首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Assessment of human health impact caused by air pollution is crucial for evaluating environmental hazards. In this paper, concentrations of six air pollutants (PM10, PM2.5, NO2, SO2, O3, and CO) were first derived from satellite observations, and then the overall human health risks in China caused by multiple air pollutants were assessed using an aggregated health risks index. Unlike traditional approach for human health risks assessment, which relied on the in-situ air pollution measurements, the spatial distribution of aggregated human health risks in China were obtained using satellite observations in this research. It was indicated that the remote sensing data have advantages over in-situ data in accessing human health impact caused by air pollution.  相似文献   

2.
PM2.5浓度时空演化特征分析有助于大气污染的现状和发展认知,但PM2.5浓度监测积累时间较短,且受到排放强度和气象因素的影响,因此可融合全球导航卫星系统(Global Navigation Satellite System,GNSS)天顶可降水量(precipitable water vapor,PWV)、风速和大气污染物构建PM2.5浓度模型。以河北省为例,首先分别开展PM2.5浓度与大气污染物、GNSS PWV及风速的相关性分析;然后将大气污染物、GNSSPWV和风速作为输入,PM2.5浓度作为输出,利用逆传播(back propagation,BP)神经网络分别构建城市PM2.5浓度模型和区域PM2.5浓度模型;最后进行PM2.5浓度模型可靠性检验。将模型预测值与PM2.5浓度实测值比较发现,预测PM2.5浓度等级准确率高,相对误差较低。该模型可用于区域PM2.5浓度时空演化特征分析。  相似文献   

3.
ABSTRACT

Rapid economic growth, a high degree of urbanization and the proximity of a large number of desert and semidesert landscapes can have a significant impact on the atmosphere of adjacent territories, leading to high levels of atmospheric pollution. Therefore, identifying possible sources of atmospheric pollution is one of the main tasks. In this study, we carried out an analysis of spatial and temporal characteristics of five main atmospheric pollutants (PM2.5, PM10, SO2, NO2, and CO) near potential source of natural aerosols, affecting seven cities (Wuhai, Alashan, Wuzhong, Zhongwei, Wuwei, Jinchang, Zhangye), located in immediate proximity to the South Gobi deserts. The results, obtained for the period from 1 January 2016 to 31 December 2018, demonstrate total concentrations of PM2.5 and PM10 are 38.2 ± 19.5 and 101 ± 80.7 μg/m3 exceeding the same established by the Chinese National Ambient Air Quality Standard (CNAAQS), being 35 and 70 μg/m3, respectively. Based on the data from Moderate Resolution Imaging Spectroradiometer (MODIS) for the whole period, Clean Сontinental (71.49%) and Mixed (22.29%) types of aerosols prevail in the region. In the spring and winter seasons maximum concentrations of pollutants and high values of Aerosol Optical Depth (AOD) in the region atmosphere are observed. PM2.5 and PM10 ratio shows the presence of coarse aerosols in the total content with value 0.43. The highest concentrations of pollutants were in the period of dust storms activity, when PM2.5 and PM10 content exceeded 200 and 1000 µg/m3, and AOD value exceeded 1. UV Aerosol Index (UVAI), Aerosol Absorbing Optical Depth (AAOD), and Single Scattering Albedo (SSA), obtained from Ozone Monitoring Instrument (OMI), demonstrate the high content of dust aerosols in the period of sandstorms. Analysis of backward trajectories shows that dust air masses moved from North to Northwest China, affecting large deserts such as Taklamakan, Gurbantunggut, Badain Jaran, Tengger, and Ulan Buh deserts.  相似文献   

4.
ABSTRACT

Widespread forest fire events occurred in the foothills of North Western Himalaya during 24 April to 2 May 2016 (Event-1) and 20–30 May 2018 (Event-2). Their impacts were investigated on the distribution of pollutant gases ozone (O3), carbon monoxide (CO), and oxides of nitrogen (NOx) over Uttarakhand using simulations of Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and in-situ observations of these gases over Dehradun, the capital of Uttarakhand. During Event-1, the observed CO mixing ratio over Dehradun increased from 25 April 2016 onwards, attained maximum (705.8 ± 258 ppbv) on 2 May 2016 and subsequently decreased. The rate of increase of daily baseline CO was 29 ppbv/day during HFAP (High Fire Activity Period). During Event-2, daily average concentrations of CO, O3, and NOx showed systematic increase over Dehradun during HFAP period. The rate of increase of CO was 9 ppbv/day, while it was very small for NOx and O3. To quantitatively estimate the influence of forest fire emissions, two WRF-Chem simulations were made: one with biomass burning (BB) emissions and other without BB emissions. These simulations showed 52% (34%) enhancement in CO, 52% (32%) enhancement in NOx, and 11% (9%) enhancement in O3 during HFAP for Event-1 (Event-2). A clear positive correlation (r = 0.89 for Event-1, r = 0.69 for Event-2) was found between ?O3 (O3with BB minus O3without BB) and ?CO (COwith BB minus COwithout BB), indicating rapid production of ozone in the fire plumes. For both the events, the vertical distribution of ?O3, ?CO, and ?NOx showed that forest fire emissions influenced the air quality upto 6.5 km altitude. Peaks in ?O3, ?CO, and ?NOx during different days suggested the role of varying dispersion and horizontal mixing of fire plumes.  相似文献   

5.
Air pollution is a major problem, conscious both for health and surroundings. This is a novel approach for the design & development of a system for the monitoring of different air pollutants especially at remote places where it is difficult to install any conventional air quality monitoring stations as well as for the cities. In this research work, a framework of Functional air quality index which is an indicator of susceptibility to respiratory illness has been built using the Bayesian neural network to provide the random real-time data about a location through wireless communication. The monitoring system is integrated with different types of sensors to measure the level of different air pollutants or air quality parameters such as Suspended particulate matters, (PM2.5), Nitrogen dioxide, Sulphur dioxide, Ozone which are directly associated with airways inflammatory diseases such as Asthma, Bronchitis, COPD. Each location in Map (GPS) can be updated automatically with fAQI to the user through mobile computing and satellite commutation. The user gets information about the neighborhood location with health-related information such as- whether a particular location is sensitive to respiratory diseases such as Bronchitis, asthma, COPD etc. due to suspended allergen/pollutants in the ambient air. This novel approach is designed with its’ own prototype and an application of Inter of Things in Health GIS for the benefit of humanity.  相似文献   

6.
利用遥感数据评价燃煤电厂空气质量   总被引:1,自引:0,他引:1  
卫星观测数据可以评价燃煤电厂的空气质量等级。NO2、SO2 和烟尘是燃煤电厂排放的主要污染物,本文利用卫星遥感观测的NO2、SO2和气溶胶光学厚度AOD(Aerosol Optical Depth)开展燃煤电厂空气质量评价。以中国华北地区为实验区,分析对比了3种污染物不同时间分辨率和空间分辨率的污染状况,确定了单因子的5级分级标准,根据燃煤电厂排放污染物的权重不同,提出了评价近地表空气质量状况的模型。本文综合考虑3种污染因子来反映电厂空气质量,有利于提高评价的准确性以及反应信息的全面性。结果表明,该模型能正确反映不同地区电厂的空气质量特点。  相似文献   

7.
Biomass burning from vegetation fires is an important source of greenhouse gas emissions. In this study, we quantify biomass burning emissions from grasslands from the highly sensitive Kaziranga National Park, Assam, Northeast India. Most of the fires in the park are ‘controlled burning fires’ set by the park officials for management purposes. We evaluated the short-term impacts of fires and the resulting air pollution through integrating biomass burnt information from satellite remote sensing datasets. IRS-P6 Advanced Wide Field Sensor (AWiFS) data during March and April corresponding to dry season were evaluated to delineate the burnt areas. These burnt area estimates were then integrated with biomass data and emission factors for quantifying the greenhouse gas emissions. Results suggested that of the total study area of 37,822 ha, nearly 3163.282 ha has been burnt during March, 2005. Within one month, the burnt area increased to 7443.92 ha by April, i.e., from 8.36% to 19.68%. In total, biomass burning from the grasslands contributed to 29.65 Tg CO2, 1.19 Tg CO, 0.071 Tg NOx, 0.042 Tg CH4, 0.0625 Tg total non-methane hydrocarbons, 0.152 Tg of particulate matter, and 0.062 Tg of organic carbon and 0.008 Tg of black carbon during April. The importance of ‘fire’ as a management tool for maintaining the wildlife habitat has been highlighted in addition to some of the adverse affects of air pollution resulting from such management practices. The results from this study will be useful to forest officials as well as policy makers to undertake some sustainable forest management practices to maintain an ideal habitat for Kaziranga's wildlife.  相似文献   

8.
卫星观测不仅能反映区域宏观大气污染状况,也能从城市尺度上监测大气污染物的变化。基于以上优势,本文利用MODIS气溶胶光学厚度(AOD)和OMI对流层NO_2垂直柱浓度数据,比较2015年与2012年—2014年以及2015年3个时期(减排前、减排中、减排后)AOD和NO_2柱浓度的变化,定性分析了阅兵期间华北平原地区污染物减排效果,重点定量评估北京市联控减排措施的效果。研究发现2015年减排中华北平原重污染地区AOD和NO_2柱浓度相比于前3年同期有明显降低。定量分析北京市的减排效果得到:2015年减排中较前3年同期而言,AOD降低59%,NO_2柱浓度降低41%;较2015年减排前而言,AOD降低73%,NO_2柱浓度降低30%,去除气象条件影响后,AOD下降43%,NO_2柱浓度下降21%,说明严格的联控减排措施有效地改善了空气质量,气象条件也起到积极的作用。减排措施结束后,AOD和NO_2柱浓度比减排中分别增加159%和71%。研究结果表明,卫星遥感与地基监测评估效果相当,能反映北京地面污染物排放能力;它既能观测区域尺度大气污染变化,又可评估城市尺度大气污染减排。随着卫星技术水平的提高,期望未来卫星遥感可作为一种独立手段来定量评估区域及城市尺度空气质量减排措施的效果。  相似文献   

9.
无人机三维空气质量监测研究   总被引:1,自引:0,他引:1  
针对现有空气监测缺乏污染垂直分布特征的观测及数据采集覆盖范围有限的问题,该文提出了用无人驾驶飞机搭载微型空气质量检测器监测大气污染的方法,首先分析了传统地面监测站的缺点,并阐述了监测设备的构成;然后从无人驾驶飞机大气污染空间采样方案、污染物数据的准确性及可靠性校正、大气污染时空规律几个方面做了研究;最后选择浙江省临安市青山湖街道、上海奉贤区等地区进行了试验。研究结果能有效补充地面监测站的数据缺失,揭示PM2.5、O3等大气污染物的垂直分布、垂直扩散及区域性输送特征,为空气污染预警和防控对策机制的制定提供重要技术依据。  相似文献   

10.
This study adopts a near real‐time space‐time cube approach to portray a dynamic urban air pollution scenario across space and time. Originating from time geography, space‐time cubes provide an approach to integrate spatial and temporal air pollution information into a 3D space. The base of the cube represents the variation of air pollution in a 2D geographical space while the height represents time. This way, the changes of pollution over time can be described by the different component layers of the cube from the base up. The diurnal ambient ozone (O3) pollution in Houston, Texas is modeled in this study using the space‐time air pollution cube. Two methods, land use regression (LUR) modeling and spatial interpolation, were applied to build the hourly component layers for the air pollution cube. It was found that the LUR modeling performed better than the spatial interpolation in predicting air pollution level. With the availability of real‐time air pollution data, this approach can be extended to produce real‐time air pollution cube is for more accurate air pollution measurement across space and time, which can provide important support to studies in epidemiology, health geography, and environmental regulation.  相似文献   

11.
The 17 Sustainable Development Goals (SDGs) aim to end extreme poverty and create a healthy, sustainable world by the year 2030. Goal 7 is of interest to this study as it targets access to clean and affordable energy. However, in this study we show that the energy created in South Africa is not necessary clean. South Africa has numerous coal-fired power station located in the Mpumalanga (MP), Gauteng (GP) and Limpopo (LP) provinces. These power station produce tons of toxic pollutants including sulphur dioxide (SO2), nitrogen dioxide (NO2) and sulphates (SO4). These pollutants are known to have a negative impact on human health, climate and the environment. In this study we use the sequential Mann-Kendall test to investigate the 39 year (1980–2019) trends of SO2, NO2 and SO4 from these source areas. We also report for the first time on the observations of SO2 and NO2 from the Sentinel-5 P sensor over South Africa. Increasing trends of SO2 were observed in the MP, LP and GP regions. The increase was mostly due to the emissions from coal-fired power stations. Moreover, the increase of SO2 over the years could be due to the increasing demand in electricity, aging power stations and the low quality of coal used. Sentinel-5 P observations of SO2 and NO2 over South Africa were observed in the MP, GP and LP regions as a result of coal-fired power stations. Dispersion of SO2 and NO2 over South Africa were observed in the winter months, while confined SO2 and NO2 in the source region were observed in the summer months.  相似文献   

12.
白杨  王盼  赵鹏飞  郭建忠  王家耀 《遥感学报》2022,26(5):988-1001
明确当地臭氧生成敏感性变化的主控因子是制定有效臭氧污染控制策略的前提。采用卫星观测OMI FNR(Ratio of the tropospheric columns of Formaldehyde to Nitrogen dioxide,HCHO/NO2)指示剂将河南省夏季臭氧生成敏感性OFS(Ozone Formation Sensitivity)划分为VOCs控制区、协同控制区和NOx控制区。基于地理探测器,量化气象条件、人为源前体物及其交互作用与OFS的关系。研究揭示:(1)河南省夏季OFS以协同控制区为主,区域内臭氧污染严重,仅次于VOCS控制区。2005年—2015年,FNR值波动下降,OFS向协同控制区转变,主要受NOX减排的影响。2016年之后,FNR值变大,OFS有向NOX控制区转变的趋势。(2)人为源排放是OFS变化的主要驱动因子,平均可解释FNR变化的40.5%(q=0.405)。若CO、PM2.5、NOx和非甲烷挥发性有机物NMVOC(Non-methane Volatile Organic Compounds)的排放量增加,FNR减小,河南省夏季OFS向VOCs控制区转变,对NOx减排的敏感性降低。(3)地表净太阳辐射SSR(q=0.321, Surface net Solar Radiation)和大气柱总水量TCW(q=0.302, Total Column Water)是河南省夏季OFS变化的主要气象驱动因素。SSR增加,FNR减小,使臭氧生成对VOCs更加敏感。TCW对OFS变化的影响较为复杂,当TCW<40 kg/m2时,TCW增加,FNR减小,臭氧生成对VOCs更加敏感;当TCW>40 kg/m2时,TCW增加,FNR增大,臭氧生成对NOx更加敏感。(4)因子间的交互作用对OFS空间分布的驱动大于单一因子的独立作用,人为源前体物和气象因子的交互作用占主导地位。研究结果可加强对臭氧生成光化学过程的认识,为制定合理的污染减排措施提供依据。  相似文献   

13.
ABSTRACT

Urbanization in China is closely connected with ambient particulate matter 2.5 (PM2.5). However, the potential for altering PM2.5 through the urban landscape characteristics is uncertain. In this study, we analyzed the urban PM2.5 pollution situation for 2014–2016 and investigated the impact of landscape factors on urban PM2.5 in China at the city level. All the prefecture-level cities were stratified by urban population size into small (<500,000), medium (500,000–1,000,000), and large (>1,000,000), and the other second-level administrative cities were assigned as ‘other’ cities. The multivariate regression model including both urban landscape factors and social-economic variables explained 70.0%, 32.8%, 19.2%, and 12.4% of the arithmetic mean PM2.5 concentration (AMC-PM2.5) for the other, small, medium, and large cities, respectively. With regard to the configuration of land cover, agricultural activity is a major contributor of PM2.5 pollution, for which the explanatory power ranged from 7.6% (for the large cities) to 64% (for the other cities). In addition, grassland aggregation also has a limited but negative effect on urban PM2.5 pollution, despite the negligible effect on dry deposition. Overall, these findings likely reflect the interaction between urban air quality and urbanization, and will have implications for air quality control strategies.  相似文献   

14.
漳州城市建设和工业飞速发展,汽车数量剧增,人为大气污染排放显著增加,空气质量下降,对人们的生活和健康造成了影响。本文利用2014—2015年连续2年的日平均污染数据,选择主要污染物SO2、NO2、O3、PM10、PM2.5和AQI指数,分别与日平均气温做相关分析,研究发现:SO2浓度在不同季节与温度的相关不同,这是由于气温与SO2的清除机制没有直接关系,因此相关不确定;NO2浓度与气温基本呈负相关,而O3的浓度呈正相关。秋季影响当地空气质量的主要气象条件是气温,当气温高于25℃时,空气质量改善明显。  相似文献   

15.
环境与发展是当今世界共同关注的重大问题。目前我国经济正处于高速发展时期,随着经济社会的快速发展和城镇一体化进程的加快,空气污染问题日趋严重,对人体健康造成很大伤害,因此环境保护的重要性日益突出。本文通过建立环境质量空间数据库,利用地理信息软件ArcGIS为基础平台,将环境空气质量监测数据与地理空间位置进行地理匹配,利用地理信息可视化技术,实现环境空气质量监测数据中各主要空气污染物的浓度时间分布的可视化表达,制作环境空气质量专题地图,有助于有效地从海量监测数据中发现有价值的信息,为环境保护部门提供决策参考依据。  相似文献   

16.
A feasibility study in progress to integrate health and air quality information is presented. The methods of using integrated GIS and air quality dispersion modelling tools to assess the effect of the environment on health are discussed. The main aim is to model human personal exposure to air pollutants and compare the predictions to respiratory health data for asthmatics in a health telematics project. The MEDICATE project develops and tests the feasibility of using a health telematic system for asthmatics. Key to this is the determination of the real-time health (lung function) response to the ambient environment. For this, air quality information is related to respiratory measurements by modelling personal exposure through a GIS. The methods of integrating environmental modelling and assessment tools (GIS) in this case are examined. ESRI's ArcView is used to locate and compile environmental information about the patients' locations and lifestyles in the study areas (London and Barcelona). A dispersion modelling extension to ArcView, ADMS Urban, is used to interrogate the spatial environmental databases (e.g. emission inventories) to model air pollution concentrations. Patients' personal exposure is modelled by time-weighted estimates of their exposure to ambient air quality at each defined location. Lung function data can be compared on a time-wise basis with these air quality indicators to see if there is a relationship on an hourly, daily or lagged-day basis. The aim of this paper is to propose a methodology and discuss the integration and practicalities of using air quality assessment tools (inventories, dispersion modelling and a GIS) in assessing the impacts of the environment on human health.  相似文献   

17.
侯俊雄  李琦  朱亚杰  冯逍  林绍福 《测绘科学》2018,(2):114-120,141
针对当前我国重污染天气实时的空气质量预报问题,该文提出了一种融合随机森林算法与WRF大气模式的PM2.5浓度实时预报方法。该方法结合了北京市地面空气质量监测数据和WRF气象数据进行分析,将高层大气状态(如逆温层高度等)融入了预报模型中,建立了0~72h的PM2.5浓度实时预报模型。实验证明,该模型能够对0~72h单站点的PM2.5浓度进行较高精度的实时预报,且在24~72h的长时预报结果上较基于地面空气污染物数据与地表气象站数据的预报方法精度有明显提升,即该方法可以更好地模拟大气物理化学状态,从而更为精准地进行长时PM2.5浓度预报。  相似文献   

18.
为探讨1996年以来华北平原对流层NO_2柱浓度变化的空间特征,基于GOME、SCIAMACHY和OMI卫星传感器的监测数据,以SCIAMACHY的NO_2柱浓度为基准,根据建立的GOME和SCIAMACHY,SCIAMACHY和OMI之间的相关关系,校正GOME和OMI监测的NO_2数据;利用线性正弦曲线模型拟合方法研究1996年—2016年长时间序列华北平原对流层NO_2变化的空间分布特征。结果显示,华北平原对流层NO_2浓度自1996年开始持续上升,到2011年达到最高值,然后呈现下降趋势。该变化趋势主要受经济发展和环保政策的双重影响。1996年—2011年,NO_2柱浓度高值区分布在北京市、天津市、河北唐山市和保定市、山东德州市和济南市、安徽滁州市以及江苏南京市、常州市和无锡市,并且具有较高增长率;2012年—2016年NO_2柱浓度平均值远高于1996年—2011年NO_2柱浓度平均值,高值地区范围扩大,分布在河北南部、河南北部和山东西部,但华北平原地区NO_2柱浓度均呈现负增长,表明"十二五"规划提出的大气环保政策取得了显著成效。同时,对流层NO_2柱浓度可以反映典型环保事件如北京奥运会、国庆阅兵和南京青奥会时期大气环保政策的实施效果。  相似文献   

19.
Low and moderate spatial resolution satellite sensors (such as TOMS, AVHRR, SeaWiFS) have already shown their capability in tracking aerosols at a global scale. Sensors with moderate to high spatial resolution (such as MODIS and MERIS) seem also to be appropriate for aerosol retrieval at a regional scale. We investigated in this study the potential of MERIS-ENVISAT data to resolve the horizontal spatial distribution of aerosols over urban areas, such as the Athens metropolitan area, by using the differential textural analysis (DTA) code. The code was applied to a set of geo-corrected images to retrieve and map aerosol optical thickness (AOT) values relative to a reference image assumed to be clean of pollution with a homogeneous atmosphere. The comparison of satellite retrieved AOT against PM10 data measured at ground level showed a high positive correlation particularly for the AOT values calculated using the 5th MERIS’ spectral band (R2=0.83). These first results suggest that the application of the DTA code on cloud free areas of MERIS images can be used to provide AOT related to air quality in this urban region. The accuracy of retrieved AOT mainly depends on the overall quality, the pollution cleanness and the atmospheric homogeneity of the reference image.  相似文献   

20.
There has been a great deal of research into the short-term effects of air pollution on health with a large number of studies modelling the association between aggregate disease counts and environmental exposures measured at point locations, for example via air pollution monitors. In such cases, the standard approach is to average the observed measurements from the individual monitors and use this in a log-linear health model. Hence such studies are ecological in nature being based on spatially aggregated health and exposure data. Here we investigate the potential for bias in the estimates of the effects on health when estimating the short-term effects of air pollution on health. Such ecological bias may occur if a simple summary measure, such as a daily mean, is not a suitable summary of a spatially variable pollution surface. We assess the performance of commonly used models when confronted with such issues using simulation studies and compare their performance with a model specifically designed to acknowledge the effects of exposure aggregation. In addition to simulation studies, we apply the models to a case study of the short-term effects of particulate matter on respiratory mortality using data from Greater London for the period 2002–2005. We found a significant increased risk of 3% (95% CI 1–5%) associated with the average of the previous three days exposure to particulate matter (per 10 μg m−3 PM10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号