首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Social media networks allow users to post what they are involved in with location information in a real‐time manner. It is therefore possible to collect large amounts of information related to local events from existing social networks. Mining this abundant information can feed users and organizations with situational awareness to make responsive plans for ongoing events. Despite the fact that a number of studies have been conducted to detect local events using social media data, the event content is not efficiently summarized and/or the correlation between abnormal neighboring regions is not investigated. This article presents a spatial‐temporal‐semantic approach to local event detection using geo‐social media data. Geographical regularities are first measured to extract spatio‐temporal outliers, of which the corresponding tweet content is automatically summarized using the topic modeling method. The correlation between outliers is subsequently examined by investigating their spatial adjacency and semantic similarity. A case study on the 2014 Toronto International Film Festival (TIFF) is conducted using Twitter data to evaluate our approach. This reveals that up to 87% of the events detected are correctly identified compared with the official TIFF schedule. This work is beneficial for authorities to keep track of urban dynamics and helps build smart cities by providing new ways of detecting what is happening in them.  相似文献   

2.
ABSTRACT

Although Twitter is used for emergency management activities, the relevance of tweets during a hazard event is still open to debate. In this study, six different computational (i.e. Natural Language Processing) and spatiotemporal analytical approaches were implemented to assess the relevance of risk information extracted from tweets obtained during the 2013 Colorado flood event. Primarily, tweets containing information about the flooding events and its impacts were analysed. Examination of the relationships between tweet volume and its content with precipitation amount, damage extent, and official reports revealed that relevant tweets provided information about the event and its impacts rather than any other risk information that public expects to receive via alert messages. However, only 14% of the geo-tagged tweets and only 0.06% of the total fire hose tweets were found to be relevant to the event. By providing insight into the quality of social media data and its usefulness to emergency management activities, this study contributes to the literature on quality of big data. Future research in this area would focus on assessing the reliability of relevant tweets for disaster related situational awareness.  相似文献   

3.
尤政  赵开春 《遥感学报》2018,22(6):917-925
偏振成像技术已经成为有效提升空间遥感信息应用能力的有力工具。通过模拟自然界的昆虫、鸟类及鱼类偏振视觉系统的信息感知与高精度导航机制,探索基于仿生偏振视觉环境信息感知与位置姿态测量中的科学问题。构建基于偏振成像目标特征与导航信息融合的仿生态势感知系统,建立了仿生信息感知与导航解算模型,提出基于生物偏振视觉的仿生信息感知与导航的信息融合与误差分析关键算法,设计实现一种空间环境特征感知及导航信息融合的态势感知系统原理样机,数据更新率高于25 Hz,角度测量重复精度优于0.05°。  相似文献   

4.
#Earthquake: Twitter as a Distributed Sensor System   总被引:10,自引:1,他引:9  
Social media feeds are rapidly emerging as a novel avenue for the contribution and dissemination of information that is often geographic. Their content often includes references to events occurring at, or affecting specific locations. Within this article we analyze the spatial and temporal characteristics of the twitter feed activity responding to a 5.8 magnitude earthquake which occurred on the East Coast of the United States (US) on August 23, 2011. We argue that these feeds represent a hybrid form of a sensor system that allows for the identification and localization of the impact area of the event. By contrasting this with comparable content collected through the dedicated crowdsourcing ‘Did You Feel It?’ (DYFI) website of the U.S. Geological Survey we assess the potential of the use of harvested social media content for event monitoring. The experiments support the notion that people act as sensors to give us comparable results in a timely manner, and can complement other sources of data to enhance our situational awareness and improve our understanding and response to such events.  相似文献   

5.
The implementation of social network applications on mobile platforms has significantly elevated the activity of mobile social networking. Mobile social networking offers a channel for recording an individual’s spatiotemporal behaviors when location-detecting capabilities of devices are enabled. It also facilitates the study of time geography on an individual level, which has previously suffered from a scarcity of georeferenced movement data. In this paper, we report on the use of georeferenced tweets to display and analyze the spatiotemporal patterns of daily user trajectories. For georeferenced tweets having both location information in longitude and latitude values and recorded creation time, we apply a space–time cube approach for visualization. Compared to the traditional methodologies for time geography studies such as the travel diary-based approach, the analytics using social media data present challenges broadly associated with those of Big Data, including the characteristics of high velocity, large volume, and heterogeneity. For this study, a batch processing system has been developed for extracting spatiotemporal information from each tweet and then creating trajectories of each individual mobile Twitter user. Using social media data in time geographic research has the benefits of study area flexibility, continuous observation and non-involvement with contributors. For example, during every 30-minute cycle, we collected tweets created by about 50,000 Twitter users living in a geographic region covering New York City to Washington, DC. Each tweet can indicate the exact location of its creator when the tweet was posted. Thus, the linked tweets show a Twitter users’ movement trajectory in space and time. This study explores using data intensive computing for processing Twitter data to generate spatiotemporal information that can recreate the space–time trajectories of their creators.  相似文献   

6.
ABSTRACT

Social media are increasingly recognized as a useful data source for understanding social response to hazard events in real time and in post-event analysis. This article establishes social media–enhanced decision support systems (SME-DSS) as a synergistic integration of social media and decision support systems (DSSs) to provide structured access to native, near real-time data from a large and diverse population to assess social response to social, environmental, and technological risk and hazard events. We introduce a prototype SME-DSS entitled socio-environmental data explorer (SEDE) to explore the opportunities and challenges of leveraging social media for decision support. We use a winter storm during 25–28 January 2015 that accumulated record amounts of snow along the East Coast of the United States as a case study to evaluate SEDE in helping assess social response to environmental risk and hazard events as well as evaluate social media as a theoretical component within the social amplification of risk framework (SARF) that serves as a theoretical foundation for SME-DSS.  相似文献   

7.
ABSTRACT

Recent focus on sustainable urban development and livability has increased the demand for new data sourcing techniques to capture experiences and preferences of urban dwellers. At the same time, developments of geospatial technologies and social media have enabled new types of user-generated geographic information and spatially explicit online communication. As a result, new public participation GIS methods for engaging large groups of individuals have emerged. One such method is geo-questionnaire, an online questionnaire with mapping capabilities, which has been used to elicit geographic data in variety of topics and geographical contexts. This article presents two recent cases, in which geo-questionnaires have been used in Polish cities to obtain public input on quality of life and development preferences in local land use planning. The article evaluates participant recruitment methods focusing on sample representativeness, participant engagement, and data quality. Recruitment via social media was found to increase bias towards younger population. Paper questionnaires used along the online version provided for better representation of target population’s age structure, but did not reduce bias related to educational attainment. We discuss how these issues relate to data usability and generalizability in the context of digital divide, and suggest directions for future research.  相似文献   

8.
针对空间态势数据多源异构、分布式的特点,在分析空间态势构成要素的基础上,采用基于特征的建模方法进行概念建模,并结合面向对象的方法进行逻辑模型设计,基于XML构建空间态势数据物理模型,最终完成空间态势一体化数据模型的构建。通过实例验证表明,文中提出的空间态势一体化数据模型,可对各类空间态势数据进行统一组织管理,并可实现各空间态势信息系统之间的互操作和空间态势信息共享,具有实用性和有效性。  相似文献   

9.
Abstract

Much of the human dimensions of environmental change research emphasize the mapping and modeling of land use and land cover patterns over space and time, and the linkages between people, place, and environment as proximate and distal forces of landscape dynamics. Spatial digital technologies, framed within a GIScience (GISc) context, figure prominently in the characterization of land use and land cover through remote sensing technologies, and in the assessment of social and demographic factors and local and regional site and situation considerations achieved through global positioning systems, data visualizations, and spatial and statistical analyses. Here, we describe some fundamental approaches for linking data across thematic domains, essential for the study of human‐environment interactions. The goal is to generate compatible data sets that extend across social, biophysical, and geographical domains so that the causes and consequences of land use and land cover dynamics might be explored within a spatially‐explicit context.  相似文献   

10.
Rapid flood mapping is critical for local authorities and emergency responders to identify areas in need of immediate attention. However, traditional data collection practices such as remote sensing and field surveying often fail to offer timely information during or right after a flooding event. Social media such as Twitter have emerged as a new data source for disaster management and flood mapping. Using the 2015 South Carolina floods as the study case, this paper introduces a novel approach to mapping the flood in near real time by leveraging Twitter data in geospatial processes. Specifically, in this study, we first analyzed the spatiotemporal patterns of flood-related tweets using quantitative methods to better understand how Twitter activity is related to flood phenomena. Then, a kernel-based flood mapping model was developed to map the flooding possibility for the study area based on the water height points derived from tweets and stream gauges. The identified patterns of Twitter activity were used to assign the weights of flood model parameters. The feasibility and accuracy of the model was evaluated by comparing the model output with official inundation maps. Results show that the proposed approach could provide a consistent and comparable estimation of the flood situation in near real time, which is essential for improving the situational awareness during a flooding event to support decision-making.  相似文献   

11.
ABSTRACT

A 3D forest monitoring system, called FORSAT (a satellite very high resolution image processing platform for forest assessment), was developed for the extraction of 3D geometric forest information from very high resolution (VHR) satellite imagery and the automatic 3D change detection. FORSAT is composed of two complementary tasks: (1) the geometric and radiometric processing of satellite optical imagery and digital surface model (DSM) reconstruction by using a precise and robust image matching approach specially designed for VHR satellite imagery, (2) 3D surface comparison for change detection. It allows the users to import DSMs, align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes (together with precision values) between epochs. FORSAT is a single source and flexible forest information solution, allowing expert and non-expert remote sensing users to monitor forests in three and four (time) dimensions. The geometric resolution and thematic content of VHR optical imagery are sufficient for many forest information needs such as deforestation, clear-cut and fire severity mapping. The capacity and benefits of FORSAT, as a forest information system contributing to the sustainable forest management, have been tested and validated in case studies located in Austria, Switzerland and Spain.  相似文献   

12.
大数据时代,数据要素和信息通信技术变革给综合性城市地图集的设计带来一系列新挑战,包括制图对象拓展到城市三元空间,制图内容聚焦大数据揭示的"城市性格",地图符号表达融合信息图表设计,地图阅读方式趋向"线上线下"融合等。城市地图集设计亟需适应时代特征,从科学、技术、设计、文化、媒体和产业6个维度寻求创新突破。以2020版的《深圳市地图集》为例,分析其空间、时间和属性3条设计主线,以及在内容体系、地图表达和工艺集成等方面的创新。  相似文献   

13.
ABSTRACT

In recent years, social media platforms have played a critical role in mitigation for a wide range of disasters. The highly up-to-date social responses and vast spatial coverage from millions of citizen sensors enable a timely and comprehensive disaster investigation. However, automatic retrieval of on-topic social media posts, especially considering both of their visual and textual information, remains a challenge. This paper presents an automatic approach to labeling on-topic social media posts using visual-textual fused features. Two convolutional neural networks (CNNs), Inception-V3 CNN and word embedded CNN, are applied to extract visual and textual features respectively from social media posts. Well-trained on our training sets, the extracted visual and textual features are further concatenated to form a fused feature to feed the final classification process. The results suggest that both CNNs perform remarkably well in learning visual and textual features. The fused feature proves that additional visual feature leads to more robustness compared with the situation where only textual feature is used. The on-topic posts, classified by their texts and pictures automatically, represent timely disaster documentation during an event. Coupling with rich spatial contexts when geotagged, social media could greatly aid in a variety of disaster mitigation approaches.  相似文献   

14.
Crowdsourcing functions of the living city from Twitter and Foursquare data   总被引:1,自引:0,他引:1  
ABSTRACT

Urban functions are closely related to people’s spatiotemporal activity patterns, transportation needs, and a city’s business distribution and development trends. Studies investigating urban functions have used different data sources, such as remotely sensed imageries, observation, photography, and cognitive maps. However, these data sources usually suffer from low spatial, temporal, and thematic resolution. This article attempts to investigate human activities to understand urban functions through crowdsourcing social media data. In this study, we mined Twitter and Foursquare data to extract and analyze six types of human activities. The spatiotemporal analysis revealed hotspots for different activity intensities at different temporal resolution. We also applied the classified model in a real-time system to extract information of various urban functions. This study demonstrates the significance and usefulness of social sensing in analyzing urban functions. By combining different platforms of social media data and analyzing people’s geo-tagged city experience, this article contributes to leverage voluntary local knowledge to better depict human dynamics, discover spatiotemporal city characteristics, and convey information about cities.  相似文献   

15.
ABSTRACT

There is a critical need to develop a means for fast, task-driven discovery of geospatial data found in geoportals. Existing geoportals, however, only provide metadata-based means for discovery, with little support for task-driven discovery, especially when considering spatial–temporal awareness. To address this gap, this paper presents a Case-Based Reasoning-supported Geospatial Data Discovery (CBR-GDD) method and implementation that accesses geospatial data by tasks. The advantages of the CBR-GDD approach is that it builds an analogue reasoning process that provides an internal mechanism bridging tasks and geospatial data with spatial–temporal awareness, thus providing solutions based on past tasks. The CBR-GDD approach includes a set of algorithms that were successfully implemented via three components as an extension of geoportals: ontology-enhanced knowledge base, similarity assessment model, and case retrieval nets. A set of experiments and case studies validate the CBR-GDD approach and application, and demonstrate its efficiency.  相似文献   

16.
Abstract

The study anticipated to understand sand encroachment evolution through analysis of sand contribution across space and time using remote sensing in Laâyoune-Tarfaya basin, Morocco, over the period from 1987 to 2011. The assessment based on supervised classifications of Landsat imagery orthorectified data, using Maximum Likelihood (ML), Minimum Distance (MD) and Support Vector Machine (SVM) classifiers. In order to ameliorate the information, principal components analysis (PCA) and co-occurrence measurement algorithm were used for choosing bands and data transformation. Images differencing was applied on image pairs derived from classification to analyze sand encroachment evolution. All classifiers present enhanced performances, and revealed that area covered by sand was increased by 7%, 4.66% and 4.59% for ML, MD and SVM, respectively. Consequently, images differencing results confirmed that sand material increasing arise not only from coastal area contribution but also mostly from erosion of complicated sand dunes exist in the middle part of the studied area. Evaluating of the presented phenomenon dimensions and its consequences are extremely important to increase the local authorities awareness and mainly for avoiding or minimizing the consequences of the future sand dunes threats.  相似文献   

17.
ABSTRACT

It remains difficult to develop a clear understanding of geo-located events and their relationships to one another, particularly when it comes to identifying patterns of events in less-structured textual sources, such as news feeds and social media streams. Here we present a geovisualization tool that can leverage computational methods, such as T-pattern analysis, for extracting patterns of interest from event data streams. Our system, STempo, includes coordinated-view geovisualization components designed to support visual exploration and analysis of event data, and patterns extracted from those data, in terms of time, geography, and content. Through a user evaluation, we explore the usability and utility of STempo for understanding patterns of recent political, social, economic, and military events in Syria.  相似文献   

18.
ABSTRACT

The communication of data uncertainty is a crucial problem in data science, information visualization, and geographic information science (GIScience). Effective ways to communicate the uncertainty of data enables data consumers to interpret the data as intended by the producer, reducing the possibilities of misinterpretation. In this article, we report on an empirical investigation of how sound can be used to convey information about data uncertainty in an intuitive way. To answer the research question How intuitive are sound dimensions to communicate uncertainty? we carry out a cognitive experiment, where participants were asked to interpret the certainty/uncertainty level in two sounds A and B (= 33). We produce sound stimuli by varying sound dimensions, including loudness, duration, location, pitch, register, attack, decay, rate of change, noise, timbre, clarity, order, and harmony. In the stimuli, both synthetic and natural sounds are used to allow comparison. The experiment results identify three sound dimensions (loudness, order, and clarity) as significantly more intuitive to communicate uncertainty, providing guidelines for sonification and information visualization practitioners.  相似文献   

19.
The analysis of social media content for the extraction of geospatial information and event‐related knowledge has recently received substantial attention. In this article we present an approach that leverages the complementary nature of social multimedia content by utilizing heterogeneous sources of social media feeds to assess the impact area of a natural disaster. More specifically, we introduce a novel social multimedia triangulation process that uses both Twitter and Flickr content in an integrated two‐step process: Twitter content is used to identify toponym references associated with a disaster; this information is then used to provide approximate orientation for the associated Flickr imagery, allowing us to delineate the impact area as the overlap of multiple view footprints. In this approach, we practically crowdsource approximate orientations from Twitter content and use this information to orient Flickr imagery accordingly and identify the impact area through viewshed analysis and viewpoint integration. This approach enables us to avoid computationally intensive image analysis tasks associated with traditional image orientation, while allowing us to triangulate numerous images by having them pointed towards the crowdsourced toponym location. The article presents our approach and demonstrates its performance using a real‐world wildfire event as a representative application case study.  相似文献   

20.
Space-based navigation and radar systems operating at single frequencies of <10 GHz require ionospheric corrections of the signal delay or range error. Because this ionospheric propagation error is proportional to the total electron content of the ionosphere along the ray path, a user friendly TEC model covering global scale and all levels of solar activity should be helpful in various applications. Since such a model is not available yet, we present an empirical model approach that allows determining global TEC very easily. Although the number of model coefficients and parameters is rather small, the model describes main ionospheric features with good quality. Presented is the empirical approach describing dependencies on local time, geographic/geomagnetic location and solar irradiance and activity. The non-linear approach needs only 12 coefficients and a few empirically fixed parameters for describing the broad spectrum of TEC variation at all levels of solar activity. The model approach is applied on high-quality global TEC data derived by the Center for Orbit Determination in Europe (CODE) at the University of Berne over more than half a solar cycle (1998–2007). The model fits to these input data with a negative bias of 0.3 TECU and a RMS deviation of 7.5 TECU. As other empirical models too, the proposed Global Neustrelitz TEC Model NTCM-GLis climatological, i.e. the model describes the average behaviour under quiet geomagnetic conditions. During severe space weather events the actual TEC data may deviate from the model values considerably by more than 100%. A preliminary comparison with independent data sets as TOPEX/Poseidon altimeter data reveals similar results for NeQuick and NTCM-GL with RMS deviations in the order of 5 and 11 TECU (1 TECU = 1016 electrons/m2) for low and high-solar activity conditions, respectively. The more extended data base of ionosphere information that accumulates in the coming years will help in further improving the set of coefficients of the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号