首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
中国似大地水准面   总被引:12,自引:2,他引:12  
采用移去-恢复技术,利用我国高分辨率DTM和重力资料推算我国大陆重力大地水准面;然后再和我国GPS水准所构成的高程异常控制网拟合,推算具有分米级精度,15′×15′分辨率的我国大陆大地水准面.利用全国地壳运动监测网络的80余个高精度GPS水准点进行外部检核,检核结果证实和原设计精度完全一致即该大陆大地水准面的绝对精度,在东经120°以东,高于±0.3 m,在东经120°以西,北纬36°以北,±0.4 m, 36°以南,±(0.4~0.6) m.利用卫星测高数据计算垂线偏差,反解我国海域大地水准面.为了检核,由测高垂线偏差反演为重力异常,与海上万余点船测重力值进行了外部检核;同时将上述反演的重力异常推算大地水准面,与直接解得的相应结果进行比较作为内部检核.由重力和GPS水准数据推算的上述大陆大地水准面,和主要由卫星测高数据确定的海洋大地水准面,二者之间一般都存在以系统误差为主的拼接差.顾及这一现象和结合我国在陆海大地水准面拼接区重力资料稀疏的实际,研究提出了扩展拼接技术,即在沿海选取部分陆海毗邻的局部地区,在这局部地区内,陆地用实测平均重力格网数据,海洋用测高平均重力格网数据,统一推算陆海局部重力大地水准面.然后利用这一局部大地水准面的陆地部分和已经GPS水准校正的陆地大地水准面进行拟合.最后将拟合参数校正中国全部海域的测高重力大地水准面,而保持陆地部分大地水准面不变,以最大限度的削弱拼接点和测高海洋大地水准面的系统误差.  相似文献   

2.
中国新一代高精度、高分辨率大地水准面的研究和实施   总被引:13,自引:2,他引:13  
采用移去恢复技术,利用我国高分辨率DTM和重力资料推算我国大陆重力大地水准面;然后再和我国GPS水准所构成的高程异常控制网拟合,推算了具有dm级精度、15′×15′分辨率的我国大陆大地水准面。利用全国地壳运动监测网络的80余个高精度GPS水准点进行外部检核,检核结果证实和原设计精度完全一致,即该大陆大地水准面的绝对精度,在东经102°以东高于±0.3m,在东经102°以西、北纬36°以北为±0.4m,36°以南为±(0.4~0.6)m。利用卫星测高数据计算垂线偏差,反解我国海域大地水准面。为了检核,由测高垂线偏差反演为重力异常,与海上万余点船测重力值进行了外部检核;同时用上述反演的重力异常推算大地水准面,与直接解得的相应结果进行比较作为内部检核。由重力和GPS水准数据推算的上述大陆大地水准面,和主要由卫星测高数据确定的海洋大地水准面,二者之间一般都存在以系统误差为主的拼接差。顾及这一现象并结合我国在陆海大地水准面拼接区重力资料稀疏的实际,研究提出了扩展拼接技术,即在沿海选取部分陆海毗邻的局部地区,在这局部地区内,陆地用实测平均重力格网数据,海洋用测高平均重力格网数据,统一推算这陆海局部重力大地水准面。然后利用这一局部大地水准面的陆地部分和已经用GPS水准校正的陆地大地水准面进行拟合。最后用拟合参数校正中国全部海域的测高重力大地水准面,从而保持陆地部分大地水准面不变,最大限度地削弱拼接点和测高海洋大地水准面的系统误差。  相似文献   

3.
宗敬文  李厚朴  纪兵  欧阳永忠 《测绘学报》2021,50(10):1308-1319
为简化逆Stokes法和逆Vening-Meinesz法反演中央区重力异常计算过程,提高计算效率,本文采用数值求积公式,分别利用Simpson公式和Cotes公式对逆Stokes法和逆Vening-Meinesz法中的奇异积分问题进行了新的研究,系统地推导出了中央区重力异常普适数值积分计算公式.在大地水准面高和垂线偏差理论模型下的分析表明,此公式可直接利用格网节点处的大地水准面高和垂线偏差计算重力异常值,形式简单,计算效率高,计算精度与解析法计算结果精度相当,可以满足实际应用.研究结果可为高精度卫星测高反演重力异常提供基础理论依据.  相似文献   

4.
邢志斌  李姗姗 《测绘学报》2018,47(5):575-583
基于重力场水平分量-垂线偏差对地形信息敏感的特点,根据边值理论由重力与地形数据确定格网垂线偏差模型,在此基础上,首先利用三维重力矢量-格网垂线偏差与格网重力异常,联合格网高程数据求得格网点间高程异常差,然后通过GPS/水准点的控制,构成紧密的几何条件,进行严密平差,从而获得高分辨率、高精度似大地水准面的数值模型。按照本文方法,利用我国6600多个GPS/水准点、1'×1'的格网垂线偏差、格网重力异常、格网高程数据,整体平差计算了我国陆海统一的似大地水准面模型,经GPS/水准点检核,全国似大地水准面的绝对精度达到了4 cm,相对精度优于7 cm。  相似文献   

5.
中国海域大地水准面和重力异常的确定   总被引:12,自引:1,他引:12  
从莫洛金斯基(Molodensky)等1960年给出的由垂线偏差计算大地水准面空域积分公式出发,导出了其相应谱域1维严密卷积和2维球面及平面卷积公式。由Topex/Poseidon,ERS 1/2及Geosat/GM,ERM测高资料求解的垂线偏差计算了我国海域及其邻区大地水准面,其中计算格网为2.5′×2.5′。为了检核,将测高垂线偏差由逆维宁 迈尼兹(Vening Meinesz)公式反演重力异常,与海上船测重力值进行了外部检核;同时还利用司托克斯(Stokes)公式,由上述反演的重力异常计算大地水准面高,与莫洛金斯基公式直接解得的相应结果进行比较作为内部检核。前者的中误差为±9mGal(1Gal=1cm/s2),后者为±0.025m。本文在积分计算中充分应用了2维平面坐标形式和1维卷积严格公式,并做了比较和自校核。  相似文献   

6.
最小二乘配置法中局部协方差函数的计算   总被引:3,自引:1,他引:2  
文汉江 《测绘科学》2000,25(3):37-39
随着 GPS日益广泛的应用及精度的不断提高 ,在有些实际应用中利用 GPS来代替传统的水准测量进行高程控制已成为可能 ,这也进一步提出了对高精度大地水准面的需求。快速傅立叶变换 (FFT)是目前计算大地水准面比较常用的方法之一 ,但需要将重力观测量进行内插得到规则格网上的平均重力异常。利用最小二乘配置法计算大地水准面可直接利用已有的观测值进行计算 ,同时可综合利用不同类型的数据 ,如重力异常和垂线偏差等计算大地水准面 ,因此最小二乘配置法仍有广泛的应用 ,但制约最小二乘配置应用的关键问题是局部协方差函数的计算。将主要讨论最小二乘配置法中局部协方差函数的计算 ,使所用的协方差函数能更好地反映已知的数据 ,从而获得更精确的结果。  相似文献   

7.
全球重力场模型在卫星精密定位、大地水准面精化、重力法探矿、气候变化研究、地球物理学、地质学和海洋学等诸多领域都有非常重要的意义。据此,总结了全球重力场模型的研究进展,简要介绍了重力位模型计算扰动场元的方法与公式,对比了勒让德函数递推几种方法的效率。利用我国范围内实测的GPS/水准数据和垂线偏差数据对两个超高阶地球重力场模型EGM2008和EIGEN-6C2进行精度对比和分析,结果表明,EIGEN-6C2模型垂线偏差子午分量计算精度约为2.07″,卯酉分量计算精度约为2.13″,高程异常计算精度约为0.305m(含系统差),均优于EGM2008模型的计算精度。故在我国范围内,推荐使用EIGEN-6C2模型进行似大地水准面精化以及各类扰动重力场元计算。  相似文献   

8.
区域重力大地水准面确定的相对精度估计   总被引:2,自引:1,他引:1  
以频域解析方法,研究由地面重力数据、全球住模型确定区域重力大地水准面的相对精度估计.首先由Stokes公式的数值积分推导地面重力数据与球谐系敬的精度关系;再由"移去-恢复"方法的空域截断逼近模式和协方差函数的球谐表达,分别推导内区地面重力数据之误差、外区全球位模型之误差与区域重力大地水准面之相对精度的解析关系;为便于计算,提出将内区地面重力数据和外区全球位模型的频域截断误差合并,再按频段重新划分为两部分:①全球范围--地面重力数据对应频率以上的截断;②外区范围--介于全球位模型最高频率与地面重力数据对应频率之间的截断,以经验阶方差模型分别估计之.模拟计算显示了地面重力数据之精度、分辨率、积分半径和全球位模型之精度、分辨率与区域重力大地水准面之相时精度的具体对应关系.本文研究同样适用于区域重力似大地水准面的确定.  相似文献   

9.
针对卫星测高资料是海洋大地水准面、垂线偏差、重力异常等重力场参量反演的主要数据源。该文联合使用新近补充的Jason-2大地测量任务与HY-2B卫星测高资料,选取中国海及邻近海域(0°~40°N、100°~140°E)以及3个纬度带的10°×10°海域作为研究区域,根据交叉点处的观测时间、经纬度和大地水准面高计算垂线偏差方向分量,并采用XGM2019重力场模型进行检核分析。结果表明,Jason-2和HY-2B测高资料的垂线偏差解算精度可靠,其中HY-2B总体精度稍占优。由于低轨道倾角导致的地面轨迹分布方向及密度的差异,不同纬度带内Jason-2测高数据解算的垂线偏差东西分量精度随纬度的升高而显著提高。  相似文献   

10.
根据地面重力资料计算大地水准面差距和垂线偏差时,通常是将计算区域当做圆形域来处理并由此估算并由此估算与之对应的远区域对大地水准面差距和垂线偏差的影响。目前计算大地水准面差距或垂线偏差常用FFT技术或FHT技术,它们要求计算区域为球面梯形而不是圆。为此,本文将目前常用的圆边界条件下的估算公式推广到可计算任意形状的远区域影响,并介绍了计算这种影响的方法。作为算例,最后给出计算区域为球面梯形时的数值结果  相似文献   

11.
Using the spherical harmonic representations of the earth's disturbing potential and its functionals, we derive the inverse Vening Meinesz formula, which converts deflection of the vertical to gravity anomaly using the gradient of the H function. The deflection-geoid formula is also derived that converts deflection to geoidal undulation using the gradient of the C function. The two formulae are implemented by the 1D FFT and the 2D FFT methods. The innermost zone effect is derived. The inverse Vening Meinesz formula is employed to compute gravity anomalies and geoidal undulations over the South China Sea using deflections from Seasat, Geosat, ERS-1 and TOPEX//POSEIDON satellite altimetry. The 1D FFT yields the best result of 9.9-mgal rms difference with the shipborne gravity anomalies. Using the simulated deflections from EGM96, the deflection-geoid formula yields a 4-cm rms difference with the EGM96-generated geoid. The predicted gravity anomalies and geoidal undulations can be used to study the tectonic structure and the ocean circulations of the South China Sea. Received: 7 April 1997 / Accepted: 7 January 1998  相似文献   

12.
Two modifications of the Hotine formula using the truncation theory and marine gravity disturbances with altimetry data are developed and used to compute a marine gravimetric geoid in the Gulf Stream area. The purpose of the geoid computation from marine gravity information is to derive the absolute dynamic ocean topography based on the best estimate of the mean surface height from recent altimetry missions such as Geosat, ERS-1, and Topex. This paper also tries to overcome difficulties of using Fast Fourier Transformation (FFT) techniques to the geoid computation when the Hotine kernel is modified according to the truncation theory. The derived absolute dynamic ocean topography is compared with that from global circulation models such as POCM4B and POP96. The RMS difference between altimetry-derived and global circulation model dynamic ocean topography is at the level of 25cm. The corresponding mean difference for POCM4B and POP96 is only a few centimeters. This study also shows that the POP96 model is in slightly better agreement with the results derived from the Hotine formula and altimetry data than POCM4B in the Gulf Stream area. In addition, Hotine formula with modification (II) gives the better agreement with the results from the two global circulation models than the other techniques discussed in this paper. Received: 10 October 1996 / Accepted: 16 January 1998  相似文献   

13.
The accumulation of good quality satellite altimetry missions allows us to have a precise geoid with fair resolution and to compute free air gravity anomalies easily by fast Fourier transform (FFT) techniques.In this study we are comparing two methods to get gravity anomalies. The first one is to establish a geoid grid and transform it into anomalies using inverse Stokes formula in the spectral domain via FFT. The second one computes deflection of the vertical grids and transforms them into anomalies.The comparison is made using different data sets: Geosat, ERS-1 and Topex-Poseidon exact repeat misions (ERMs) north of 30°S and Geosat geodetic mission (GM) south of 30°S. The second method which transforms the geoid gradients converted into deflection of the vertical values is much better and the results have been favourably evaluated by comparison with marine gravity data.  相似文献   

14.
This paper analyzes several systematic errors affecting sea surface gradients derived from Seasat, Geosat/ERM, Geosat/GM, ERS-1/35d, ERS-1/GM and TOPEX/POSEIDON altimetry. Considering the data noises, the conclusion is: (1) only Seasat needs to correct for the non-geocentricity induced error, (2) only Seasat and Geosat/GM need to correct for the one cycle per revolution error, (3) only Seasat, ERS-1/GM and Geosat/GM need to correct for the tide model error; over shallow waters it is suggested to use a local tide model not solely from altimetry. The effects of the sea surface topography on gravity and geoid computations from altimetry are significant over areas with major oceanographic phenomena. In conclusion, sea surface gradient is a better data type than sea surface height. Sea surface gradients from altimetry, land gravity anomalies, ship gravity anomalies and elevation data were then used to calculate the geoid over Taiwan by least-squares collocation. The inclusion of sea surface gradients improves the geoid prediction by 27% when comparing the GPS-derived and the predicted geoidal heights, and by 30% when comparing the observed and the geoid-derived deflections of the vertical. The predicted geoid along coastal areas is accurate to 2 cm and can help GPS to do the third-order leveling. Received 22 January 1996; Accepted 13 September 1996  相似文献   

15.
The determination of local geoid models has traditionally been carried out on land and at sea using gravity anomaly and satellite altimetry data, while it will be aided by the data expected from satellite missions such as those from the Gravity field and steady-state ocean circulation explorer (GOCE). To assess the performance of heterogeneous data combination to local geoid determination, simulated data for the central Mediterranean Sea are analyzed. These data include marine and land gravity anomalies, altimetric sea surface heights, and GOCE observations processed with the space-wise approach. A spectral analysis of the aforementioned data shows their complementary character. GOCE data cover long wavelengths and account for the lack of such information from gravity anomalies. This is exploited for the estimation of local covariance function models, where it is seen that models computed with GOCE data and gravity anomaly empirical covariance functions perform better than models computed without GOCE data. The geoid is estimated by different data combinations and the results show that GOCE data improve the solutions for areas covered poorly with other data types, while also accounting for any long wavelength errors of the adopted reference model that exist even when the ground gravity data are dense. At sea, the altimetric data provide the dominant geoid information. However, the geoid accuracy is sensitive to orbit calibration errors and unmodeled sea surface topography (SST) effects. If such effects are present, the combination of GOCE and gravity anomaly data can improve the geoid accuracy. The present work also presents results from simulations for the recovery of the stationary SST, which show that the combination of geoid heights obtained from a spherical harmonic geopotential model derived from GOCE with satellite altimetry data can provide SST models with some centimeters of error. However, combining data from GOCE with gravity anomalies in a collocation approach can result in the estimation of a higher resolution geoid, more suitable for high resolution mean dynamic SST modeling. Such simulations can be performed toward the development and evaluation of SST recovery methods.  相似文献   

16.
J. Li 《Journal of Geodesy》2002,76(4):226-231
 A formula for computing the gravity disturbance and gravity anomaly from the second radial derivative of the disturbing potential is derived in detail using the basic differential equation with spherical approximation in physical geodesy and the modified Poisson integral formula. The derived integral in the space domain, expressed by a spherical geometric quantity, is then converted to a convolution form in the local planar rectangular coordinate system tangent to the geoid at the computing point, and the corresponding spectral formulae of 1-D FFT and 2-D FFT are presented for numerical computation. Received: 27 December 2000 / Accepted: 3 September 2001  相似文献   

17.
王虎彪  王勇  柴华  鲍李峰 《测绘学报》2017,46(9):1073-1079
联合多种测高数据和重力异常数据,设计了观测点距离和测高精度融合的定权方法,采用最小二乘方法和Vening-Meinesz公式,分别构建了西太平洋海域(0°N—40°N,105°E—145°E)1′×1′网格化垂线偏差数字模型。选取两个不同特征区域,将垂线偏差的两个数字模型和EGM2008模型三者进行相互比较分析。结果表明:卯酉分量η的均方根差大于子午分量ξ的均方根差,海底地形复杂的南海特征区域的垂线偏差均方根差大于西太平洋中部的均方根差,构建的两个垂线偏差模型总体均方根差优于1.6″。  相似文献   

18.
研究了将陆地重力似大地水准面与GPS水;住似大地水准面拟合的处理方法推广到海洋的问题.首先从理论上证明了当存在海面地形.则海洋大地水准面与似大地水准面不重合.导出了在海洋上大地水;住面差距与高程异常之间差值的公式.由此给出了求定平均海面相对于区域高程基准的正常高以及测高似大地水准面的计算公式。由于测高平均海面与GPS大地高有相近的精度.提出了将海洋重力似大地水准面与区域测高似大地水准面拟合的处理方法.并利用当前最新的海面地形模型和测高平均海面模型做了数值估计。  相似文献   

19.
We present a geoid solution for the Weddell Sea and adjacent continental Antarctic regions. There, a refined geoid is of interest, especially for oceanographic and glaciological applications. For example, to investigate the Weddell Gyre as a part of the Antarctic Circumpolar Current and, thus, of the global ocean circulation, the mean dynamic topography (MDT) is needed. These days, the marine gravity field can be inferred with high and homogeneous resolution from altimetric height profiles of the mean sea surface. However, in areas permanently covered by sea ice as well as in coastal regions, satellite altimetry features deficiencies. Focussing on the Weddell Sea, these aspects are investigated in detail. In these areas, ground-based data that have not been used for geoid computation so far provide additional information in comparison with the existing high-resolution global gravity field models such as EGM2008. The geoid computation is based on the remove–compute–restore approach making use of least-squares collocation. The residual geoid with respect to a release 4 GOCE model adds up to two meters and more in the near-coastal and continental areas of the Weddell Sea region, also in comparison with EGM2008. Consequently, the thus refined geoid serves to compute new estimates of the regional MDT and geostrophic currents.  相似文献   

20.
The vertical gradients of gravity anomaly and gravity disturbance can be related to horizontal first derivatives of deflection of the vertical or second derivatives of geoidal undulations. These are simplified relations of which different variations have found application in satellite altimetry with the implicit assumption that the neglected terms—using remove-restore—are sufficiently small. In this paper, the different simplified relations are rigorously connected and the neglected terms are made explicit. The main neglected terms are a curvilinear term that accounts for the difference between second derivatives in a Cartesian system and on a spherical surface, and a small circle term that stems from the difference between second derivatives on a great and small circle. The neglected terms were compared with the dynamic ocean topography (DOT) and the requirements on the GOCE gravity gradients. In addition, the signal root-mean-square (RMS) of the neglected terms and vertical gravity gradient were compared, and the effect of a remove-restore procedure was studied. These analyses show that both neglected terms have the same order of magnitude as the DOT gradient signal and may be above the GOCE requirements, and should be accounted for when combining altimetry derived and GOCE measured gradients. The signal RMS of both neglected terms is in general small when compared with the signal RMS of the vertical gravity gradient, but they may introduce gradient errors above the spherical approximation error. Remove-restore with gravity field models reduces the errors in the vertical gravity gradient, but it appears that errors above the spherical approximation error cannot be avoided at individual locations. When computing the vertical gradient of gravity anomaly from satellite altimeter data using deflections of the vertical, the small circle term is readily available and can be included. The direct computation of the vertical gradient of gravity disturbance from satellite altimeter data is more difficult than the computation of the vertical gradient of gravity anomaly because in the former case the curvilinear term is needed, which is not readily available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号