偏差对轨道的影响,从而保证了卫星的整体位置解算精度.  相似文献   

2.
地球静止轨道GEO卫星定轨是精密定轨领域的难点.依托我国区域范围地面跟踪网实际,提出了转发式测距数据支持下的GEO导航卫星精密定轨方案.从定轨精度、设备时延和伪距站对GEO轨道精度影响等方面进行了深入分析.试验结果证明:1 ns的时延误差引进的GEO轨道径向和位置误差分别为0.121 m和3.505 m.在多个转发式测距跟踪站约束的条件下伪距对定轨精度贡献非常有限,但通过星地钟差的估计可以实现时间同步,同步精度优于1 ns.这为时间同步提供了一种新的方法.当转发式测距跟踪站有限时伪距对GEO定轨的贡献非常明显,1CC(转发式跟踪站)+7L(伪距站)联合定轨条件下的轨道精度优于5 m.从而解决了GEO卫星精密定轨问题,同时实现了星地和站间时间同步以及卫星轨道与钟差参数的自洽.  相似文献   

3.
基于自发自收测距的GEO卫星精密定轨   总被引:1,自引:0,他引:1  
对于基于伪距测量模式的GEO卫星定轨,需要星地时间同步和站问时间同步的支持,因此卫星钟差和接收机钟差的精度直接制约了GEO卫星的定轨精度.自发自收式测距的观测数据并不含有卫星钟差和接收机钟差信患,定轨解算中避免了钟差精度带来的影响,可以实现GEO卫星的精密定轨.此处采用GEO卫星的自发自收武测距数据进行精密定轨试验,分析和讨论了基于自发自收式测距的GEO卫星精密定轨策略,提出了卫星轨控后轨道快速恢复的定轨策略.试验结果表明:轨道的内符R方向精度为1.615 m,位置精度为11.642m,定轨残差为0.279m;轨道恢复1 h后的定轨位置精度优于60m,恢复6 h后的定轨位置精度优于15m,定轨残差在0.15 m左右.  相似文献   

4.
地球静止轨道卫星(GEO)在北斗卫星导航系统(Compass)的卫星导航中具有特别重要的作用,除了利用导航系统自身的伪距相位以外,利用其他的测轨系统对其进行精密定轨有着重要的意义。利用国家授时中心的转发式测轨网对Compass的GEO卫星进行观测,获取转发式测轨数据,利用该数据对Compass的GEO卫星进行精密定轨分析。分别从观测数据的观测精度,定轨残差以及轨道重叠误差等方面分析GEO卫星的定轨精度。  相似文献   

5.
本文结合“探月工程”的月球卫星轨道测定,从地面站构网的几何结构讨论了流动VLBI站址的选择。提出了将流动VLBI站设在海南,以便改善我国VLBI观测网的南北基线,提高探月卫星定轨精度。  相似文献   

6.
GNSS卫星定轨精度主要取决于卫星动力学模型精度和GNSS几何观测信息。由于北斗GEO/IGSO卫星静地、高轨特性,以及力学模型不精确等原因,地面几何观测信息对轨道改进至关重要。本文讨论了北斗GEO/IGSO/MEO卫星定轨地面站分布影响及优化改进方法。在简化动力学定轨模型基础上,探讨多历元几何观测信息累积对轨道的改进;研究了北斗导航卫星定轨理想几何构型条件,得到影响定轨精度的几何因子,包括测站数量、覆盖范围、分布密度;利用离散概率密度方法研究地面站构型,分析了3类卫星轨道改进机理和优化方法。通过算例,讨论了增加5个中国区域基准站改善离散概率密度指标,优化全球北斗卫星定轨构型,发现GEO和IGSO卫星精度改善最为明显,MEO卫星改善最小;其中GEO卫星提高了10%,IGSO卫星提高了16%,MEO卫星提高了4%。  相似文献   

7.
为了提高我国卫星导航系统GEO卫星定轨能力,针对我国卫星导航系统所特有的新数据和新方法,利用CAPS系统的C波段转发式测距数据进行了单GEO卫星定轨实验.在分析该方法技术特点的基础上,从定轨残差和轨道重叠弧段比较等方面,对定轨结果进行了分析.由于设备转发时延是影响该方法定轨精度的重要因素,因此同时还分析了系统偏差对定轨精度的影响,得出了一些有益的结论.  相似文献   

8.
地球静止轨道(GEO)卫星频繁的轨道机动对高精度、实时不间断的导航服务需求提出新的更高要求,如何在短弧跟踪条件下提高GEO卫星轨道快速恢复能力,是提升导航系统服务精度的关键因素。针对该问题,提出基于9参数星历拟合的GEO卫星短弧运动学定轨方法,详细推导定轨的数学模型与偏导模型,针对GEO卫星星历参数拟合中的奇异问题,提出相应的解决方法和措施。利用COMPASS GEO卫星实测自发自收数据进行短弧定轨试验与分析,结果表明:①10 min短弧运动学定轨的位置精度优于19 m,速度精度为4 mm/s,速度精度明显优于MEO卫星;②预报5 min的位置精度为17.760 m,预报10 min的位置精度为18.168 m;③解决GEO卫星频繁轨控所带来的轨道快速恢复问题,满足短弧跟踪条件下RDSS的服务需求。  相似文献   

9.
分析了TDRS卫星的轨道特性及传统的地基测距跟踪技术定轨精度不高的现状,研究了基于空基的用户星精密轨道的TDRS卫星定轨,解决了基于空基的一般GEO卫星定轨问题。  相似文献   

10.
针对区域跟踪网不能覆盖导航卫星全弧段从而导致卫星定轨精度低的问题,简述了导航卫星和低轨卫星联合定轨模型,然后利用星地跟踪网观测数据同时确定了低轨卫星和导航卫星精密轨道,并根据实验结果详细分析了低轨卫星在联合定轨中所起到的作用。计算结果表明,引入低轨卫星之后,全球网和区域网定轨精度分别平均提高了20.0%和44.3%,区域网6h和24h的轨道预报精度分别优于10cm、13cm,利用星地跟踪网观测数据联合定轨方案是一种提高定轨精度并削弱对地面站依赖性的有效方法。  相似文献   

11.
CEI对静止轨道共位卫星的轨道确定   总被引:1,自引:0,他引:1  
主要考察了CEI对静止轨道共位卫星的轨道确定能力。仿真结果表明,利用CEI对共位卫星进行定轨时,需采用基线阵列。对于110°E共位卫星采用三亚-昆明基线阵列、10 km基线和2 d的数据,可使绝对轨道精度达百米级;外推至14 d时,相对轨道精度保持在m级。同样,要使绝对和相对轨道精度达到相同的量级,对于80°E共位卫星,需选用昆明-三亚基线阵列、100 km基线和1 d的观测弧段;对于140°E共位卫星,需选用上海-三亚基线阵列5、0 km基线和2 d的观测弧段。  相似文献   

12.
The GNSS Occultation Sounder instrument onboard the Chinese meteorological satellite Fengyun-3C (FY-3C) tracks both GPS and BDS signals for orbit determination. One month’s worth of the onboard dual-frequency GPS and BDS data during March 2015 from the FY-3C satellite is analyzed in this study. The onboard BDS and GPS measurement quality is evaluated in terms of data quantity as well as code multipath error. Severe multipath errors for BDS code ranges are observed especially for high elevations for BDS medium earth orbit satellites (MEOs). The code multipath errors are estimated as piecewise linear model in \(2{^{\circ }}\times 2{^{\circ }}\) grid and applied in precise orbit determination (POD) calculations. POD of FY-3C is firstly performed with GPS data, which shows orbit consistency of approximate 2.7 cm in 3D RMS (root mean square) by overlap comparisons; the estimated orbits are then used as reference orbits for evaluating the orbit precision of GPS and BDS combined POD as well as BDS-based POD. It is indicated that inclusion of BDS geosynchronous orbit satellites (GEOs) could degrade POD precision seriously. The precisions of orbit estimates by combined POD and BDS-based POD are 3.4 and 30.1 cm in 3D RMS when GEOs are involved, respectively. However, if BDS GEOs are excluded, the combined POD can reach similar precision with respect to GPS POD, showing orbit differences about 0.8 cm, while the orbit precision of BDS-based POD can be improved to 8.4 cm. These results indicate that the POD performance with onboard BDS data alone can reach precision better than 10 cm with only five BDS inclined geosynchronous satellite orbit satellites and three MEOs. As the GNOS receiver can only track six BDS satellites for orbit positioning at its maximum channel, it can be expected that the performance of POD with onboard BDS data can be further improved if more observations are generated without such restrictions.  相似文献   

13.
The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18 m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether 1-day data overlaps or 1-day predictions are used.  相似文献   

14.
静止轨道共位卫星相对轨道的确定,对于多星共位任务是十分重要的。根据静止轨道的特性,推导了标准静止轨道定点经度坐标系下共位卫星的相对运动状态方程,提出了采用微波测距和比相测角法获取多颗共位卫星星间测量信息;利用自适应Kalman滤波进行了相对轨道估计。仿真结果表明,利用该算法能够获得较理想的相对位置精度,且自适应滤波解好于标准滤波解。  相似文献   

15.
In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.  相似文献   

16.
针对北斗卫星姿轨控后的轨道快速确定难题,系统地研究了基于多项式拟合和基于星历拟合两种运动学定轨方法,推导建立了相应的运动学定轨模型。同时针对接收机系统差和顽固多径问题,利用基于并置比对的接收机系统差解算方法和CNMC的多径削弱方法,实现了超短弧跟踪条件下接收机数据质量的有效控制。利用北斗GEO/IGSO/MEO卫星的实测伪距数据进行了试验验证,结果表明在10min超短弧跟踪条件下,GEO、IGSO和MEO卫星的运动学定轨位置精度分别为3.27m、8.19m和5.90m,实现了超短弧跟踪条件下的北斗卫星快速定轨,满足了卫星机动期间的北斗RDSS服务对轨道精度的需求,为北斗RDSS服务走向全球提供了技术支撑。  相似文献   

17.
Zhao  Qile  Wang  Chen  Guo  Jing  Yang  Guanglin  Liao  Mi  Ma  Hongyang  Liu  Jingnan 《GPS Solutions》2017,21(3):1179-1190
GPS Solutions - A key limitation for precise orbit determination of BeiDou satellites, particularly for satellites in geostationary orbit (GEO), is the relative weak geometry of ground stations....  相似文献   

18.
受限于区域监测站及地球静止轨道(geosynchronous earth orbit,GEO)卫星的静地特性,北斗卫星导航系统(BeiDou satellite navigation system,BDS)定轨精度较差,加入低轨卫星(low earth orbit,LEO)星载数据可显著提升定轨精度.使用一种由24颗L...  相似文献   

19.
2006-05-29~2006-06-02,有关单位利用欧空局(ESA)的SMART-1环月飞行器进行了USB-VLBI综合测定轨试验,其中一个重要目标就是考察环月飞行器的短弧快速轨道确定能力。这里对综合测轨数据的精度进行了评估,分析了不同类型测轨数据组合和定轨弧长对短弧定轨和预报的影响。利用5 d测量数据进行统计:VLBI时延的RMS约为1 m,时延率的RMS约为0.25 cm/s,USB测速的RMS约为3~6 cm/s,测距的RMS约为1~3 m。30 min定轨及预报一个环月轨道周期(5 h)位置的RMS约为250 m,速度的RMS约为15 cm/s。  相似文献   

20.
A lunar gravity field model up to degree and order 100 in spherical harmonics, named SGM100i, has been determined from SELENE and historical tracking data, with an emphasis on using same-beam S-band differential VLBI data obtained in the SELENE mission between January 2008 and February 2009. Orbit consistency throughout the entire mission period of SELENE as determined from orbit overlaps for the two sub-satellites of SELENE involved in the VLBI tracking improved consistently from several hundreds of metres to several tens of metres by including differential VLBI data. Through orbits that are better determined, the gravity field model is also improved by including these data. Orbit determination performance for the new model shows improvements over earlier 100th degree and order models, especially for edge-on orbits over the deep far side. Lunar Prospector orbit determination shows an improvement of orbit consistency from 1-day predictions for 2-day arcs of 6 m in a total sense, with most improvement in the along and cross-track directions. Data fit for the types and satellites involved is also improved. Formal errors for the lower degrees are smaller, and the new model also shows increased correlations with topography over the far side. The estimated value for the lunar GM for this model equals 4902.80080±0.0009 km3/s2 (10 sigma). The lunar degree 2 potential Love number k 2 was also estimated, and has a value of 0.0255 ± 0.0016 (10 sigma as well).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号