首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 736 毫秒
1.
为了提高GNSS拒止环境下车辆编队的定位精度,克服集中式滤波依赖中央处理单元且整体计算量大,进而导致协同定位系统可靠性低的问题,提出一种基于OD/SINS(里程计/捷惯导组合导航)模式下分散式协同定位算法.在OD/SINS组合导航系统方程的基础上构建了分散式协同定位模型,建立了基于位置反馈校正的测量模型,并引入载体连线边横向误差和边纵向误差来对协同定位后的相对精度进行评价.仿真结果表明,该算法与非协同模式相比,能够有效减小定位误差和航向角误差,并且能够显著提升载体之间的相对精度和编队构型的稳定程度.  相似文献   

2.
深组合导航系统将导航参数估计与GNSS卫星信号跟踪融合在一起,将相关器的输出I/Q信息作为GNSS/INS组合导航kalman滤波器的观测量,提高系统的导航精度、抗干扰性和动态性能。利用GNSS软件接收机方便处理基带信号的优势进行深组合导航算法研究,推导了深组合kalman滤波器的观测方程。仿真结果表明:在高动态条件下,深组合导航系统的导航精度明显优于紧组合导航系统的导航精度,位置误差稳定在2m范围内,速度误差稳定在0.04m/s内。  相似文献   

3.
针对车载GNSS/惯性导航系统(inertial navigation system,INS)组合导航系统在GNSS信号失锁时定位精度下降甚至发散的问题,提出了一种长短期记忆(long short-term memory,LSTM)神经网络辅助组合导航的算法来提高定位精度,实现可靠连续稳定的定位.通过移动集成平台进行实验,结果表明:当GNSS信号失锁30 s时,LSTM辅助组合导航系统在东(east,E)、北(north,N)方向的位置误差最大值分别降低了77.45%、17.39%,均方根误差(root mean square error,RMSE)分别降低了79.53%、42.36%;当GNSS信号失锁100 s时,LSTM辅助GNSS/INS在E、N、天顶(up,U)三个方向上的位置误差最大值分别降低了60.07%、98.30%、84.65%,RMSE分别降低了61.96%、97.98%、84.65%. LSTM辅助较大地提升了车载GNSS/INS组合导航系统的导航性能.  相似文献   

4.
GNSS/SINS(global navigation satellite system/strapdown inertial navigation system)组合导航系统已得到广泛的应用与研究,当处于复杂环境时,GNSS输出容易出现误差均方差突变、误差均方差缓变、硬故障和软故障4种现象,进而影响组合导航系统滤波精度及载体的导航安全。为了解决上述问题,提出了一种改进的GNSS/SINS组合导航系统自适应滤波算法。首先,利用滤波过程中的观测异常检验统计量与滤波器门限值构建观测因子,然后,将变分贝叶斯原理与抗野值滤波方法结合,设计了改进的组合导航系统自适应滤波算法。仿真实验表明,相较于传统算法,当GNSS输出误差均方差发生变化时,所提算法可将位置精度及速度精度提高11.8%及13.7%;在GNSS输出发生硬故障时,所提算法可将位置精度及速度精度提高70.8%及69.6%。实验结果表明,所提算法具有较强的自适应性,可提升复杂环境下组合导航系统的精度和连续可用性。  相似文献   

5.
为解决可观测基站受遮挡情况下仅采用到达时间(time of arrived, TOA)无法定位或精度较差的问题,将第5代移动通信技术(5th generation,5G)中多天线阵列提供的信号离开角(angle of departure, AOD)应用在定位解算中,通过卡尔曼滤波将5G定位与捷联惯性导航(strapdown inertial navigation system,SINS)融合,构成融合TOA/AOD的5G/SINS组合导航方案。通过模拟可观测5G基站数量充足、遮挡这两类场景下的仿真实验,对基于TOA的5G定位、基于TOA/AOD的5G定位、TOA组合导航、TOA/AOD组合导航这4种解算方法的位置误差进行了比较。仿真实验结果表明,当可观测基站受遮挡时,融合TOA/AOD进行5G/SINS组合导航能确保100%的定位成功率,并有效降低组合导航发散的概率,减小40%~70%的位置误差。  相似文献   

6.
针对车载全球导航卫星系统/惯性导航系统(global navigation satellite system/inertial navigation system,GNSS/INS)组合导航中卫星信号中断,惯性导航系统单独导航误差积累较大的问题,提出了附加载体运动条件约束的卡尔曼(Kalman)滤波解算方法。通过利用载体固有的运动约束,包括近似高程约束、近似速度约束和近似姿态约束,减少载体自由度和模型参数;通过引入新的观测类型,增加观测冗余,可以加强Kalman滤波解,提高在GNSS信号中断时组合导航系统的定位精度,实现无缝导航。  相似文献   

7.
天文导航和捷联惯性导航(CNS/SINS)相结合构成的组合导航系统,实现导航优势的互补,提高导航的精度和可靠性。文中阐述在惯性系下,以弹道导弹为研究对象而建立CNS/SINS组合导航的数学模型,并利用MATLAB编程设计基于离散型卡尔曼滤波的组合导航系统仿真,对比SINS和CNS/SINS对载体位置误差、速度误差以及姿态角估计的影响,进而验证CNS/SINS组合导航系统的可靠性。  相似文献   

8.
在车载全球卫星导航系统(global navigation satellite system,GNSS)/微机械系统(micro-electro mechanical system,MEMS)惯性测量单元(inertial measurement unit,IMU)组合导航滤波解算时,通常使用MEMS厂商标定的加速度计和陀螺仪的随机模型参数(简称为标称参数)。这些标称参数由传感器厂商在静止状态或通过实验室转台设备来测定,是否适用于运动状态下的组合导航滤波解算并获得最优的定位精度,需要进一步研究和评估。本文提出了一种运动状态下MEMS IMU随机误差的Allan方差分析方法,将不同精度等级的IMU安装在同一车载平台上同步采集观测数据,用高精度IMU观测数据提取车辆运动信息,然后从低精度MEMS IMU观测数据中剔除车辆运动信息得到类似静止的观测数据,进行Allan方差分析,获得运动状态下的MEMS随机模型参数,并将其应用于GNSS/惯性导航系统(inertial navigation system,INS)组合导航解算。试验结果表明,采用运动状态下标定的随机模型参数,组合导航的定位精度优...  相似文献   

9.
弹道导弹的GNSS/SST/SINS组合导航系统研究   总被引:2,自引:0,他引:2  
提出一种组合导航方案,该方案在硬件上采用全捷联的结构,在算法上将捷联星光跟踪仪(strapdown startracker,SST)的姿态信息,高动态GNSS的位置、速度信息与捷联惯导进行组合滤波,全面提高导航精度。设计并实现了弹道导弹GNSS/SST/SINS组合导航系统实时仿真平台,仿真结果表明了该组合方案的稳定、可靠性。  相似文献   

10.
零速修正技术是克服捷联惯导(SINS)定位定姿误差发散最为实用的一种约束方法,该技术包含零速区间探测和零速更新两个部分,其中,零速区间探测是零速更新的基础。基于实测数据,对广泛应用于行人微机电系统(MEMS)组合导航中的4种零速区间探测方法在车载全球卫星导航系统/捷联惯导(GNSS/SINS)高精度组合导航中的实际探测性能进行了分析,获得了一些有益的结论。在此基础上,提出使用低通滤波器预先消除陀螺和加速度计数据中的高频噪声,进而提升角速度能量探测器零速区间探测效果的改进方法,并给出了不同窗口的最佳阈值范围。  相似文献   

11.
在地面车载组合导航中,全球导航卫星系统(global navigation satellite system,GNSS)的观测值容易受地面复杂环境的干扰,导致其定位结果出现异常,严重影响GNSS/捷联惯性导航系统(strap-down inertial navigation system,SINS)组合的滤波解算。从惯导系统误差特性的角度,研究了一种基于加表零偏稳定性的组合导航异常探测新方法。该方法从加表零偏解算的异常来发现GNSS位置、速度等观测值中的粗差,并采取剔除和降权的抗差方法抵御粗差影响。通过一组车载数据的分析表明,观测粗差对加表零偏解算的影响十分显著,以此为判别条件能够准确地发现观测粗差。采用该方法后,位置误差、速度误差和姿态误差的均方根分别减小了70.8%、87.9%和77.7%,显著提高了组合导航的解算精度和鲁棒性,为组合导航数据的抗差处理提供了一种新思路。  相似文献   

12.
里程计通常被用于辅助车载GNSS/INS组合导航系统,以解决当遇到高楼、密林、隧道等信号干扰和遮蔽严重情景时导致精度下降的问题,而里程计辅助需要获取准确的里程计杆臂和安装角。鉴于此,本文提出了一种基于预积分的IMU/ODO外参估计算法,使用由里程计观测和GNSS/INS组合导航解算得到的一段时间内的里程增量差异构建代价函数,通过非线性优化器进行标定参数求解。仿真与实际测试均表明了本文标定方法的有效性,里程计观测在经过标定外参补偿后,可为车载GNSS/INS组合导航系统提供厘米级的精度辅助。  相似文献   

13.
车载IMU相对于车体的安装姿态信息是应用车辆非完整约束的必需条件,而车辆非完整约束可以有效解决GNSS信号长时间中断的情形下低成本INS+GNSS组合导航系统精度降低的问题。本文针对车载场景下的低成本消费级IMU,基于卡尔曼滤波和粒子滤波提出了一种估计IMU安装姿态的算法。该算法无需限制IMU相对于车体的姿态为小角度;随后,基于仿真平台对低成本消费级IMU进行建模,利用生成的若干组不同安装姿态的IMU数据对算法进行验证;最后进行车载测试。仿真结果和车载测试结果都表明,该算法可以准确地估计IMU相对于车体的安装姿态,对于低成本INS+GNSS组合导航系统精度的提高具有实际意义。  相似文献   

14.
车载低成本嵌入式组合导航系统的可靠性容易受到多种传感器故障和环境的影响,基于全球卫星导航系统(GNSS)状态的惯性导航系统(INS)/GNSS/里程计(ODO)抗差组合导航算法,提出了一种两级故障检测处理方法. 其中,第一级检测使用了基于解析冗余的残差卡方检验法,第二级检测使用了改进的双状态传播卡方检验算法. 利用自主研制的GN310低成本嵌入式系统采集路测数据. 结果表明:相对于传统算法,水平定位精度提升了39.7%;另外在半实物仿真下,水平定位误差保持在3 m以内,表明该容错方法能够有效地处理ODO、INS故障和GNSS软硬故障.   相似文献   

15.
为满足组合导航系统在高动态环境下的性能要求,设计基于矢量跟踪的GNSS/SINS相干深组合导航方法。利用矢量跟踪环路将所有可视卫星的跟踪和导航解算融为一体,增强通道间的辅助;高动态对载波跟踪影响更大,在通道预滤波中将码环载波环分别用独立的滤波器处理,组合滤波中采用通道间差分降低滤波状态维数,提高计算效率。引入惯导的加速度辅助本地信号参数预测,较精确地测量卫星视线方向的加速度,减小接收机在高动态时段的剩余动态,提高本地信号参数的预测精度。基于矢量跟踪软件接收机搭建相干深组合仿真系统,实验表明该方法在高动态等环境下能提高信号跟踪性能,改善系统的精度、可靠性。   相似文献   

16.
为了满足高动态用户及强干扰条件下的应用需求,提出了一种基于卫星信号矢量跟踪的SINS/GPS深组合导航方法,设计了基于FPGA硬件平台的实施方案。利用组合卡尔曼滤波器反馈回路取代了传统接收机中独立、并行的跟踪环路,能够同时完成所有可视卫星信号的跟踪和导航信息处理;通过矢量跟踪算法对所有可视卫星信号进行集中处理,能够增强跟踪通道对信号载噪比变化的适应能力,从而提高接收机在强干扰或信号中断条件下的跟踪性能;根据SINS导航参数和星历信息推测GPS伪码相位和多普勒频移等参数,用以辅助卫星信号的捕获和跟踪,能够大大缩短接收机的搜索捕获时间,并增强接收机在高动态条件下的跟踪性能。基于矢量跟踪的深组合方法不仅在GPS信号短暂中断期间,能够保证系统的导航精度和可靠性,而且在强干扰环境中能够维持较好的伪码相位和载波频率跟踪性能。  相似文献   

17.
智能手机凭借其普遍性、便携性和低成本等优势,已成为大众用户导航与位置服务的主流终端载体,其多频多系统GNSS(global navigation satellite system)观测值的开放进一步激发了手机高精度定位的研究。然而,受限于消费级GNSS器件性能,手机卫星观测值呈现出信号衰减严重、伪距噪声大、粗差周跳多等问题;并且受城市复杂环境影响,手机GNSS定位的连续性、可靠性也难以保证。提出一种城市场景手机GNSS/ MEMS(micro-electro mechanical system)融合的车载高精度定位方案。首先,构建了速度约束的GNSS差分定位模型;然后,通过手机内置MEMS与车辆运动约束,在挑战环境下进行GNSS/MEMS融合精密定位。实验结果表明,在开阔和树荫场景下,速度约束方法可达到分米至米级定位精度,相比于常规方法分别提升了35.2%和78.9%;在高架场景下,GNSS/MEMS融合定位的精度和连续性均提升显著;在隧道场景下,MEMS推算位置累积误差约为2.5%。实验结果初步表明,手机GNSS具备开阔环境下的车道级定位能力,手机GNSS/MEMS融合可提升城市复杂环境下车载定位的精度和连续可用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号