首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 139 毫秒
1.
高分辨率影像的广泛应用推进面向对象影像分析(OBIA)的发展,而分割作为面向对象分类的关键步骤,其尺度的选择直接关系到地物信息的提取。空间尺度是地物的固有属性,在合适的分割尺度下可以更好地挖掘地物信息。本文结合最大面积法和分割质量评价模型对张山营镇影像进行分割实验,先通过分析对象最大面积初步得到最优尺度范围,后结合分割质量评价模型以确定最优分割尺度层次。在此基础上,综合样本提取的光谱、纹理等特征进行规则训练,最终完成面向对象的土地覆被分类研究。结果显示:基于多层次最优尺度的规则分类方法获得更好的分类结果,其总体精度为88.8%,Kappa系数为0.861,而基于单一尺度的最邻近法总体精度81.4%,Kappa系数0.773,基于单一尺度的规则分类法总体精度为83.2%,Kappa系数为0.85。  相似文献   

2.
地物具有多尺度的特点,单一尺度难以准确描述遥感影像包含的地物纹理信息。利用我国自行研发的高分一号遥感影像数据,采用灰度共生矩阵对第一主成分进行纹理特征提取,利用Jeffries-Matusit距离选择多尺度组合,并通过单一纹理结合多光谱数据的分类精度,以及纹理特征间的相关性,最终选择多尺度纹理特征组合进行面向对象分类。研究结果表明:结合多尺度纹理特征组合的面向对象GF-1影像分类能有效提取地物信息,总体分类精度达到81.75%,Kappa系数0.78。  相似文献   

3.
张森  陈健飞  龚建周 《测绘科学》2016,41(6):117-121,125
针对目前遥感影像分类中面向对象和决策树相结合的研究较少的情况,该文提出基于C5.0决策树的面向对象分类方法,并以广州市从化区进行实证研究。基于Landsat-8OLI影像数据,采用面向对象分类对影像进行多尺度分割,提取出影像对象的光谱、纹理特征以及影像对象相对应的DEM信息;然后利用C5.0决策树根据特征信息来挖掘分类规则;最后根据规则对分割后影像进行分类。结果表明,基于C5.0决策树的面向对象影像分类精度高、效果好,总体精度和Kappa系数分别为89.75%和87.5%。该方法可准确、快速地提取土地利用/覆被信息。  相似文献   

4.
面向对象和规则的高分辨率影像分类研究   总被引:1,自引:0,他引:1  
随着航天遥感技术的发展,遥感数据的空间分辨率、光谱分辨率和时间分辨率极大提高,高效解译并处理海量的、具有空间几何信息和纹理信息的地物高分辨率遥感影像数据已成为遥感领域研究的重点与难点。对此,本文提出一种面向对象和规则的遥感影像数据的分类提取方法,即通过发现和挖掘高分辨率影像丰富的光谱和空间特征知识,建立影像对象多层次网络分割分类结构,实现对遥感影像准确快速的地物分类和精度评价。以藏南地区WorldView-2影像数据为试验研究对象,采用面向对象和规则的影像分类方法进行验证试验,即综合采用均值方差法、最大面积法、精度比较法进行分析,选择3种最佳分割尺度建立多层次影像对象网络层次结构进行影像分类试验。结果表明,采用面向对象规则分类方法对高分辨率影像进行分类,能使高分辨率影像分类结果近似于目视判读的结果,分类精度更高。面向对象规则分类法的综合精度和Kappa系数分别为97.38%、0.967 3;与面向对象SVM法相比,分别高出6.23%、0.078;与面向对象KNN法相比,分别高出7.96%、0.099 6。建筑物的提取精度、用户精度分别比面向对象SVM法高出18.39%、3.98%,比面向对象KNN法高出21.27%、14.97%。  相似文献   

5.
贾煜  汪泓  蔡宏  张磊 《测绘通报》2022,(2):121-127
西南喀斯特山区地形起伏较大,地物分布较为破碎,致使传统的光谱特征一次分类方法的精度较低。本文基于高分辨率无人机正射影像和地形指标,充分利用无人机遥感影像空间特征、光谱特征、纹理特征及地形特征,采取面向对象CART决策树算法与分层策略提取了研究区土地覆盖类型。研究表明,结合空间地形因子和分层策略的方法减少了破碎区地物间的相干扰,故具有较高的分类精度,总体分类精度达91.2%,Kappa系数为0.87,较传统一次分类精度提高了9.8%,Kappa系数提高了0.13。该方法对西南喀斯特地区土地覆盖解译精度较好,可为土地利用监测提供参考。  相似文献   

6.
选择重庆市山地区域为研究区,以World View-2影像为研究对象,基于植被构面成果,采用面向对象的分类方法探讨了复杂山地环境背景下典型地物的光谱、纹理、几何、结构等特征;构建了适合山地环境地物遥感分类的解译规则库,自动进行地物的分类解译,并对分类结果进行了精度评价。结果表明,面向对象分类方法构建的解译规则库能够适用于复杂山地环境遥感影像的分类,保证了地物形状和属性的完整性,提高了遥感影像的分类精度;基于植被构面成果建立的解译规则库解决了地物分类时林地和果园难以区分的困难,提高了复杂山地环境下遥感影像的分类精度。  相似文献   

7.
GF-2影像面向对象典型城区地物提取方法   总被引:5,自引:3,他引:2  
国产高分遥感影像信息丰富,提供了精准的地物空间细节,深入研究高分数据处理及其提取城区地类目标信息的方法具有重要意义。本文以国产高分二号(GF-2)遥感影像为数据源,利用规则集的面向对象分类方法,通过ESP尺度分析工具选取得出最优分割尺度,建立各类地物的特征体系及分类规则,最终提取出研究区典型城区地物信息,并将之与传统基于像元的SVM监督分类结果作比较。结果表明:规则集的面向对象分类总体精度为92.23%,Kappa系数为0.9,比SVM监督分类有大幅度提高。对高分二号等高分辨率影像,面向对象的分类方法精度更高,图示效果更好,是城区地物提取的有效方法。  相似文献   

8.
机械性破损面容易引发水土流失、次生地质灾害等生态环境问题,但目前还缺乏其基于遥感影像的有效提取方法。选择机械性破损面分布密集的云南省螳螂川流域为研究对象,基于高分二号(GF-2)遥感影像,探讨其基于纹理特征辅助的面向对象提取方法。根据7类地物特征建立地物分类规则,在最优尺度分割的基础上,基于光谱特征的决策树A和基于"光谱+纹理"特征的决策树B进行面向对象的分类。经过精度评价分析得出,相对于传统的监督分类法和仅基于光谱的面向对象分类法,基于"光谱+纹理"特征的决策树B分类方法使Kappa系数和总精度分别提高至0. 82和86. 25%,有效地提高了机械性破损面的提取精度。  相似文献   

9.
GF-2影像城市地物分类方法探讨   总被引:1,自引:1,他引:0  
GF-2影像具有较高的分辨率和丰富的光谱、几何及纹理信息。为了深入探索GF-2影像城市地物分类方法,本文以四川省隆昌县城为研究区,提出了一种基于最优尺度和规则的面向对象分类法。在影像分割的基础上,通过构建评价函数,并结合最大面积法选取最优尺度,进而构建分层体系,提取影像的光谱、几何及纹理特征建立规则并分类,且将其与单尺度下的面向对象和基于像素分类法进行对比分析。结果表明,本文方法的总体精度和Kappa系数分别为93.33%和0.92。  相似文献   

10.
基于面向对象技术的农田分类方法   总被引:1,自引:0,他引:1  
采用面向对象的分类方法,以富锦地区为研究对象,将纹理和拓扑信息加入中等分辨率遥感影像中,快速准确地提取耕地信息。研究结果表明,利用面向对象技术对遥感影像进行多尺度分割,并结合影像的光谱、形状和纹理特征对水田和旱地进行提取,提取后的成果总体分类精度达到了92%,Kappa系数为0.91,说明采用面向对象技术对中等分辨率遥感影像进行耕地提取的成果可靠,可为大面积土地分类提供技术支持。  相似文献   

11.
运用多尺度图像纹理进行城市扩展变化检测   总被引:6,自引:0,他引:6  
 应用遥感数据检测城市扩展变化时,单纯基于光谱信息的变化检测法很难取得理想效果。本文将多尺度的纹理与光谱信息结合应用于变化检测,并评价其在检测城市扩展变化中的性能。变化检测采用分类后比较法。研究表明,如果纹理尺度与数据组合合适,与单纯基于光谱信息的检测结果相比,纹理特征与光谱特征结合的变化检测精度显著提高,而多尺度纹理辅助变化检测得到的检测精度最高。研究还发现,纹理辅助变化检测在某些地物类别的边缘会产生假变化信息。  相似文献   

12.
林娜  陈宏  李志鹏  赵健 《地理空间信息》2021,19(3):60-63,95
针对南方复杂地区水稻遥感信息提取研究中机器自动学习分类研究较少、分类精度不高的问题,以福建省三明市建宁县溪口镇为研究区,基于GF-1号卫星影像,采用面向对象的随机森林遥感分类算法对研究区内水稻田信息进行提取。首先通过优化面向对象分割参数和随机森林分类模型参数,提取并调用了影像中的多种特征;再对光谱特征、植被指数特征、纹理特征、几何特征进行特征空间优选;最后通过设置4种特征优选试验进行对比,得到最优分类模型。实验结果显示,基于特征空间优选的面向对象随机森林分类算法的水稻提取精度高达90%,分类总体精度可达87%,Kappa系数为0.85;与其他试验结果相比,漏分和误分现象较少,实现了南方地区水稻信息高精度自动识别。该方法计算特征少、实现简便,对于国产高分卫星影像在南方复杂地区作物自动提取中的应用具有参考性。  相似文献   

13.
基于GF2号卫星影像的农业信息提取方法对比分析   总被引:1,自引:0,他引:1  
以GF2卫星0.8 m全色/3.2 m多光谱分辨率遥感影像为基础数据源,对基于GF2号卫星影像的农业信息提取流程和方法进行了研究与对比分析。首先对GF2号卫星影像进行波谱分析;其次对GF2号影像进行融合,并对多种融合方法进行质量评价;最后选择阈值法、波谱间关系法、非监督分类法和面向对象法分别对GF2号影像数据进行农业信息提取试验,并对信息提取结果进行精度验证和结果分析。试验表明,面向农业信息提取的GF2号卫星影像融合方法中,Pansharp融合算法融合影像色彩正常,无虚影,清晰度高,地类对比度正常,纹理清晰,熵值及与原始多光谱影像的相关系数高。阈值法和谱间关系法适用于提取单要素农业信息,非监督分类法能够初步获取研究区土地利用情况,面向对象法提取研究区全要素信息精度高。总体来说,不同信息提取方法具有各自的优势,在具体实际应用中,可以根据目标地类的波谱特性,选择适宜的遥感影像处理和信息提取方法。  相似文献   

14.
地处西南的渝北地区地表覆盖类型复杂、土地利用多元化,仅依赖于光谱特征的传统遥感信息提取方法难以获得较高的分类精度。利用决策树分类技术对渝北地区的TM遥感影像进行分类,除光谱信息外还结合地质、NDVI、PCI等多源数据进行实验。结果表明,总精度和Kappa系数分别为88.42%和0.854 7,较传统的监督分类和仅依赖于光谱特征的决策树分类方法有较大提高,这也表明基于多源数据的决策树分类技术对地表覆盖复杂地区的遥感影像分类比较适用,是遥感信息提取的一种有效手段。  相似文献   

15.
徐州市土地利用CLUE-S模型变化模拟   总被引:1,自引:0,他引:1  
对徐州市1987年、1994年和2000年3期遥感影像图进行分析,利用面向对象的思想,采用多尺度分割法对影像进行分类,通过遥感影像的光谱特征,确定分类目标,获取该区过去13年间的土地利用/覆被时空变化特征。运用CLUE-S模型以1994年土地利用数据模拟了2000年的土地利用空间变化状况,并通过2000年实际遥感影像分类数据加以验证,结果计算出Kappa指数为0.846,达到精度要求,实例证明CLUE-S模型较好地模拟了徐州市的土地利用/覆被变化。最后运用CLUE-S模型以6年为1个时空尺度模拟该区未来12年的自然状态和生态保护状态下的土地利用/覆被变化特征。  相似文献   

16.
为验证基于TM影像的面向对象分类方法对复杂地区地表覆被信息提取的可行性,以地处西南地区的渝北为例进行实验。利用样本数据对各个波段的光谱特征进行分析,取得对各波段覆被探测能力的初步认识;基于光谱特征的多尺度分割,运用面向对象分类方法对其分类。面向对象的分类方法总精度和Kappa系数分别为88.42%和0.854 7,将其与监督、非监督分类结果对比分析。结果表明,该方法有效抑制了"椒盐"现象,取得较好的分类结果。  相似文献   

17.
珊瑚礁对于海洋生态环境研究具有重要意义,通过分析珊瑚礁底栖物质的分布及健康状况,可以对珊瑚礁生态环境进行评估。本文提出了一种基于面向对象的图像分类方法,通过试验确定不同地貌的最优分割尺度,其中陆地和深海的最优分割尺度为150,各类底栖物质的最优分割尺度为30。以Sentinel-2A卫星遥感影像为例,提取海南三亚珊瑚礁自然保护区的珊瑚礁底栖物质,并使用混淆矩阵对提取结果进行精度评估。结果表明,底栖物质提取总体分类精度为87.91%,Kappa系数为0.83。面向对象分类方法可有效结合珊瑚礁底栖物质的纹理特征和光谱特征,并充分利用遥感影像不同波段的组合特性,可为三亚珊瑚礁保护管理提供方法支撑。  相似文献   

18.
面向对象的高空间分辨率影像分类研究   总被引:1,自引:0,他引:1  
采用面向对象遥感影像分类方法,进行了高空间分辨率遥感影像信息提取试验,分析了其与基于像元方法的信息提取结果的差异,试验研究表明,在目视效果上,传统方法的分类结果图中椒盐现象非常明显,而面向对象方法可以有效地避免椒盐现象;在分类精度上,面向对象方法分类结果的总体精度、Kappa系数、生产者精度、用户精度、Hellden精度和Short精度均明显高于传统方法,各类地物提取效果显著提高。面向对象方法在高空间分辨率遥感影像信息提取中具有明显的优势。  相似文献   

19.
沿海地区地表覆盖信息是全国地理国情普查的重要内容,遥感影像分类技术为沿海地区地表覆盖信息提供了一种重要方法。本文基于GF-1高分辨率遥感影像,建立了沿海地区地表覆盖分类系统,采用中国测绘科学研究院自主研发的面向对象GLC决策树分类方法和软件进行了地表覆盖分类。通过对某试验区进行分类试验,并结合该区地表覆盖标准分类图进行精度评价,验证了基于高分辨率影像,面向对象GLC决策树分类方法在沿海地区地表覆盖信息提取上的有效性及优越性,其总体分类精度和Kappa系数分别为87.201 8%、0.840 6,均高于SVM分类法。最后提出基于高分辨率遥感影像的沿海地区地表覆盖信息提取流程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号