首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 135 毫秒
1.
叶片光谱是估算植被生化参数的重要依据。然而,遥感影像获取的光谱为像元及冠层光谱,因此,在进行植被生化参数的遥感定量估算时,需将冠层光谱转化到叶片尺度。根据几何光学模型原理,推导出植被冠层光谱和叶片光谱的尺度转换函数,将冠层光谱转换到叶片尺度。首先,采用叶片光谱模拟模型PROSPECT模拟出叶片水平的光谱;其次,在几何光学模型4-scale模型中,通过改变叶片光谱和叶面积指数(leaf area index,LAI),模拟出不同叶片特征下的冠层光谱。最后,通过LAI建立两个查找表,一个是传感器观测到树冠光照面和背景光照面概率的查找表,另一个是多次散射因子M的查找表,从而实现冠层光谱和叶片光谱的转化。结果表明,利用4-scale模型能实现冠层光谱与叶片光谱的尺度转换,此方法有很好的适用性。  相似文献   

2.
基于神经网络方法的芦苇叶面积指数遥感反演   总被引:2,自引:0,他引:2  
提出了一种从TM图像上获取芦苇冠层叶面积指数的方法:首先对芦苇的生长背景进行分类;然后,对不同的背景光谱利用冠层反射率(FCR)模型计算得到查找表;最后,利用实测数据和查找表中的数据作为参数进行BP神经网络模型训练,从而得到芦苇冠层LAI。结果表明,人工神经网络方法有很强的非线性拟合能力,能够消除背景对反演结果的影响,有效提高LAI反演的精度。  相似文献   

3.
山地叶面积指数反演理论、方法与研究进展   总被引:2,自引:0,他引:2  
江海英  贾坤  赵祥  魏香琴  王冰  姚云军  张晓通  江波 《遥感学报》2020,24(12):1433-1449
叶面积指数LAI(Leaf Area Index)是表征叶片疏密程度和冠层结构特征的重要植被参数,在气候变化、作物生长模型以及碳、水循环研究中发挥着重要作用。遥感是获取区域及全球尺度LAI的一个重要手段,当前LAI产品主要基于遥感数据反演得到,但是多数LAI产品算法并未考虑地形特征的影响,导致山地LAI遥感反演精度不确定性大。提高山地LAI遥感反演精度亟需考虑地形因子对冠层反射率的影响,其中山地冠层反射率模型和遥感数据地形校正是提升山地LAI遥感反演精度的关键。本文围绕山地LAI遥感反演理论与方法,综合分析了国内外山地冠层反射率模型和地形校正模型的研究进展,总结了目前山地LAI遥感反演存在的问题,并讨论了未来研究的发展趋势。  相似文献   

4.
基于PROSPECT+SAIL模型的遥感叶面积指数反演   总被引:4,自引:1,他引:4  
以PROSPECT+SAIL模型为基础,从物理机理角度反演植被叶面积指数(LAI)。首先,通过FLAASH模型进行大气校正,使得图像像元值表达植被冠层反射率; 然后,根据LOPEX 93数据库和JHU光谱数据库选择植物生化参数和光谱数据,以PROSPECT模型模拟出的植物叶片反射率和透射率作为SAIL模型的输入参数,得到植被冠层反射率,将结果与遥感影像的植被冠层反射率对应,回归出植被LAI; 最后,以地面实测数据对遥感反演数据进行验证,并分析了误差的可能来源。  相似文献   

5.
叶面积指数LAI(Leaf Area Index)是表征植被冠层结构特征的一个重要参数,已经成为多个对地观测系统的陆表参数标准产品,也是定量遥感模型的重要输入参数。快速、准确地获取植被LAI对于开展遥感产品验证、促进遥感模型的发展具有极为重要的意义。随着传感器性能与应用软件功能扩展,智能手机已经成为植被LAI测量的新选择。然而,由于手机成像传感器窄视场角的限制,现有算法依赖于叶倾角分布函数为球型分布的假设,即G函数(单位叶面积在垂直于观测天顶角的平面上的投影)恒等于0.5。因而,传统算法无法解决植被叶倾角分布未知的情况。本文提出了一种基于形状匹配的G函数估算方法,基于有限长度方法和多幅影像间隙率,计算样方内的植被冠层聚集指数,利用泊松分布模型分别得到了植被冠层有效叶面积指数(LAIeff)和真实叶面积指数(LAItru),并用黑龙江海伦农场两种农作物类型(玉米和大豆)的破坏性测量得到的时间序列真实LAI数据(LAIdes)对算法进行了验证。结果表明,算法改进之前的均方根误差(RMSE)分别是0.84(垂直拍摄)和1.33...  相似文献   

6.
基于玉米冠层结构参数实测数据和Matrix-Doubling(MD)模型构建了玉米出苗期至抽穗期的冠层多波段、双极化微波辐射特性模拟数据库;通过对模拟数据的回归分析得到了玉米冠层在各波段的微波发射率及其与透过率之间的经验关系,并将经验关系应用于0阶微波辐射传输模型;结合土壤发射率模型构建了玉米冠层覆盖地表的微波辐射亮温参数化计算模型,并基于该参数化模型、利用玉米样地微波亮温观测试验数据,采用迭代方法进行了玉米叶面积指数(LAI)的反演.研究表明,LAI反演值与实测值的相关系数r>0.9,说明多波段被动微波遥感数据在植被冠层LAI反演方面具有较大的应用潜力.  相似文献   

7.
计算机模拟模型是以植被真实三维结构场景为基础,模拟植被冠层的辐射特性。本文以冬小麦为例,利用辐射度方法模拟了冬小麦在不同LAI下的冠层二向反射因子(BRF)及其波谱特征;为了验证并评价模拟数据的质量,将模拟冠层BRF数据与实测数据进行了比较,并将计算机模拟波谱数据与Prosail模型模拟波谱及实测波谱进行了比较。通过研究可以得到以下结论:(1)LAI是植被群体重要的结构参数,对于同一品种的植被可以用LAI来描述植被的生长进程;(2)基于计算机模拟的冠层BRF数据具有一定的可靠性,能够满足实际研究的需要,因此可以把计算机模拟冠层BRF数据作为实测数据用于研究,以弥补因各种条件限制无法得到实测数据的缺憾。  相似文献   

8.
叶面积指数LAI (Leaf Area Index)是研究植被生态系统结构和功能的核心参数之一,遥感是获取大范围动态LAI的一个主要技术手段。目前国际上没有高分辨率的LAI标准化产品。本文基于三维随机辐射传输(3D-SRT)模型查找表算法研究了适用于国产高分辨率卫星高分一号宽幅相机(GF-1 WFV)的叶面积指数反演算法。模型中单次散射反照率和不确定性等参数与波段设置和波段稳定性相关。算法在全国范围内选取不同植被类型的均质样点,统计地表反射率的差异特征,调整全国6种植被类型各波段的单次散射反照率、不确定性等算法参数,进而构造适用于GF-1 WFV传感器的查找表以进行LAI的反演。研究中使用新疆维吾尔自治区石河子地区、内蒙古自治区四道桥包含农作物、森林等共359组实测地面数据开展LAI验证。验证结果表明,和调整参数前的反演结果相比,优化后的算法均方根误差RMSE可由算法优化前的1.209下降至0.804,决定系数R2由0.659提高至0.883,反演成功率RI可由25.3%提高至73.8%,算法精度和稳定性较高,更适用于GF-1叶面积指数的反演。将其应用于GF-1卫星影像上,生产了201...  相似文献   

9.
基于TM的辐射传输模型反演叶面积指数可行性研究   总被引:4,自引:1,他引:4  
基于PROSAIL辐射传输模型,引入土壤反射指数SRI来简化模型,提出直接从反射率计算SRI的方法;  同时,针对不同的植被状况,采取不同波段组合对模型的参数进行敏感性分析,确定自由参数与反演波段组合,提出一种基于不同植被状况的叶面积指数反演策略; 最后,应用遗传算法对模拟的TM光谱反射数据进行实验。结果表明,对于LAI<3的植被,反演精度较高; 但是对于LAI>3的植被,反演精度较低,其原因主要是冠层反射对LAI不再敏感。因此,辐射传输模型反演LAI有一定适用范围,只有在此范围内LAI的反演精度才可靠。  相似文献   

10.
基于多角度遥感的植被指数与叶面积指数的线性关系研究   总被引:2,自引:0,他引:2  
以辐射传输方程PROSAIL为基础,模拟不同观测天顶角和不同叶面积指数(LAI)下的植被冠层光谱。利用模拟的冠层光谱构建3种常用的植被指数,并分析不同观测天顶角下叶面积指数变化对3种植被指数的影响。结果表明,MSR能较好解决由于LAI变化而引起的饱和现象。观测天顶角为-30°时,3种植被指数与叶面积指数的线性关系较30°和0°时好。  相似文献   

11.
Computer simulation models have seldom been applied for estimating the structural and biophysical variables of forest canopy. In this study, an approach for the estimation of leaf area index (LAI) using the information contained in hyperspectral, multi-angle images and the inversion of a computer simulation model are explored. For this purpose, L-systems combined with forest growth model ZELIG were applied to render 3-D forest architectural scenarios. The Radiosity-graphics combined model (RGM) was used to estimate forest LAI from the Compact High-Resolution Imaging Spectrometer/Project for On-Board Autonomy (CHRIS/PROBA) data. LAI inversion was performed using the look-up table (LUT) method. The estimated LAI was evaluated against in situ LAI measurement and compared against the LAI predictions from CHRIS data obtained using the Li-Strahler geometric-optical canopy reflectance model (GOMS). The results indicated that the method used in this study can be efficient strategy to estimate LAI by RGM model inversion.  相似文献   

12.
Forests play a vital role in biological cycles and environmental regulation. To understand the key processes of forest canopies (e.g., photosynthesis, respiration and transpiration), reliable and accurate information on spatial variability of Leaf Area Index (LAI), and its seasonal dynamics is essential. In the present study, we assessed the performance of biophysical parameter (LAI) retrieval methods viz. Look-Up Table (LUT)-inversion, MLRA-GPR (Machine Learning Regression Algorithm- Gaussian Processes Regression) and empirical models, for estimating the LAI of tropical deciduous plantation using ARTMO (Automated Radiative Transfer Models Operator) tool and Sentinel-2 satellite images. The study was conducted in Central Tarai Forest Division, Haldwani, located in the Uttarakhand state, India. A total of 49 ESUs (Elementary Sampling Unit) of 30 m × 30 m size were established based on variability in composition and age of plantation stands. In-situ LAI was recorded using plant canopy imager during the leaf growing, peak and senescence seasons. The PROSAIL model was calibrated with site-specific biophysical and biochemical parameters before used to the predicted LAI. The plantation LAI was also predicted by an empirical approach using optimally chosen Sentinel-2 vegetation indices. In addition, Sentinel-2 and MODIS LAI products were evaluated with respect to LAI measurements. MLRA-GPR offered best results for predicting LAI of leaf growing (R2 = 0.9, RMSE = 0.14), peak (R2 = 0.87, RMSE = 0.21) and senescence (R2 = 0.86, RMSE = 0.31) seasons while LUT inverted model outperformed VI’s based parametric regression model. Vegetation indices (VIs) derived from 740 nm, 783 nm and 2190 nm band combinations of Sentinel-2 offered the best prediction of LAI.  相似文献   

13.
Accurate representation of leaf area index (LAI) from high resolution satellite observations is obligatory for various modelling exercises and predicting the precise farm productivity. Present study compared the two retrieval approach based on canopy radiative transfer (CRT) method and empirical method using four vegetation indices (VI) (e.g. NDVI, NDWI, RVI and GNDVI) to estimate the wheat LAI. Reflectance observations available at very high (56 m) spatial resolution from Advanced Wide-Field Sensor (AWiFS) sensor onboard Indian Remote Sensing (IRS) P6, Resourcesat-1 satellite was used in this study. This study was performed over two different wheat growing regions, situated in different agro-climatic settings/environments: Trans-Gangetic Plain Region (TGPR) and Central Plateau and Hill Region (CPHR). Forward simulation of canopy reflectances in four AWiFS bands viz. green (0.52–0.59 μm), red (0.62–0.68 μm), NIR (0.77–0.86 μm) and SWIR (1.55–1.70 μm) were carried out to generate the look up table (LUT) using CRT model PROSAIL from all combinations of canopy intrinsic variables. An inversion technique based on minimization of cost function was used to retrieve LAI from LUT and observed AWiFS surface reflectances. Two consecutive wheat growing seasons (November 2005–March 2006 and November 2006–March 2007) datasets were used in this study. The empirical models were developed from first season data and second growing season data used for validation. Among all the models, LAI-NDVI empirical model showed the least RMSE (root mean square error) of 0.54 and 0.51 in both agro-climatic regions respectively. The comparison of PROSAIL retrieved LAI with in situ measurements of 2006–2007 over the two agro-climatic regions produced substantially less RMSE of 0.34 and 0.41 having more R2 of 0.91 and 0.95 for TGPR and CPHR respectively in comparison to empirical models. Moreover, CRT retrieved LAI had less value of errors in all the LAI classes contrary to empirical estimates. The PROSAIL based retrieval has potential for operational implementation to determine the regional crop LAI and can be extendible to other regions after rigorous validation exercise.  相似文献   

14.
针对在路域环境监测中,如何精确估算叶面积指数问题,该文提出以长韶娄高速路域为研究区,筛选出4种常用植被指数和4种红边指数两类指数,分别构建了经验模型和机器学习的反演模型,利用Sentinel-2影像数据和同步的LAI-2000地面实测数据完成路域植被叶面积指数反演。结果表明,红边波段参与运算的植被指数与植被叶面积指数敏感性是显著相关,红边指数在反演精度上更优。由此可知,相较于常见植被指数,红边指数增强了其与叶面积指数的敏感性,提高了叶面积指数估算模型精度。  相似文献   

15.
作物LAI的遥感尺度效应与误差分析   总被引:7,自引:2,他引:5  
以黑河中游盈科绿洲为研究区, 利用Hyperion高光谱数据, 采用双层冠层反射率模型(ACRM)迭代运算反演LAI; 通过LAI的均值化(LAImean)以及Hyperion数据反射率线性累加反演LAI(LAIp), 定量分析LAI反演的尺度效应; 从模型的非线性和地表景观结构的空间异质性2个方面分析引起反演误差的原因, 并在LAI-NDVI回归方程的基础上利用泰勒展开的方法对低分辨率数据反演结果进行了误差纠正。结果表明, 地表景观结构的空间异质性是造成多尺度LAI反演误差的关键因素, 通过泰勒展开式能很好地实现大尺度数据LAI反演结果的误差纠正。  相似文献   

16.
Leaf area index (LAI) is a critical parameter for urban forest monitoring. The goal of this study in Terre Haute, Indiana, USA was to develop algorithms to model gap-fraction LAI measured on sample plots as a function of radiometric response measured by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Two neural networks facilitated the modeling. The first was trained to detect sites dominated by bare ground using ASTER visible, infrared, and thermal channels. The second estimated LAI as a function of vegetation indices. When the field sample sites were resubmitted to the two networks, the resulting systemwide standard error of the estimate was 1.25 LAI units.  相似文献   

17.
The aim of this study is to estimate leaf area index (LAI) in different type of plants using vegetation indices (VIs) and neural network algorithms retrieved from MODIS data. Four VI were calculated, and neural networks were built up based on MODIS surface reflectance products. Among the tested VIs, normalized difference vegetation index (NDVI) and chlorophyll index (CI) appeared to be the best candidate indices in estimating LAI across sites with different vegetation types. The models having the highest accuracy were CI for grassland and deciduous broad leaf forest with determination coefficients (R-square above 0.70, and NDVI for crop R-square?=?0.78). Neural network showed better results than VI methods except in grassland sites. The added VI information showed no significant improvement of model accuracy for the neural networks in most sites.  相似文献   

18.
针对南方丘陵地区针叶-阔叶混交林植被叶面积指数(leaf area index,LAI)反演精度低且研究较少的问题,本文提出了一种GLIBERTY-DSAIL耦合模型组合多元线性回归反演LAI的方法。本研究以GLIBERTY-DSAIL模型模拟光谱和植被实测高光谱为数据源,通过相关性分析,选取与LAI相关性高的植被指数作为反演因子,构建多元线性回归模型定量反演植被LAI并进行精度评定。结果表明:与LAI显著相关的RVI、DVI、GNDVI、MSAVI这4种植被指数作为反演因子,结合本文提出的组合模型反演LAI,模型预测决定系数R2为0.708 6,均方根误差RMSE为0.302 1,精度整体较高。该组合方法可较好地用于反演针叶-阔叶混交林植被LAI,为南方地区混交林LAI的研究提供新思路。  相似文献   

19.
In this paper, we focused on the retrieval of the LAI in an alpine wetland located in western part of China in late August and early July 2011. A two-layer canopy reflectance model (ACRM) was used to establish the relationships between the LAI and the reflectance of near-infrared (NIR) and red (RED) wavebands. The reflectance data were derived from Landsat TM L1T product and the Terra and Aqua MODIS 16-day and 8-day composite reflectance products (MOD/MYD09) at 250 m resolution. Due to the lack of the information about some major input parameters for ACRM, which are sensitive to model outputs in the reflectance of NIR and RED wavebands, the inverse problem was ill-posed. To overcome this problem, a method of increasing the sensitivity of the LAI while reducing the influence of other model free parameters based on the study of free parameters’ sensitivity to the ACRM outputs and the region’s features was studied. The area of interest was divided into two parts using the approximately statistic normalized difference vegetation index (NDVI) value around 0.5. One part was sparse vegetation (0.1 < NDVI < 0.5), which is more sensitive to soil background effects and less sensitive to the canopy biophysical and biochemical variables. The other part was dense vegetation (0.5  NDVI < 1.0), which is less sensitive to soil background effects and more sensitive to plant canopies and leaf parameters. Then, the relationships of ρnir–LAI and ρred–LAI were established using a look-up table algorithm for the two parts. Furthermore, a regularization technique for fast pixel-wise retrieval was introduced to reduce the elements of LUT sets while maintaining a relatively high accuracy. The results were very promising compared to the field measured LAI values that the correlation (R2) of the measured LAI values and retrieved LAI values reached 0.95, and the root-mean-square deviation (RMSD) was 0.33 for late August, 2011, while the R2 reached 0.82 and RMSD was 0.25 for early July 2011.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号