首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
精密单点定位方法估计对流层延迟精度分析   总被引:4,自引:0,他引:4  
在简要描述精密单点定位估计天项对流层延迟方法的基础上,分别采用IGS事后产品和实时产品处理了若干IGS跟踪站数据,估计出各站天顶对流层延迟,其中,实时精密卫星星历与钟差处理方案采用事后下栽实时产品、事后模拟实时处理的方式.与IGS结果相比,利用精密单点定位方法,采用IGS事后精密星历与卫星钟差估计的结果无明显的偏差,其精度优于6 mm;采用实时精密卫星星历与卫星钟差模拟估计的结果精度优于20 mm.  相似文献   

2.
针对GPS动态水汽反演过程中对对流层天顶延迟解算精度的评估方法问题,提出了一种利用对流层延迟闭合和附合条件来评估对流层估计精度的方法。通过对PBO观测网中的12个CORS基站以及6个IGS基站的观测数据分析,分别从内符合精度和外符合精度两方面来评估动态对流层解算的精度。在内符合精度的数据处理上,使用事后精密星历,每15s计算一次相对对流层延迟数据。精度满足GPS动态水汽反演对天气预报的基本要求。在外符合精度的数据处理上,使用事后精密星历和超快星历分别对天顶方向对流层延迟进行处理,根据与静态参考值进行比对,两者结果高度吻合。研究结果对GPS动态水汽反演中动态对流层天顶延迟的解算具有重要的参考价值。  相似文献   

3.
为研究IGS精密轨道和钟差产品对天顶对流层延迟精度的影响,文章利用位于中国北京、上海、拉萨等地的6个IGS跟踪站所提供的2013年4月7日~10日4天的数据,采用GPSTools软件进行实验,计算各跟踪站的天顶对流层延迟(ZTD),并与IGS提供的对流层延迟产品进行对比.结果表明,利用IGS精密轨道解算的ZTD与IGS提供的ZTD相当,两者偏差的平均RMS优于5mm,利用IGS超快速钟差预报部分解算的ZTD与IGS提供的ZTD存在2cm~3cm误差,平均RMS大于1cm.  相似文献   

4.
为了研究不同国际GNSS服务(IGS)星历产品对地基GPS反演可降水汽精度的影响,评估超快星历用于实时水汽反演的精度,该文借助Bernese5.2软件获取不同IGS星历产品解算的IGS跟踪站天顶总延迟,结合GPT2模型估算的气象参数反演得到大气可降水,最后与探空站资料计算的大气可降水进行对比分析。结果表明,利用超快速星历预报部分反演大气可降水结果的RMS在±8mm内波动,优于1cm,有助于实时探测大气可降水量的变化,进一步有效促进地基GPS在短临天气预报中的应用。  相似文献   

5.
通过全球导航卫星(GNSS)系统获取对流层天顶延迟对于气象和电波折射修正具有重要应用价值。利用自主研发的静态精密单点定位软件CRPPP,基于国际GNSS地球动力学服务局(IGS)发布的北斗系统(BDS)精密星历和精密钟差,给出了BDS估算天顶延迟结果。以IGS发布的全球定位系统(GPS)结果为参考对比,BDS估算天顶延迟结果平均偏差优于5mm,均方根误差(rms)优于2.3cm.同时,给出了西沙地区GPS与BDS估计结果,结果表明:利用北斗系统估计的对流层天顶延迟精度与GPS相当。  相似文献   

6.
为更快地获取高可靠性、高精度的天顶对流层延迟,提出了选择历元间差分与非差组合模型为函数模型,对BDS/GPS钟差参数采用近实时方式进行估计。为此,从全球范围内均匀选取45个MGEX跟踪站,使用GFZ的超快速轨道产品为钟差估计提供初始轨道信息,并以事后产品为参考值。试验结果表明,GPS实时钟差的精度优于0.06 ns,略低于事后钟差估计精度,三类BDS卫星的实时钟差估计精度均在0.04~0.08 ns,其中GEO卫星的准实时钟差精度略低于IGSO和MEO卫星,满足近实时天顶对流层延迟估计的需求。  相似文献   

7.
基于单基站的超长基线定位技术在地壳形变监测、高精度授时等领域具有广泛应用,但仍有诸多因素制约着超长基线解算精度。从观测方程出发,利用单差观测值对长(超长)基线(146~1 724 km)解算中的卫星轨道误差、对流层延迟误差、地球潮汐误差和相位缠绕误差等误差特性进行了详细分析。分析结果表明,当基线小于500 km时广播星历误差可忽略不计;超过500 km时需要采用精密星历,同时需要考虑地球潮汐误差的影响;利用参数估计法同时估计基线两端的天顶对流层延迟误差可获得1~2 cm精度;相位缠绕误差对基线小于2 000 km的解算影响可忽略。基于估计天顶对流层延迟的方法解算了5条长(超长)基线(146 km、491 km、837 km、 1 043 km和1 724 km)。实验结果表明,当基线小于500 km时,采用广播星历可获得水平方向优于0.05 m、高程方向优于0.08 m的定位精度;当基线小于2 000 km时,采用超快速精密星历可获得水平方向优于0.025 m、高程方向优于0.055 m的定位精度。解算的初始收敛时间随着基线长度增加而缩短。  相似文献   

8.
基于IGS超快速星历的高精度实时GPS测量   总被引:1,自引:0,他引:1  
IGS的几种星历产品中,精密星历精度虽然高,但不能实时获得,并且它是影响高精度实时测量应用的主要因素。讨论几种星历产品数值上的差异,在实际计算中使用超快预报星历替代精密星历,并比较它们基线解算结果和天顶延迟解算结果。结果证明:两种星历计算的基线差别非常小,因此,在高精度GPS数据处理中可以直接使用超快预报星历,得到高精度的实时坐标。同样可以应用在GPS气象中,用超快事后星历实现对流层实时监测。  相似文献   

9.
利用IGS提供的精密星历及精密钟差,分别采用卡尔曼滤波法、双差法对天顶对流层延迟进行估计,并与IGS提供的测站天顶延迟进行对比。根据所解算的天顶对流层延迟,利用经验模型求解天顶干延迟,最后分离出天顶湿延迟,进行大气可降水分的求解。  相似文献   

10.
针对现有对流层天顶延迟模型改正法因水汽参数难以精确获取所导致的时空分辨率与精度上的不足问题,提出了一种融合WRF(weather research and forecasting model)大气数值模式的对流层天顶延迟估计方法。通过分析WRF模式的数值模拟机理及其数据结构特征,采用直接积分与模型改正相结合的混合计算方式,实现了全球任意位置上小时级的对流层天顶延迟估计。验证结果表明,该方法计算的小时级ZTD再分析值精度为13.6 mm,日均值精度更是可达9.3 mm,比传统模型UNB3m的49.6 mm以及目前标称精度最高模型GPT2w的34.6 mm,精度分别提高了约5倍和3.5倍。在30 h的预报时段内,预报值精度也可达22 mm。无论是ZTD再分析值还是预报值比现有模型的估计值精度均有明显提高。  相似文献   

11.
Three-dimensional ray tracing through a numerical weather model has been applied to a global precise point positioning (PPP) campaign for modeling both the elevation angle- and azimuth-dependence of the tropospheric delay. Rather than applying the ray-traced slant delays directly, the delay has been parameterized in terms of slant factors, which are applied in a similar manner to traditional mapping functions, but which can account for the azimuthal asymmetry of the delay. Five strategies are considered: (1) Vienna Mapping Functions 1 (VMF1) and estimation of a residual zenith delay parameter; (2) VMF1, estimation of a residual zenith delay and estimation of two tropospheric gradient parameters; (3) three-dimensional ray-traced slant factors and estimation of a residual zenith delay; (4) using only ray-traced slant factors and no estimation of any tropospheric parameters and; (5) using both ray-traced slant factors and estimating a residual zenith delay and two tropospheric gradient parameters. The use of the ray-traced slant factors (solution 3) showed a 3.8% improvement in the repeatability of the up component when compared to the assumption of a symmetric atmosphere (solution 1), while the estimation of two tropospheric gradient parameters gave the best results showing an 7.6% improvement over solution 1 in the up component. Solution 4 performed well in the horizontal domain, allowing for sub-centimeter repeatability but the up component was degraded due to deficiencies in the modeling of the zenith delay, particularly for stations located at equatorial latitudes. The magnitude of the differences in the mean coordinates between solution 2 and solution 3, and the strong correlation with the differences between the north component and the ray-traced gradients (coefficient of correlation of 0.83), as well as the impact of observation geometry on the gradient solution indicate that the use of the ray-traced slant factors could have an implication on the realization of reference frames. The estimated tropospheric products from the PPP solutions were compared to those derived from ray tracing. For the zenith delay, a root mean square (RMS) of 5.4 mm was found, while for the gradient terms, a correlation coefficient of 0.46 for the N–S and 0.42 for the E–W was found for the north–south and east–west components, suggesting that there are still important differences in the gradient parameters which could be due to either errors in the NWM or to non-tropospheric error sources leaking into the PPP-estimated gradients.  相似文献   

12.
卫星钟差的难预测性是影响实时高精度定位的重要因素之一。为快速获得高精度位置或对流层等信息,在非差观测模型的基础上,本文提出了一种延迟量约1 h的近实时钟差估计策略,该策略主要包含超快速轨道解算和钟差估计两部分。经验证,预报部分第2~5 h的GPS轨道三维平均精度为3.85 cm,BDS GEO和IGSO+MEO轨道三维平均精度分别为81.4和21.74 cm。基于超快速轨道可获得近实时钟差精度GPS为0.054 ns,BDS为0.12 ns。最后通过BDS+GPS静态PPP试验验证了轨道和钟差的可用性。  相似文献   

13.
GPS数据解算对流层天顶总延迟探讨   总被引:1,自引:0,他引:1  
运用GAMIT/GLOBK软件,对南极长城站与周边的各IGS跟踪站的GPS观测数据进行组网解算。在解算各站上空总天顶延迟的过程中,利用不同的星历进行解算,并对其解算结果进行了分析和探讨得出:实时预报。星历与精密星历在解算结果上差别不大,最小差值是0mm,最大差值仅为0.5mm。所以在计算各GPS站上空大气水汽含量时,可直接采用实时预报星历,对今后实时探测水汽及实时天气预报具有一定的实用意义。  相似文献   

14.
对流层延迟是卫星导航定位的主要误差源,GNSS广域增强需要高精度的对流层延迟产品进行误差修正。对流层延迟可通过GNSS进行实时估计,也可通过融合多源数据的数值气象预报模型获取。IGS发布的全球对流层天顶延迟产品由GNSS解算,其精度可达4mm,时间分辨率为5min,但其分布不均匀,在广袤的海洋区域无数据覆盖。GGOS Atmosphere基于ECMWF 40年再分析资料,可提供1979年以来时间分辨率为6h、空间分辨率为2.5°×2°的全球天顶对流层总延迟格网数据。本文通过2015年全球IGS测站的ZTD资料对GGOS的ZTD产品进行了评估,研究了GGOS Atmosphere对流层延迟产品与IGS发布ZTD资料之间的系统差,通过线性拟合估计出每个测站GGOS-ZTD与IGSZTD系统差系数(包括比例误差a和固定误差b),然后对比例误差a、固定误差b进行球谐展开,建立了两种ZTD数据源之间的系统差模型。选取IGS测站和陆态网测站,对附加系统偏差改正后的GGOSZTD产品对PPP的收敛速度的影响进行研究。本文研究结果表明:GGOS-ZTD与IGS-ZTD间存在系统偏差,其bias平均为-0.54cm;两者之间较差的RMS平均为1.31cm,说明GGOS-ZTD产品足以满足广大GNSS导航定位用户对对流层延迟改正的需要。将改正了系统差后的GGOS-ZTD产品用于ALBH、DEAR、ISPA测站、PALM测站、ADIS测站、YNMH测站、WUHN测站进行PPP试验,发现可明显提高定位收敛速度,尤其是在U方向上,收敛速度分别提高10.58%、31.68%、15.96%、43.89%、51.46%、14.69%、18.40%。  相似文献   

15.
文中运用GAMIT/GLOBK 软件,解算了南极长城站GPS接收机天线在不同的相位中心和使用不同星历情况下的天顶总延迟,分析了在不同条件下解算结果的差异,探讨了获取高精度的天顶总延迟和实时获取天顶总延迟的具体方法,为今后实现GPS精密定位和实时天气预报提供了依据.  相似文献   

16.
动态GPS精密单点定位三种星历精度差异分析   总被引:1,自引:0,他引:1  
针对传统的动态GPS中采用不同星历的定位精度问题,给出了无电离层模型数学方程,改正了电离层延迟、对流层延迟、多路径效应、相对论效应以及天线相位中心偏差等误差的影响,采用扩展Kalman滤波解算出每个历元时刻接收机坐标。采用Rapid、Final与RTS共3种不同星历产品计算KPPP,比较了3种不同星历解算结果。对比实验表明:使用Rapid星历计算KPPP结果与Final星历计算结果偏差很小,处于2cm之内,故在时效性要求较高的动态GPS工程应用中可以采用Rapid星历替代Final星历;而使用RTS星历计算结果与Final星历计算结果偏差1.3m,使用RTS星历定位精度低于Final、Rapid星历计算结果,但其具有实时定位的明显优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号