首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
The biogeochemistry of organic lacustrine sediments (sapropels) has been poorly studied in Siberia. In this paper we show the specifics of sapropel formation caused by low pH and mineralization of water by the example of Lake Ochki in Cisbaikalia. The main sources of organic matter are zoo- and phytoplankton, which concentrate mostly basic chemical elements and also some alkaline, alkali-earth, and chalcophile elements and move them to the sediment. The calculated enrichment factors (EF) have shown that the lake plankton is strongly enriched with phosphorus and chalcophile elements. The calculations have also revealed a great contribution of the plankton to the elemental composition of sapropel (Mebio, %): P (-100), Cd (57), Br (45), Hg (40), Se and Na (30), Zn (23), K (21), and Ca (15). Elements are rather uniformly distributed throughout the 3.2 m thick sapropel layer. Lithophile elements (Al, Sc, Ti, Y, Zr, Nb) and LREE are mostly from a terrigenous source. The high contents of mobile elements (Cd, Sb, Sn, Pb, Zn) in the upper part of sapropel are probably due to anthropogenic factors. The high Cu and Zn contents in some sapropel layers are probably related to the inflow of deep-level groundwaters, and the elevated contents of Hg, Cd, and Sb might have been caused by forest fires.  相似文献   

3.
Organogenic sediments (sapropels) in lakes are characterized by a reduced type of diagenesis, during which organic compounds are decomposed, the chemical composition of the pore waters is modified, and authigenic minerals (first of all, pyrite) are formed. Pyrolysis data indicate that organic matter undergoes radical transformatons already in the uppermost sapropel layers, and the composition of this organic matter is principally different from the composition of the organic matter of the its producers. The sapropels contain kerogen, whose macromolecular structure starts to develop during the very early stages of diagenesis, in the horizon of unconsolidated sediment (0–5 cm). The main role in the diagenetic transformations of organic matter in sediments is played by various physiological groups of microorganisms, first of all, heterotrophic, which amonifying, and sulfate-reducing bacteria. SO42? and Fe2+ concentrations in the pore waters of the sediments are determined to decrease (because of bacterial sulfate reduction), while concentrations of reduced Fe and S species (pyrite) in the solid phase of the sediment, conversely, increase. Comparative analysis shows that, unlike sapropels in lakes in the Baikal area, sapropels in southern West Siberia are affected by more active sulfate reduction, which can depend on both the composition of the organic matter and the SO42? concentration in the pore waters.  相似文献   

4.
Gas chromatography and gas chromatography–mass spectrometry data on oils from wells and seeps in the Eastern Kamchatka Basin indicate that, according to their composition and the distributions of biomarker molecules, these oils can be classified into three groups, which differ in the composition of the parent organic matter, litho–facies sedimentation conditions, and catagenetic transformations. Oils from the wells were determined to be produced by organic matter of the sapropel type of marine facies in the main oil window (MC2). Condensate from the natural seep was generated at higher catagenesis grades (MC2–3) by organic matter of the sapropel–humus type of littoral facies. Uzon oil shows are demonstrated to be formed in a continental environment by organic matter of the humus–sapropel type and were not genetically related to oil from the Paleogene–Neogene source rocks of the Bogachevka Formation.  相似文献   

5.
Sulphur isotope compositions and S/C ratios of organic matter were analysed in detail by combustion-isotope ratio monitoring mass spectrometry (C-irmMS) in eastern Mediterranean sediments containing three sapropels of different ages and with different organic carbon contents (sapropel S1 in core UM26, formed from 5–9 ka ago with a maximum organic carbon content of 2.3 wt%; sapropel 967 from ODP Site 160-967C, with an age of 1.8 Ma and a maximum organic carbon content of 7.4 wt%; and sapropel 969 from ODP Site 160-969E, with an age of 2.9 Ma and a maximum organic carbon content of 23.5 wt%). Sulphur isotopic compositions (34S) of the organic matter ranged from -29.5 to +15.8 and the atomic S/C ratio was 0.005 to 0.038. The organic sulphur in the sediments is a mixture of sulphur derived from (1) incorporation of 34S-depleted inorganic reduced sulphur produced by dissimilatory microbial sulphate reduction; and (2) biosynthetic sulphur with an isotopic signature close to seawater sulphate. The calculated biosynthetic fraction of organic sulphur in non-sapropelic sediments ranges from 68–87%. The biosynthetic fraction of the organic sulphur of the sapropels (60–22%) decreases with increasing organic carbon content of the sapropels. We propose that uptake of reduced sulphur into organic matter predominantly took place within sapropels where pyrite formation was iron-limited and thus an excess of dissolved sulphide was present for certain periods of time. Simultaneously, sulphide escaped into the bottom water and into sediments below the sapropels where pyrite formation occurred.  相似文献   

6.
Analysis of the molecular composition of the organic matter (OM) from whole sediment samples can avoid analytical bias that might result from isolation of components from the sediment matrix, but has its own analytical challenges. We evaluated the use of GC × GC-ToFMS to analyze the pyrolysis products of six whole sediment samples obtained from above, within and below a 1 million year old OM-rich Mediterranean sapropel layer. We found differences in pyrolysis products <n-C22 between the OM-rich sapropel samples and the OM-poor background marls. The presence of alkyl pyrroles, probably derived from chlorophyll, in pyrolysates of the sapropels but not in those of the marls suggests that higher marine productivity and greater OM preservation accompanied deposition of the sapropels. Detection of tetramethyl benzenes considered to be pyrolysis products of isorenieratene in the sapropel samples is evidence that nitrogen-fixing green sulfur bacteria contributed to the high productivity. Greater abundances of shorter chain aliphatic hydrocarbons, pyrroles, furans and alkyl aromatics in the pyrolysates of sapropel samples relative to the marls confirm better preservation of marine OM in the sapropels. In addition, the presence of greater amounts of thiophenes in the sapropels than in the marls is consistent with the existence of euxinic conditions during sapropel deposition. The combination of whole sediment pyrolysis and GC × GC-ToFMS is promising, but the procedure requires careful selection of its multiple analytical variables, particularly the pyrolysis temperature and the operational features of the GC columns.  相似文献   

7.
我国凝析油的成因类型及其地球化学特征和意义   总被引:5,自引:1,他引:5  
陈践发  沈平 《沉积学报》1995,13(1):32-40
近十几年的勘探实际表明,在我国一些含油气盆地中,许多天然气藏均伴生一定量的凝析油(或轻质油)。按母质类型可将凝析油分为海相腐泥型有机质生成的凝析油、煤系地层腐殖质有机质生成的凝析油、陆相混合型有机质生成的凝析油。本文较详细地从成因机理上讨论了这三种不同成因凝析油的形成特点。海相腐泥型有机质一般在有机质热演化达到高成熟-过成熟阶段,由干酪根或早期形成的高分子液态烃热裂解才形成凝析油。煤系地层中腐殖型有机质从低成熟到过成熟各个阶段所生成的一定量的液态烃一般主要以凝析油的状态与天然气相伴生。陆相混合型有机质从低成熟到过成熟阶段也都可能形成凝析油。利用凝析油单体烃的组份特征,石蜡指数和庚烷值对我国主要含油气盆地凝析油的成熟度进行了计算,所得结果,大都与地质实际相吻合。研究表明我国凝析油成熟度的分布范围从低成熟到过成熟均有。三种不同成因的凝析油其地球化学特征具有一定差异,煤系地层腐殖型有机质形成的凝析油从组份来讲相对富含芳烃,其芳烃含量一般为16.2~23.5%,饱和烃/芳烃值为3.2~5.2,同时其姥鲛烷/植烷值相对较高,通常均大于3;而海相腐泥型有机质生成的凝析油则相对富含饱和烃,其饱/芳比值为11.8~18.2,同时姥蛟烷/植烷值较低,一般小于1。陆相混合型有机质生成的凝析油则介于二者之间。三类不同成因的凝析油它们的芳烃组份(蔡系、联苯系和药系)和低分子生物标记物(菇类化合物)以及烷烃和芳烃组份的碳同位素组成都具有明显的差异。利用凝析油的这些地球化学特征可以有效地判识凝析油的成熟度和成因类型,从而确定与之相伴生的天然气的成因或来源。  相似文献   

8.
碳酸盐岩中有机质组成特征分析   总被引:2,自引:0,他引:2  
王敏芳 《世界地质》2003,22(1):26-29
对碳酸盐岩有机质组分进行分类时,有两种分类标准,一是主要采用煤岩学方法,二是采用孢粉学研究方法。本文使用煤岩学方法作为标准,对碳酸盐岩有机质的组成特征进行分析。按有机质来源和有机组分光性和形态等方面差别划分为内源有机质、次生有机质和陆源有机质三类。内源有机质类中分腐泥组和动物有机组,前者主要来源于菌藻类,后者则主要来源于浮游动物有机体;次生有机质中区分出微粒体、有机包裹体、沥青;陆源有机质类分类术语仍沿用煤显微组分分类系统和术语。碳酸盐岩烃源岩的有机质主要为腐泥型,有机质来源以低等藻类为主,且有机质组成特征与碳酸盐岩烃源岩的地质年代有关。碳酸盐岩还存在着差异演化的特征。  相似文献   

9.
生物─热催化过渡带油气关系   总被引:3,自引:1,他引:3  
本文在辽河盆地原油和天然气之间碳氢同位素关系研究的基础上,系统地研究了中国生物─热催化过渡带油气的地球化学特征,特别是它们之间同位素组成关系,划分出油气的不同组合类型,从而证明生物─热催化过渡带油气的自生自储特征,认为过渡带是油气形成聚集的重要垂向演化层段。同时为完善烃类形成的多源复合和多阶连续提供了佐证。  相似文献   

10.
The δ13C values of higher plant wax C27–33 n-alkanes were determined in three, time-equivalent Pliocene (2.943 Ma) sapropels and homogeneous calcareous ooze from three different sites forming an east-west transect in the eastern Mediterranean Basin in order to study the composition of the vegetation on the continents surrounding the Mediterranean Sea. A two-end member mixing model transformed the measured δ13C values into the contribution of C4 plants to the terrestrial vegetation. These calculations indicated a high C4 plant contribution (i.e. 40–50%) in the periods just before and just after sapropel formation. During sapropel deposition the C4 plant contribution increased by up to 20% at all sites. This is interpreted to record the increased overall plant coverage of the Mediterranean borderlands resulting from the change in formerly barren desert areas into C4 grass-dominated savannahs as a response to the wetter climate during sapropel deposition. Enhanced accumulation rates (ARs) of long-chain n-alkanes (C27–33) and n-alkan-1-ols (C26–30) towards the middle of the sapropel in concert with a decrease in the Ti/Al ratio confirm an increased delivery of terrigenous organic matter at all sites. These biomarkers were probably predominantly fluvially transported to the Mediterranean Sea, not only by the Nile but by fossil wadi river systems on the northern African continent.  相似文献   

11.
A multicomponent diagenetic model was developed and applied to reconstruct the conditions under which the most recent sapropel, S1, was deposited in the eastern Mediterranean Sea. Simulations demonstrate that bottom waters must have been anoxic and sulphidic during the formation of S1 and that organic matter deposition was approximately three times higher than at present. Nevertheless, most present day sediment and pore water profiles — with the exception of pyrite, iron oxyhydroxides, iron-bound phosphorus and phosphate — can be reproduced under a wide range of redox conditions during formation of S1 by varying the depositional flux of organic carbon. As a result, paleoredox indicators (e.g., Corg:S ratio, Corg:Porg ratio, trace metals) are needed when assessing the contribution of oxygen-depletion and enhanced primary production to the formation of organic-rich layers in the geological record. Furthermore, simulations show that the organic carbon concentration in sediments is a direct proxy for export production under anoxic bottom waters.The model is also used to examine the post-depositional alteration of the organic-rich layer focussing on nitrogen, phosphorus, and organic carbon dynamics. After sapropel formation, remineralisation is dominated by aerobic respiration at a rate that is inversely proportional to the time since bottom waters became oxic once again. A sensitivity analysis was undertaken to identify the most pertinent parameters in regulating the oxidation of sapropels, demonstrating that variations in sedimentation rate, depositional flux of organic carbon during sapropel formation, bottom water oxygen concentration, and porosity have the largest impact. Simulations reveal that sedimentary nutrient cycling was markedly different during the formation of S1, as well as after reoxygenation of bottom waters. Accumulation of organic nitrogen in sediments doubled during sapropel deposition, representing a significant nitrogen sink. Following reventilation of deep waters, N2 production by denitrification was almost 12 times greater than present day values. Phosphorus cycling also exhibits a strong redox sensitivity. The benthic efflux of phosphate was up to 3.5 times higher during the formation of S1 than at present due to elevated depositional fluxes of organic matter coupled with enhanced remineralisation of organic phosphorus. Reoxygenation of bottom waters leads to a large phosphate pulse to the water column that declines rapidly with time due to rapid oxidation of organic material. The oxidation of pyrite at the redox front forms iron oxyhydroxides that bind phosphorus and, thus, attenuate the benthic phosphate efflux. These results underscore the contrasting effects of oxygen-depletion on sedimentary nitrogen and phosphorus cycling. The simulations also confirm that the current conceptual paradigm of sapropel formation and oxidation is valid and quantitatively coherent.  相似文献   

12.
Layers of organic-carbon-rich sapropels in the sediment record of the Mediterranean Sea give evidence of repetitive changes in regional Plio-Pleistocene climate. Results from biomarker molecule and major and trace element analyses of closely spaced samples are used to reconstruct the conditions leading to deposition of a Pliocene sapropel at Ocean Drilling Program (ODP) Site 969 on the Mediterranean Ridge. Organic carbon concentrations increase from 0.2% outside the sapropel and peak to more than 30% within it. Major and trace elemental composition and biomarker-derived parameters indicate elevated productivity, depletion of water-column dissolved-oxygen content, and changes in sediment provenance in response to climatic changes. Budgets of rhenium, thallium, and other trace metals indicate that deep-water exchange between the Mediterranean subbasins and the Atlantic Ocean was not completely interrupted during sapropel formation. Enrichment factors of redox-sensitive and sulfide-forming trace metals as well as the presence of isorenieratene derivatives and high stanol/sterol ratios point to an extended zone of anoxic water masses. Depth profiles of biomarker compositions (sterols, long-chain alkenones, alkandiols and -ketols, fatty acids) indicate great floral diversity during deposition of a single sapropel and highlight the sensitive response of the marine community to variable environmental conditions. Changes in water mass circulation and eolian transport can be reconstructed by use of both lithogenic elements and average chain lengths of n-alkanes (ACL index).  相似文献   

13.
Pyrolysis-mass spectrometry of extracted sediments from the Livello Bonarelli, a thinly laminated carbonate-poor sedimentary unit at the Cenomanian-Turonian boundary, indicates significant differences between the samples. Microscopic investigations and pyrolysis-gas chromatography show a main contribution from marine organic matter for all samples. The composition of the extractable hydrocarbons becomes more complex with increasing organic carbon content of the sediments, indicating increasing anoxicity in the environment of sedimentation.Organic geochemical analyses combined with sedimentological and paleontological data show that the Livello Bonarelli could have been deposited in a paleoenvironment similar to that recently proposed for the Pleistocene Mediterranean sapropels, with an intermittent influx of fresh water leading to stagnation and a high productivity of marine organic matter caused by the transported nutrients.  相似文献   

14.
Clastic mud beds rich in continental organic matter are observed recurrently in the Nile deep-sea turbidite system. They formed during flooding periods of the river similar to those that induce sapropel formation and occurred during periods of increased density stratification of the eastern Mediterranean. The very fine-grained flood deposits are intercalated within pelagic sediments, sapropels and Bouma-type turbidites. These flood deposits form by the successive reconcentrations of surface (hypopycnal) plumes by convective sedimentation, which in turn generate a fine-grained low-energy hyperpycnal flow. Sea-level high stands seem also to favor hypopycnal plume formation and increase clastic mud bed formation. Consequently, these muddy clastic beds provide a direct link between deep-marine sedimentary records and continental climatic change through flood frequency and magnitude.  相似文献   

15.
华南碳酸盐岩型铀矿床中有机质及其与铀成矿的关系   总被引:1,自引:1,他引:1  
华南碳酸盐岩铀矿床,分布广泛,产于泥盒—二叠纪的各地层中。矿床受岩相、构造、水文地球化学等多种条件控制。矿化与有机质关系密切,而有机质的分布受泻湖相带控制。经研究对比,与成矿有关的有机质属于腐泥型,来源于海相微体生物和藻类。铀在各地层中的含量不均匀,富里酸和腐殖酸是含铀的主要有机质。  相似文献   

16.
东营凹陷深层烃源岩生物标志物特征及其意义   总被引:1,自引:0,他引:1  
主要利用GC-MS分析方法,对东营凹陷北部膏岩层以及上下两段深层烃源岩可溶有机质中正构烷烃、幽烷类和藿烷类生物标志化合物进行了分析,通过各种化合物的组成和分布特征对其地球化学意义进行了探讨.结合各项参数结果表明:三段有机质来源都具有低等水生生物输人和陆源高等植物输人的双重特征,膏岩层上段与下段有机质来源相似,以陆源物质...  相似文献   

17.
李友川  李宏义  兰蕾 《沉积学报》2022,40(3):616-625
北部湾盆地涠西南凹陷和乌石凹陷流二段普遍发育油页岩。有机地球化学分析表明,北部湾盆地流二段油页岩具有高的有机质丰度,油页岩的有机碳含量下限为3%,含油率介于3.5%~10%,达到中等和优质油页岩矿品级,同时属于优质烃源岩。全岩有机显微组分、干酪根镜检和热解等分析表明,北部湾盆地流二段油页岩藻类含量丰富,藻类是有机质的主要来源,有机质类型主要为腐殖—腐泥型,部分为腐泥型,以湖相腐殖—腐泥型油页岩为主,部分为湖相腐泥型油页岩。流二段油页岩中镍和钼等微量元素含量普遍较高,镍和钼的含量与有机碳含量之间存在很好的正相关关系,说明流二段油页岩形成时期北部湾盆地具有富营养湖泊特征。北部湾盆地流二段油页岩中还原硫含量高,普遍大于1%,流二段油页岩形成于还原的沉积环境,具有很好的有机质保存条件。高有机质生产力及湖侵体系域顶部和高位体系域底部的中深湖还原环境共同控制了北部湾盆地流二段油页岩的发育。  相似文献   

18.
The Holocene successions of numerous shallow lakes located along the Coorong coastal plain in South Australia attest to the impact of rising sea level and changing climate on their depositional environment. Old Man Lake is one of the smallest perennial alkaline lakes in the region. Its succession comprises a basal lagoonal sand rich in humic organic matter (OM) overlain by a 3.7 m thick upward shoaling lacustrine mudstone. The latter features three discrete sapropel units deposited between 3270 and 4910 cal yr BP, a time of increasing aridity throughout southeastern Australia. A core taken from the lake’s eastern margin yielded sedimentological, mineralogical, geochronological and micropaleontological data. Coring at five other sites across the lake provided sections of the humic and sapropelic facies (n = 20) for total organic carbon and Rock–Eval analysis; isotopic characterization of their micritic carbonate (δ13Ccarb, δ18Ocarb) and co-existing OM (δ13Corg); and GC–MS and GC–irMS analysis of their free aliphatic hydrocarbons. For each ‘sapropel event’ high productivity of diatoms and green algae was the principal driver of the accumulation and preservation of OM in such high concentrations. The precursor algal blooms were likely triggered by the influx of fresh water following winter rainfall. The combination of kerogen hydrogen index and δ13Ccarbδ13Corg, previously employed to track secular changes in algal productivity and organic preservation, proved useful in identifying synchronous geographic differences in these processes across the lake. Highly branched isoprenoids (HBI: C25:1  C20:0) are prominent components of the aliphatic hydrocarbons in the sapropels, confirming the significant contribution of diatoms to their OM. The C isotopic signatures of the principal C25:1 HBI isomer and the co-occurring C23–C31 odd carbon numbered n-alkanes further document the non-uniformity of biomass preservation within and between the three sapropel units. The evidence from this study suggests that seasonal algal blooms and meromixis, although not necessarily an anoxic hypoliminion, were required for sapropel formation in the Holocene lakes of the Coorong region. Higher resolution sampling, dating and comparative analysis (microfossil, biomarker and isotopic) of these sapropels is required to clarify their potential significance as palaeoclimate proxies.  相似文献   

19.
对于低勘探程度盆地,寻找优质烃源岩对于勘探方向的选择具有重要意义。本文基于大量测试分析资料,以哈日凹陷为研究对象,对银额盆地银根组优质烃源岩的岩石学和地球化学特征进行了研究,并对该烃源岩中有机质来源及其形成环境进行了分析。研究表明,优质烃源岩岩性为泥晶白云岩和白云质泥岩。烃源岩w(TOC)平均5.62%,有机质丰度极高;有机质类型为Ⅰ—Ⅱ1型,属腐泥型,或腐殖腐泥型有机质;烃源岩成熟度较低,但底部已经达到成熟热演化阶段,具有较高的生烃潜力。优质烃源岩的有机质来自高等植物和水生生物的混合源。优质烃源岩Pr/Ph值为0.19~0.27,代表强还原性的沉积环境;伽马蜡烷指数为0.30~0.54,高伽马蜡烷含量表明高盐度的沉积环境。藻类勃发形成的高生产力和缺氧环境是银根组优质烃源岩形成的2个关键条件。  相似文献   

20.
The variations in the organic matter quantity and quality were studied with respect to the mineral composition of the carbonate sequences accumulated on a gentle slope (Zl-1 well) and at the toe of the slope (Rzt-1 well) located between a Late Triassic carbonate platform and a backplatform basin. Parallel variations observed in mineral composition and organic geochemical features of the successions appeared to be controlled by the change in climate and by sea-level fluctuations. The repetitive sea-level changes resulted in a variation in the carbonate-rich basin facies and in the mineralogically heterogenous slope and toe-of-slope ones. According to Rock Eval pyrolysis, organic petrography and carbon isotope ratios, the immature organic matter is of predominantly marine origin and composed of mainly liptinites in both of the studied boreholes. The results of the GC and GC/MS analyses of the saturated hydrocarbon fractions of bitumens together with the composition of kerogen pyrolysates reveal a predominant algal input with a minor variable bacterial and subordinate terrestrial contribution for the Rzt-1 borehole. In the Zl-1 borehole a significantly higher proportion of the bacterial biomass contributed to the organic precursors. The δ13C values and the composition of the kerogen pyrolysates together with the results of the maceral analysis and GC data suggest a relatively higher, but moderate, higher plant derived contribution in the slope facies and at the top of the toe-of-slope facies. The elementary composition of kerogens and Rock Eval data display type II-S kerogen in the basin and the slope facies, and type I-II-S one in the toe-of-slope facies. Variations in the hydrogen content of the organic matter mainly reflect variations in the preservation conditions and in primary productivity. The presence of the 2,6,10,15,19-pentamethyleicosane and the extremely low pristane/phytane ratios indicate a relatively high methanogenic bacterial activity and strongly anoxic depositional conditions in the Rzt-1 well, especially in two most organic-rich toe-of-slope facies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号