首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 149 毫秒
1.
利用全球卫星导航系统(GNSS)极化掩星信号提取降水信息是国际上新兴起的研究领域.针对在前期理论研究、仿真分析和地基试验的基础上,重点解决地基试验数据中的周跳处理问题.结合地基试验双极化载波相位数据的特点,系统对比分析了高次差法、多普勒观测值法等6种常用周跳处理算法的可行性和适用范围,进而研究对高次差法进行改进以解决人为确定求差次数问题,最后通过仿真分析及实测数据验证了该方法的可靠性和有效性.结果表明:该方法能够准确探测出无雨和有雨时水平极化载波相位和垂直极化载波相位的各类大小周跳,可有效应用于GNSS极化掩星信号的降水观测数据处理.  相似文献   

2.
与传统的无线电探空、雷达探测等手段相比,GNSS掩星技术为大气探测提供了一个强有力的工具,其具有无校准、全天候、精度高、垂直分辨率高、全球均匀覆盖等特点.介绍了利用GNSS掩星技术获取地球大气温、压、湿等相关参数大小的研究现状.同时,提出了GNSS掩星技术在气候研究领域的发展方向,将拓宽GNSS掩星技术在全球气候变化研究中的应用.  相似文献   

3.
与传统的无线电探空、雷达探测等手段相比,GNSS掩星技术为大气探测提供了一个强有力的工具,其具有无校准、全天候、精度高、垂直分辨率高、全球均匀覆盖等特点。介绍了利用GNSS掩星技术获取地球大气温、压、湿等相关参数大小的研究现状。同时,提出了GNSS掩星技术在气候研究领域的发展方向,将拓宽GNSS掩星技术在全球气候变化研究中的应用。  相似文献   

4.
简要概述了GNSS掩星探测大气的发展历史与国内外的研究现状;详细叙述了无线电掩星反演大气参数的基本原理,主要包括几何光学下的相位反演,中性大气层、电离层、振幅的反演,分辨率的定义以及无线电掩星技术系统与标准算法和误差分析;并针对该技术的一些特点,指出了若干尚需深入解决的问题;最后展望无线电掩星观测技术在数值天气预报(NWP)等领域的发展。  相似文献   

5.
全球卫星导航系统(GNSS)因其直射信号经海面反射后,反射信号会携带海面物理信息,由此开辟了一种在遥感应用中有巨大潜力的全球卫星导航反射信号(GNSS-R)技术,国内外在星载GNSS-R监测海面领域取得进展.本文总结了应用星载GNSS-R数据监测海面目标的进展,然后针对星载GNSS-R监测海面目标技术从最初实验、基于延迟多普勒图(DDM)观测值监测、基于反演散射系数监测、应用神经网络监测四个方面进行了总结和归纳.  相似文献   

6.
全球卫星导航系统(GNSS)不仅具有导航定位、测速以及授时等功能,且因其反射信号能被接收,可用于海面风场、海面高度反演,由此开辟了一个新的研究领域GNSS反射(GNSS-R)技术,GNSS-R技术用于海洋遥感是一个新的研究领域;文中主要介绍了GNSS-R遥感技术和海面测高的研究进展,并从基于信噪比(SNR)数据测量法、基于 C/A码相位测量法、基于载波相位测量法及基于载波频率测量法等方面分析和总结了GNSS-R在海面高度测量的常用方法.   相似文献   

7.
全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景   总被引:4,自引:0,他引:4  
金双根  张勤耘  钱晓东 《测绘学报》2017,46(10):1389-1398
全球导航卫星系统(GNSS)具有全天候、近实时、高精度的特点,可持续发射L波段信号,广泛应用于定位、导航和授时(PNT)。随着GNSS技术的发展,最近GNSS反射信号可探测地球表面特征,即GNSS反射测量(GNSS+R)。结合GNSS接收机天线位置和介质信息,利用延迟测量值可以确定表面粗糙度和表面特性。GNSS+R作为当前GNSS和遥感领域的研究热点,取得了一些研究进展和成果。本文详细介绍了GNSS+R原理和方法及其最新应用进展,包括各种GNSS+R技术手段和方法,以及海洋、陆地、水文、植被和冰雪等遥感应用,特别是最新BeiDou-R和TDS-1研究进展。最后给出了GNSS+R应用前景和展望,包括多GNSS系统、GNSS+R接收机、GNSS+R卫星计划和新兴应用等。  相似文献   

8.
GNSS遥感研究与应用进展和展望   总被引:2,自引:0,他引:2  
全球导航卫星系统遥感(GNSS remote sensing)属卫星导航应用与遥感的一个交叉学科范畴。GNSS系统除传统的导航、定位、授时等功能外,可免费提供全球覆盖、高时间分辨率的L波段(1—2 GHz)微波信号用于遥感探测。继GNSS折射信号被率先用于地震、大气水汽等的探测以来,利用GNSS反射信号进行海洋、陆表参数估算,近年来成为国际GNSS应用研究前沿热点。随着中国自主北斗导航系统的蓬勃发展,将会为GNSS遥感带来新的发展契机和空间。本文从GNSS遥感的两个重要学科分支,即GNSS折射信号遥感(GNSS refractometry)和GNSS反射信号遥感GNSS-R(GNSS Reflectometry),回顾在这一交叉学科领域近几十年的发展,并简要分析GNSS遥感发展面临的机遇与挑战。  相似文献   

9.
大气水汽是表征极端天气事件和气候变化的重要参数,准确监测与分析水汽含量对于精准预测各类灾害性天气事件与研究气候变化具有显著意义。作为新兴的大气水汽探测方法,GNSS大气水汽探测技术得到了广泛的关注与应用研究,随着多频多模GNSS系统的发展,全球服务能力的逐步完备和地面基础设施的不断加强,地基GNSS大气水汽探测遥感技术水平得到显著提升,为基于空间大数据揭示气候变化、极端天气过程提供了强有力的数据支撑和发展契机。本文首先系统阐述了GNSS大气水汽探测遥感技术及其应用的发展过程;然后介绍了近年来包括对流层延迟、大气可降水量等多类型GNSS大气参数高精度反演的研究进展,特别是对GNSS大气反演在极端天气短临预报及气候变化现象解释两个方向的研究工作进行了科学探析;最后,阐明了GNSS大气水汽探测遥感技术面临的主要挑战及未来研究展望。  相似文献   

10.
厄尔尼诺-南方涛动事件(ENSO)会引起全球大气压强的异常变化. 应用2006年至2008年期间全球导航卫星系统(GNSS)掩星数据,采用几何光学反演法计算地面高度2 km处的大气压强变化,将厄尔尼诺期间(2006年12月)、拉尼娜期间(2007年12月)与正常年份(2008年12月)之间的全球大气压强求差,分析大气压强变化. 实验结果表明,利用GNSS掩星数据通过绘制全球范围某一高度的大气压强变化剖面图,可以直观地展现出ENSO期间的大气压强变化,为相关的气候变化研究提供便利参考条件.   相似文献   

11.
GNSS水汽层析技术凭借高精度、高时空分辨率及全天候监测等优点,已成为探测大气水汽最具潜力的技术之一。目前,融合多源大气遥感数据逐步成为弥补传统层析模型GNSS信号几何缺陷的研究热点。本文利用Terra卫星上的中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)提供的观测数据,首先分析了传统体素模型融合MODIS信号的不足;然后提出了基于体素节点模型的GNSS/MODIS信号紧耦合水汽层析算法,该算法将高分辨率MODIS PWV以三维信号的形式引入层析模型中;最后利用2016年7月徐州地区的15幅MODIS影像及同步GNSS数据对3种模型的层析结果质量进行了评估。试验结果表明:利用本文所提出的紧耦合算法,层析模型的平均有效观测信号数量提高了34.15%,层析结果平均RMSE(root mean square error)值降低了25.10%。此外,以邻近时刻探空站数据作为参考值,发现0~2 km的近地层,紧耦合算法的层析结果明显优于传统算法,这表明融合MODIS观测信号可改善近地层三维水汽场的重构质量。  相似文献   

12.
GNSS-MR技术用于潮位变化监测分析   总被引:2,自引:1,他引:1  
潮位变化的高精度监测一直是全球海平面观测系统、海洋环流和全球气候变化研究领域关注的热点问题之一。随着GNSS研究与应用的不断深入,近年来基于多路径效应的GNSS-MR技术已逐步成为一种新兴的遥感手段,即利用测量型GNSS站进行地表环境(植被、土壤湿度、雪深、潮位、火山活动等)监测。通过分析由多路径引起岸基GNSS站SNR值的变化特性,本文给出了基于SNR观测值的GNSS-MR技术监测潮位变化的反演原理。利用布设在美国华盛顿州Friday Harbor海港岸边的CORS站SC02实测观测数据对潮位变化监测进行了反演分析,并与该站相距359 m的验潮站数据进行了对比分析,两者较差均值约为10 cm左右,两者的相关系数均优于0.98。试验结果分析表明基于岸基CORS站的GNSS-MR技术在一定程度上可用于实时、连续的潮位变化监测,同时也说明岸基CORS站在一定程度上可作为验潮站的补充,进一步拓展GNSS在海洋遥感领域的应用范围。  相似文献   

13.
张兵  黄文江  张浩  倪丽 《遥感学报》2016,20(6):1470-1478
针对国家全球化战略和迫切需要解决的全球环境和资源问题,本文阐述了国内外地球资源环境动态监测技术主要研究进展,发现存在地球资源环境监测高精度产品缺乏、动态监测能力不完备、遥感信息服务及时性和便携不足等主要问题。在此基础上,提出中国迫切需要发展面向全球和重点区域的持续、动态观测能力,建立全球视野的资源环境动态监测产品和应用系统,突破全球资源环境研究的理论和关键技术,建立全球资源环境遥感监测指标和技术体系,形成全球立体协同观测、资源汇聚优化、信息智能处理、云平台业务应用的自主技术体系,完善支撑任务驱动的数据汇聚、模型调度、产品生成等在线遥感信息服务能力,发布全球、洲际和全国高质量空间要素遥感信息产品、专题应用系统、技术报告等成果。最终为全球资源环境研究提供知识发现的数据和服务,支撑中国在全球资源环境监测评估、重大灾害事件监测预警、应对国家安全与全球变化等领域的服务。  相似文献   

14.
随着5G/6G、云计算、物联网和人工智能等新技术的发展,人类已经进入了万物互联时代。本文探讨万物互联时代地球空间信息技术的五大特点:定位技术从GNSS和地面测量走向无所不在的定位导航定时(PNT)服务体系;遥感技术从孤立的遥感卫星走向空天地传感网络;地理信息服务从地图数据库为主走向真三维实景和数字孪生;3S集成从移动测量发展到智能机器人服务;学科研究范围从对地观测走向物联监测和对人类活动的感知。笔者基于这些特点进一步剖析新时代面临的挑战,并提出新时代地球空间信息学发展亟待解决的三大科学技术问题:测绘学科如何服务人与机器人的共同需求?遥感影像解译的机理是什么和如何突破实现技术的瓶颈?如何利用时空大数据挖掘人与自然的关系,从空间感知走向空间认知?万物互联时代的地球空间信息学,必须且完全可能为万物互联的数字地球和智慧社会做出更大的贡献!  相似文献   

15.
林珲  张鸿生 《遥感学报》2021,25(1):276-291
热带与亚热带拥有大量丰富的自然资源,同时也正在经历着快速的城市化进程,其资源、生态、环境等都面临着前所未有的挑战。同时,热带与亚热带地区存在着大量的自然灾害(如台风、干旱、地震等),威胁着该地区人类经济社会的可持续发展。应用遥感技术对热带与亚热带区域进行全面的监测,对于热带与亚热带区域甚至全球的可持续发展具有重要的意义。然而,由于热带与亚热带特殊的地理条件(如多云多雨等),遥感监测需要克服特殊的技术挑战。本文通过Web of Science核心数据库的7594篇研究论文进行分析,综述了热带与亚热带遥感的研究现状,分别从热带与亚热带遥感的需求、现状、挑战和机遇,通过共被引文献分析和主题词频率分析,建立共被引文献网络和主题词网络,并通过非监督机器学习进行聚类,分别识别出22个共被引文献聚类和6个主题词聚类。通过对这些共被引文献类别和主题词类别的深入分析,本文总结了:(1)热带与亚热带遥感研究的主要监测对象,包括城市地表、热带雨林、红树林、珊瑚、热带草原、生物多样性和自然灾害;(2)热带与亚热带遥感主要采用的遥感技术,包括:遥感数据的选择和使用、遥感数据分析的方法、多云多雨的问题应对以及多源遥感技术。最后,从现代遥感技术的快速发展,本文从8个方面讨论热带与亚热带遥感面临的挑战和未来发展的机遇。  相似文献   

16.
海上溢油已成为影响海洋生态环境的重要污染物之一,我国近40年发生约3200起海上溢油事故。当今用于监测海上溢油的遥感主要是光学和雷达卫星,卫星遥感往往重访周期长,而海上溢油事件时常发生,给海洋带来严重的环境污染,需要快速、准确的监测其状况。GNSS R技术具有全天候监测海洋的特点,因此更适合用于海面溢油检测。为了验证GNSS R技术在检测海面溢油的可行性,利用2013年中国青岛海洋溢油事故的遥感图像的溢油结果,作为仿真实验检测目标,进行岸基的GNSS R海面溢油检测仿真研究。利用Z V散射模型和海水/溢油的均方坡度(MSS)模型结合,建立了能反映海面状况GNSS散射信号特征的时延 多普勒图(DDM)。仿真得到DDM中检测到海面溢油区域,验证了利用GNSS反射信号进行海面溢油检测的可行性。   相似文献   

17.
大气程辐射遥感图像与城市大气污染监测研究   总被引:3,自引:0,他引:3  
作为对地探测的遥感技术所获取的遥感图像包含了地面和大气信息,并且主要是地面信息.利用地面反射率分布图像将遥感数字图像中弱的大气信息与强的地面目标信息分离,生成仅仅包含大气信息的大气程辐射遥感图像.利用多(高)光谱遥感数字图像中不同波段的大气程辐射遥感图像可以不受地面干扰地对城市大气污染的类型和程度(气溶胶粒径和含量)进行遥感监测.在大气污染地面观测数据(可吸入颗粒物PM10浓度)的支持下,利用MODIS多光谱遥感数字图像生成的对应多光谱大气程辐射遥感数字图像,以上海市为例进行了城市大气污染遥感监测的原理方法研究.  相似文献   

18.
面向遥感的GNSS反射信号接收处理系统及实验   总被引:3,自引:0,他引:3  
提出了一种新的GNSS-R信号接收处理系统(GNSS-Rreceiver system,GRrSv.2)的结构及信号处理方法。该系统可同时针对直射和反射的GNSS信号协同处理,并输出可配置延迟和多普勒的二维相关值矩阵。为了验证系统的性能,进行了针对海洋和陆地遥感的机载和岸基验证实验,并给出了初步的实验结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号