首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
中国西北地区气候态变化对极端天气监测的影响   总被引:1,自引:1,他引:0  
林婧婧  张强 《中国沙漠》2016,36(6):1659-1665
中国西北地区对气候变化的响应极其敏感,西北地区1961-2013年气候变化趋势,分为Ⅰ态(1961-1990年)、Ⅱ态(1971-2000年)、Ⅲ态(1981-2010年)和Ⅳ态(1961-2013年)等4个气候态。利用西北地区年平均气温和降水资料、日最高气温极值和日最大降水量极值资料,基于两种极端天气事件的定义,分析了气候态变化对极端天气监测的影响。结果表明:年平均气温变化受气候态改变的影响较年降水量更为明显。在Ⅰ态和Ⅱ态下进行气温要素评价分析,会突出气温升高的现象,在Ⅲ态下会出现气温降低,气候态改变对降水量等级影响很小。Ⅰ态、Ⅱ态和Ⅲ态下,在20世纪70年代和90年代以来的两个时段内,日极端高温和日极端降水事件均出现增多,其中Ⅰ态增多幅度最大,Ⅲ态的影响最小。在空间分布上,西北地区受气候态影响的敏感区域,主要是新疆北部、青海北部、甘肃中部和东部、宁夏大部和陕西部分地区。  相似文献   

2.
论文利用1961—2017年北疆地区37个观测站的逐日气温资料以及高程数据,选取了3类(冷指数、暖指数和极值指数)15项极端气温指数,采用相关分析和灰色关联度统计分析方法,研究了地理因子在北疆极端气温趋势变化中的作用。结果表明:① 北疆地区气候变暖显著,极端气温冷指数呈非常显著的下降趋势,暖指数及极值指数呈显著或非常显著的上升趋势;气候变暖主要体现为极端冷事件频次降低、夜间温度以及极端低温升高,具有白天和夜间变化的不对称性以及低温和高温变化的不平衡性等特征。② 极端气温指数在北疆中部盆地地区上升(下降)趋势最强,在北疆北部及南部山区地带,上升(下降)趋势相对较小。地形分布对气候趋势的影响程度暖指数大于冷指数,海拔高度对极端气温事件的出现频次有较大影响。③ 极端气温指数趋势的经向分布是其空间分布的主导模态。北疆地区极端气温指数趋势性变化北部大于南部、西部大于东部,南北趋势性变化差异最大处位于北疆中部地区。极端气温指数趋势性变化的南北差异与海拔高度呈负相关,在山地地区,纬度对于极端气温指数的气候趋势影响较小,而在盆地地区,纬度为影响极端气温指数气候趋势的重要因子。经向上,除炎热夜数增加趋势与海拔高度的相关性较低外,北疆东部极端气温指数的趋势性变化与海拔高度相关性高于北疆西部。④ 地理因子对极端气温指数的趋势变化具有显著的影响(灰色关联度均大于0.6,为高度关联),影响程度暖指数大于冷指数。地理因子对冷指数的影响在山地、丘陵地区较强,而对暖指数的影响主要为地势较为平缓的丘陵和盆地地区。  相似文献   

3.
黄河流域气候变化研究综述   总被引:2,自引:0,他引:2  
黄河流域从西到东跨越多省,地形复杂,作为中国生态安全战略格局的重要组成部分,是中国气候变化敏感区和生态环境脆弱区。本文主要综述了在气候变暖背景下,黄河流域气候变化特征、影响以及成因和对策建议的最新研究进展:(1)近60年黄河流域气温呈上升趋势,平均升温速率为0.30 ℃/10a,上游升温速率最大,下游次之,冬季升温趋势最显著,夏季最小,降水量上游地区增多,中下游地区减少,蒸散量呈减少趋势。(2)在气候变化和人类活动影响下,黄河流域径流量整体呈下降趋势,源区冰川积雪消融加剧,冻土严重退化,流域植被覆盖整体呈好转趋势,上游脆弱区和中游产沙区水土流失加重,对农业影响利弊皆存,流域病虫害加剧;流域气候变暖,极端天气气候事件增多,对文化遗产安全保存带来巨大挑战。(3)黄河流域气候系统随时间演变的过程不仅受自身内部的动力、热力影响,也受大气环流、海温、青藏高原等外部强迫因子的影响,人类活动造成的大气成分和土地利用覆盖的变化是影响黄河流域局地气候的重要因子。(4)未来黄河流域气温持续上升,降水波动增加,极端天气事件将更加频繁。应对气候变化,重点在于加强黄河流域气候变化科学研究,提升极端天气气候事件的预报预警能力,联合多部门建立气象、水文、生态与数值预报及防控一体化的灾害预报预警系统,同时加强流域水资源的管理调配和有效利用,加强流域生态环境保护,制定科学合理的农业发展战略,推动黄河流域高质量发展。  相似文献   

4.
近60a来新疆不同海拔气候变化的时空特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
全球变暖是当前全球气候变化研究的热点之一,新疆深居亚欧大陆内陆,地形气候复杂,探讨该区域气候变化与海拔的关系对全球气候变化研究具有重要的参考意义。基于1958—2017年新疆41个气象站的月和年平均气候数据,采用一元线性回归、Mann Kendall(M-K)趋势分析和突变检验等方法分析该地区气候变化的时空分布与海拔的关系。结果表明:1958—2017年新疆年均气温、年均降水量均呈上升趋势,但增加幅度具有时间和空间差异。在时间上,北疆四季平均气温增温幅度均大于南疆(冬季除外),四季降水量增幅北疆大于南疆(夏季除外);在空间上,北疆气温和降水的增幅均大于南疆。研究区各个站点气温呈现出南部高而北部低的空间格局,年均降水量北部多,南部低。各个站点气温倾向率总体随海拔增加而减少,年均降水量变化率随海拔升高而增加,在不同海拔带内部存在差异。综上所述,受全球气候变暖的影响,近60 a来新疆年均气温和年均降水量均呈上升趋势,尤其是北疆对全球气候变暖的响应较为敏感。  相似文献   

5.
新疆天山和北疆地区是我国三大稳定积雪区之一,积雪反照率的变化显著地影响其地表吸收的太阳辐射能量。2018年1~3月,在新疆天山和北疆地区进行了积雪反照率观测,发现研究区的积雪反照率存在明显的时空差异。时间上,由于受到气温变化的影响,研究区的积雪反照率整体呈现下降的趋势,而且不同时期的下降幅度有差异,1月末~3月初反照率的降低相比1月初~1月末反照率降低更加明显。空间上,由于受到污化物的影响,各区域(阿勒泰地区、塔城地区、天山北坡和伊犁河谷)的积雪反照率之间存在差异,其中天山地区(天山北坡和伊犁河谷)的积雪反照率低于北疆地区(阿勒泰地区和塔城地区),天山北坡的反照率最低;在积雪稳定期及消融期,污化物对积雪反照率的影响最为明显。  相似文献   

6.
本文利用1961—2010年北疆地区20个气象台站的逐日降水量、最高气温、最低气温及平均气温资料,采用国际气候诊断与指数小组(ETCDDMI)所提供极端降水和气温事件的各种指标,对极端气候事件时空变化规律进行分析。结果表明:近50年,北疆地区极端降水和气温事件有显著的增加趋势;在北疆不同气候区极端降水指标变化趋势表现不同,其中准噶尔盆地地区增长趋势最慢;冷夜(日) 指数呈现下降趋势,为-4.05 d/10a(-1.51 d/10a),暖夜(日)指数呈现增加趋势,为4.36 d/10a (1.64 d/10a)。线性趋势分析发现,在20世纪80年代后极端降水事件有明显的增加趋势;应用M-K检测年最高气温和年最低气温,发现大多数站点在20世纪80年代后年最高气温和年最低气温也呈现显著增加。这表明在20世纪80年代后,北疆地区的极端气候事件增加趋势更加显著。  相似文献   

7.
基于2003—2017年新疆64个气象站点大风资料,以累积大风天数、连续大风天数、大风集中期和集中度为指标,探究该区大风天数的集中程度时空特征。研究表明:(1) 新疆年内大风天气主要集中在4~7月,连续大风天数主要以1~3 d为主。(2) 近15 a来,大风天气发生频率逐渐减少,频次越高递减幅度越大,但有趋向冬季、极端发展的趋势。(3) 空间尺度上,大风天气主要集中在北疆和东疆,而连续3 d以上大风天气主要集中在山谷地区。(4) 2003—2017年新疆地区年内大风天气分布总体在逐渐集中,集中期在逐渐提前。(5) 南疆和北疆西部以及东疆中东部年内大风天气分布较为分散,南疆南部和北部较为集中。(6) 南疆东南、北疆北部和东疆东北大风天气年内集中时段相对较早,南疆西北、东疆西部相对较迟。(7) 新疆地区大风集中度和集中期具有明显的聚集现象,高高聚集区域位于南疆南部和中部,低低聚集区域位于北疆和东疆的北部。  相似文献   

8.
中国东部气温极端特性及其气候特征   总被引:1,自引:1,他引:1  
齐庆华  蔡榕硕  郭海峡 《地理科学》2019,39(8):1340-1350
基于百分位等统计方法构建极端气候指数,分析中国东部气温极端特性变化的时空格局和趋势特征,探讨其与全球变暖和区域气候变率的关联性。结果表明,近60 a来,中国东部长期增暖趋势明显,高纬度北方地区和冬、春季节气温对全球变暖响应最为显著;相比于日最低气温,日最高气温上升趋势不明显,黄河与长江之间部分地区日最高温度出现下降趋势。全域日较差总体亦呈减小趋势;与日气温极值的平均状况和气候趋势相一致,极端低温事件强度下降趋势明显,黄河以北及东南沿海地区减弱显著。极端高温事件强度增加趋势并不明显,黄淮地区出现减小趋势;年霜冻日数和冰冻日数以及寒潮持续期的长期变化趋势以减少为主。高温热浪的持续期则以增加为主;中国东部极端气温事件频次与强度的演变格局存在同向一致性。极端低温影响指数的分布呈现北部大于南部、内陆大于沿海地区的特征,全域以一致性下降趋势为主,特别是东部沿海降低最为明显。另外,春季极端低温的影响指数大于冬季,且未有明显减小趋势。极端高温的影响指数增强趋势不明显,地区差异较大,指数的大值区影响增强的趋势显著。相比于强度,极端气温事件频次对全球气候变化的响应更为敏感。同时,副热带高压、南极涛动和北极涛动等区域性气候变率可能是调控中国东部极端气温事件形成和演化的重要因素。  相似文献   

9.
基于Google Earth Engine(GEE)遥感云平台,利用2000—2019年MODIS积雪产品资料提取和计算新疆积雪终日信息,利用趋势分析,变异系数等方法分析了新疆积雪终日时空变化特征和变化趋势。结果表明:(1) 新疆积雪终日以天山为界,天山以北长于南部,山区为积雪终日的高值区,盆地为积雪终日的低值区。北疆准噶尔盆地和伊犁河谷积雪终日在75~114 d之间,南疆塔里木盆地在0~31 d之间属于低值区。阿尔泰山脉、天山山脉和昆仑山脉区域在224~365 d之间属于高值区。(2) 南疆和北疆积雪终日有明显的时空差异,2000—2019年北疆准噶尔盆地和高海拔山脉地区积雪终日有明显的推迟趋势,推迟幅度达到14 d,占新疆总面积的8%。南疆塔里木盆地和东疆区域有明显的提前趋势,提前幅度达到16 d约占新疆总面积的44%。塔里木盆地和准噶尔盆地具有相反的变化趋势。(3) 新疆积雪终日年际变化差异显著,天山中段和北疆积雪终日出现不稳定状况,天山中段2002—2009年总体上呈现“M”型的特点,即多年积雪消融日年均值中出现明显的波峰和波谷,北疆2009—2019年积雪终日有较大的年际变化呈现出不稳定状况,出现明显的波峰和波谷,年际变化较大。  相似文献   

10.
张仪辉  梁康  刘昌明  吕锦心  白鹏 《地理研究》2022,41(10):2808-2820
探究全球变暖下的尼洋河流域极端气候变化特征及原因,对于科学支撑西藏地区的极端气候灾害防治和生态安全保障等具有重要意义。本文基于尼洋河流域1960—2019年逐日降水及气温数据,采用极端气候指标法、Sen's斜率估计法、MK趋势及突变检验法、GIS空间分析法从降水、气温两个角度分析近60年尼洋河流域极端气候时空分布特征,并结合大气环流因子,使用地理探测器方法探讨时空分布特征的可能成因。结果表明:在时间上,尼洋河流域极端气候整体呈现暖湿化的变化趋势。极端降水的降水量、降水强度、降水日数均呈现增加趋势,极端气温的高温极值、低温极值均呈现增大趋势,低温日数呈现减少趋势。在空间上,尼洋河流域极端气候变化存在明显的空间分异性。极端降水整体自东向西逐渐减少、极端气温整体自东南向西北逐渐降低。尼洋河河道作为水汽通道,有一定的增温、保温作用,各极端气候指标沿着河道呈现出连续的极值点。副热带高压、青藏高压对尼洋河流域暖湿化的变化起到了正向增强作用,极涡、北大西洋涛动则相反。以坡度为代表的地形因子、以NDVI为代表的下垫面因子分别是影响极端降水、极端气温空间分布的最主要的环境因子,高程对极端降水、气温的空间分布均起到了重要的作用。  相似文献   

11.
天山山区冬季积雪深厚,稳定积雪期较长,利用积雪遥感图象可以动态监测大面积的积雪变化,有效地调查大范围的积雪资源状况,积雪遥感监测和积雪遥感制图涉及多方面的资料,积雪数据库是积雪遥感监测系统必不可少的一部分。本文就新疆典型流域积雪遥感信息系统数据库的建立,数据库之间的数据格式转换,接口,可视化界面等进行讨论。  相似文献   

12.
乌鲁木齐极端天气事件及其与区域气候变化的联系   总被引:6,自引:0,他引:6  
使用逐日观测资料,分析了乌鲁木齐极端天气事件的变化趋势及其与区域气候变暖的可能联系,结果表明:近30年来,乌鲁木齐的低温、大风和雷暴事件减少趋势明显,沙尘暴、大雾等事件呈略减少趋势;暴雨、高温和暴雪事件整体呈略增加的趋势。大雾、大风、低温、高温、雷暴等事件均具有较大的年际变化;暴雨、暴雪、沙尘暴、冰雹等事件的年际变化幅度均较小;各类极端天气事件均存在各自明显的周期性特征。乌鲁木齐年平均气温和高温、低温、沙尘暴等极端事件之间存在较强的相关性,这些与温度相关的极端天气事件的变化与区域气候变暖关系密切。  相似文献   

13.
LiYun Dai  Tao Che 《寒旱区科学》2011,3(4):0325-0331
Ground snow observation data from 1999 to 2008 were used to analyze the temporal and spatial distribution of snow density in China. The monthly maximum density shifted from north to south during the period from October to the following January, and then moved back from south to north during the period from January to April. The maximum snow density occurred at the border between Hunan and Jiangxi provinces in January, where snow cover duration was short and varied remarkably. Snow density in Northeast China and the Xinjiang Uygur Autonomous Region were also high and showed less variation when the snow cover duration was long. Ground observation data from nine weather stations were selected to study changes of snow density in Northeast and Northwest China. A phase of stable snow density occurred from the middle ten days of November to the following February; non-stationary density phases were observed from October to the first ten days of November and from March to April. To further investigate the effects of climatic factors on snow density, correlations between snow density and precipitation, air temperature, snow depth and wind velocity for Northeast and Northwest China were analyzed. Correlation analysis showed that snow depth was the primary influence on snow density.  相似文献   

14.
Hydrological processes were compared, with and without the influence of precipitation on discharge, to identify the differences between glacierized and non-glacierized catchments in the Urumqi River source region, on the northern slope of the eastern Tianshan Mountains, during the melting season (May-September) in 2011. The study was based on hydrological data observed at 10-min intervals, meteorological data observed at 15-min intervals, and glacier melting and snow observations from the Empty Cirque, Zongkong, and Urumqi Glacier No.1 gauging stations. The results indicated that the discharge differed markedly among the three gauging stations. The daily discharge was more than the nightly discharge at the Glacier No.1 gauging station, which contrasted with the patterns observed at the Zongkong and Empty Cirque gauging stations. There was a clear daily variation in the discharge at the three gauging stations, with differences in the magnitude and duration of the peak discharge. When precipitation was not considered, the time-lags between the maximum discharge and the highest temperature were 1-3 h, 10-16 h, and 5-11 h at the Glacier No.1, Empty Cirque, and Zongkong gauging stations, respectively. When precipitation was taken into consideration, the corresponding time-lags were 0-1 h, 13 h, and 6-7 h, respectively. Therefore, the duration from the generation of discharge to confluence was the shortest in the glacierized catchment and the longest in the catchment where was mainly covered by snow. It was also shown that the hydrological process from the generation of discharge to confluence shortened when precipitation was considered. The factors influencing changes in the discharge among the three gauging stations were different. For Glacier No.1 station, the discharge was mainly controlled by heat conditions in the glacierized region, and the discharge displayed an accelerated growth when the temperature exceeded 5°C in the melt season. It was found that the englacial and subglacial drainage channel of Glacier No.1 had become simpler during the past 20 years. Its weaker retardance and storage of glacier melting water resulted in rapid discharge confluence. It was also shown that the discharge curve and the time-lag between the maximum discharge and the highest temperature could be used to reveal the evolution of the drainage system and the process of glacier and snow melting at different levels of glacier coverage.  相似文献   

15.
In order to analyze the differences between the two snow cover data, the snow cover data of 884 meteorological stations in China from 1951 to 2005 are counted. The data include days of visual snow observation, snow depth, and snow cover durations, which vary according to different definitions of snow cover days. Two series of data, as defined by "snow depth" and by "weather observation," are investigated here. Our results show that there is no apparent difference between them in east China and the Xinjiang region, but in northeast China and the Tibetan Plateau the "weather observation" data vary by more than 10 days and the "snow depth" data vary by 0.4 cm. Especially in the Tibetan Plateau, there are at least 15 more days of "weather observation" snow in most areas (sometimes more than 30 days). There is an obvious difference in the snow cover data due to bimodal snowfall data in the Tibetan Plateau, which has peak snowfalls from September to October and from April to May. At those times the temperature is too high for snow cover formation and only a few days have trace snow cover. Also, the characteristics and changing trends of snow cover are analyzed here based on the snow cover data of nine weather stations in the northeast region of the Tibetan Plateau, by the Mann-Kendall test. The results show significantly fewer days of snow cover and shorter snow durations as defined by "snow depth" compared to that as defined by "weather observation." Mann-Kendall tests of both series of snow cover durations show an abrupt change in 1987.  相似文献   

16.
郑博华  陈胜  王勇 《干旱区地理》2020,43(1):108-116
利用2010—2017年1~12月新疆喀什地区10个气象站逐小时降水资料,分析统计喀什地区近8 a降雨雪(以下统称降水)日变化特征。结果表明:(1) 喀什地区全年降水量和降水频次日变化存在明显的波动,总体上呈现“正弦波”一峰一谷特征,降水量峰值出现在03:00(北京时,下同),谷值出现在18:00;降水频次峰值出现在04:00,谷值出现在18:00;两者峰谷值出现时间接近。(2) 2010—2017年喀什地区全年降水量和降水频次呈明显的增加趋势;而降水强度年际变化趋于平缓,无明显变化。(3) 降水强度日变化趋势与降水量、降水频次并不存在一致性。(4) 喀什地区全年降水主要以短时段降水为主,其中,持续1 h降水次数为最大值,但降水量和贡献率最大值却同出现在2 h和6 h持续降水中。全年降水主要以后半夜和上午开始的降水过程为主导,且仍主要为短时段降水。  相似文献   

17.
利用1961-2003年青海南部牧区气象台站观测的气温、降水、积雪资料,用气候诊断方法分析了该地区积雪等气候要素的年代际演变特征以及雪灾变化的成因。结果表明:20世纪60-90年代冬季,青南牧区中雪和大雪出现的站次以及雪灾出现的站次有逐步增多的趋势,降雪量和地表平均积雪量每10 a分别增加1.454 mm、9.861cm,单站积雪量在4 100 m左右的高度上增加比较明显,冬季降雪和积雪增加的趋势和新疆完全一致。典型多(少)雪年500 hPa高度距平场高原西部与中国东部地区为“- ”(“ -”)型。未来10 a冬季积雪增多的趋势仍将维持,雪灾发生的几率仍然偏大。  相似文献   

18.
The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoff were analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis. Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Urumqi River and Kaidu River Basins. Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Urumqi River Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号