首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 145 毫秒
1.
Normark  Piper  & Hiscott 《Sedimentology》1998,45(1):53-70
Hueneme and Dume submarine fans in Santa Monica Basin consist of sandy channel and muddy levee facies on the upper fan, lenticular sand sheets on the middle fan, and thinly bedded turbidite and hemipelagic facies elsewhere. Fifteen widely correlatable key seismic reflections in high-resolution airgun and deep-towed boomer profiles subdivide the fan and basin deposits into time-slices that show different thickness and seismic-facies distributions, inferred to result from changes in Quaternary sea level and sediment supply. At times of low sea level, highly efficient turbidity currents generated by hyperpycnal flows or sediment failures at river deltas carry sand well out onto the middle-fan area. Thick, muddy flows formed rapidly prograding high levees mainly on the western (right-hand) side of three valleys that fed Hueneme fan at different times; the most recently active of the lowstand fan valleys, Hueneme fan valley, now heads in Hueneme Canyon. At times of high sea level, fans receive sand from submarine canyons that intercept littoral-drift cells and mixed sediment from earthquake-triggered slumps. Turbidity currents are confined to ‘underfit’ talweg channels in fan valleys and to steep, small, basin-margin fans like Dume fan. Mud is effectively separated from sand at high sea level and moves basinward across the shelf in plumes and in storm-generated lutite flows, contributing to a basin-floor blanket that is locally thicker than contemporary fan deposits and that onlaps older fans at the basin margin. The infilling of Santa Monica Basin has involved both fan and basin-floor aggradation accompanied by landward and basinward facies shifts. Progradation was restricted to the downslope growth of high muddy levees and the periodic basinward advance of the toe of the steeper and sandier Dume fan. Although the region is tectonically active, major sedimentation changes can be related to eustatic sea-level changes. The primary controls on facies shifts and fan growth appear to be an interplay of texture of source sediment, the efficiency with which turbidity currents transport sand, and the effects of delta distributary switching, all of which reflect sea-level changes.  相似文献   

2.
Recognition of the occurrence and extent of hemipelagic and pelagic deposits in turbidite sequences is of considerable importance for environmental analysis (palaeodepth, circulation, distance from land, hemipelagic or pelagic versus turbidite sedimentation rates) of ancient basins. Differentiation between the finegrained parts (E-division) of turbidites and the (hemi-) pelagic layers (F-division of turbidite-pelagite alternations) is facilitated in basins where carbonate turbidites were deposited below the carbonate compensation depth (CCD) such as the Flysch Zone of the East Alps but may be difficult in other basins where less compositional contrast is developed between the fine-grained turbidites and hemipelagites. This difficulty pertains particularly in Palaeozoic and older basins. For Late Mesozoic-Cenozoic oceans with a relatively deep calcite compensation level three other types of turbidite basins may be distinguished for which differentiation becomes increasingly more difficult in the sequence from (1) to (3): (1) terrigenous turbidite basins above the CCD; (2) carbonate turbidite basins above the CCD; (3) terrigenous turbidite basins below the CCD. Criteria and methods useful for the differentiation between turbiditic and hemipelagic mudstone in the Upper Cretaceous of the Flysch Zone of the East Alps include calcium carbonate content, colour, sequential analysis, distribution of bioturbation, and microfaunal content. In modern turbidite basins clay mineral content, organic matter content, plant fragments, and grain-size (graded bedding, maximum grain diameter) have reportedly also been used as criteria (see Table 3). Deposition of muddy sediment by turbidity currents on weakly sloping sea bottoms such as the distal parts of deep-sea fans or abyssal plains is not only feasible but may lead to the accumulation of thick layers. Contrary to earlier speculation it can be explained by the hydrodynamic theory of turbidity currents, if temperature differences between the turbidity current and the ambient deep water as well as relatively high current velocities for the deposition of turbiditic muds (an order of magnitude higher on mud surfaces than commonly assumed) are taken into consideration. The former add to the capacity of turbidity currents to carry muddy sediment without creating a driving force on a low slope.  相似文献   

3.
Piper  Hiscott  & Normark 《Sedimentology》1999,46(1):47-78
The uppermost Quaternary deposits of the Hueneme and Dume submarine fans in the Santa Monica Basin have been investigated using a closed-spaced grid of boomer seismic-reflection profiles, which give vertical resolution of a few tens of centimetres with acoustic penetration to 50 m. Acoustic facies integrated with geometry define six architectural elements, some with discrete subelements that are of a scale that can be recognized in outcrops of ancient turbidite systems. In the Santa Monica Basin, the relationship of these elements to fan morphology, stratigraphy and sediment source is precisely known.
The width of upper Hueneme fan valley has been reduced from 5 km since the last glacial maximum to 1 km at present by construction of laterally confined sandy levees within the main valley. The middle fan comprises three main subelements: thick sand deposits at the termination of the fan valley, low-gradient sandy lobes typically 5 km long and < 10 m thick, and scoured lobes formed of alternating sand and mud beds with many erosional depressions. The site of thickest lobe sediment accumulation shifts through time, with each sand bed deposited in a previous bathymetric low (i.e. compensation cycles). The lower fan and basin plain consists of sheet-like alternations of sand and mud with shallow channels and lenses.
Variations in the rate of late Quaternary sea level rise initiated changes in sediment facies distribution. At lowstand, and during the approximately 11 ka stillstand in sea level, the Hueneme Fan was fed largely by hyperpycnal flow from the Santa Clara River delta, depositing high sediment waves on the right hand levee and thick sandy lobes on the middle fan. At highstand of sea level, most turbidity currents were generated by failure of silty prodelta muds. In contrast, the smaller Dume Fan was apparently always fed from littoral drift of sand through a single-canyon point source.  相似文献   

4.
The Neogene Humboldt (Eel River) Basin is located along the north-eastern margin of the Pacific Ocean within the Cascadia subduction zone. This sedimentary basin originated near the base of the accretionary prism in post-Eocene time. Subduction processes since that time have elevated strata in the south-eastern portion of the basin above sea level. High-resolution chronostratigraphic data from the onshore portion of the Humboldt Basin enable correlation of time-equivalent lithofacies across the palaeomargin, reconstruction of slope-basin evolution, and preliminary delineation of climatic and tectonic influence on lithological variation. Emergent basin fill is divided into five lithofacies which clearly document shoaling of the inner trench slope from deep-water environments in early Miocene time to paralic environments in Pleistocene time. The oldest strata consist of hemipelagic mudstones and minor debris-flow breccias deposited in a deep-water setting during elevated sea level. These strata are overlain by glauconite-rich, fine-grained turbidites which heralded an increasing influx of terrigenous detritus. Water depths shoaled earlier in the eastern basin area as the palaeoshoreline prograded seaward. Turbidite deposition ceased in the eastern basin area at about 2-2 Ma, whereas 22 km to the west, turbidite deposition continued until about 1-8 Ma. Lithofacies at the western study site change abruptly across a middle Pleistocene unconformity from outer shelf to paralic deposits. In the east, a more complete Pleistocene section records transition from outer to inner shelf, beach and fluvial environments. The Humboldt Basin lithofacies sequence is overprinted by eustatic control of sediment source. Comparison of sediment character with palaeoceanographic conditions indicates dominance of hemipelagic facies during periods of elevated sea level in the middle Miocene and early Pliocene when depocentres were isolated from terrigenous sediment. Glauconite-rich facies were mobilized from an upper slope setting following these periods of elevated sea level and redeposited in a deep-marine environment. Pleistocene shoreline lithofacies display glacio-esutatic control of depositional environment by recording several cycles of nearshore to fluvial progressions. General models of accretionary prism behaviour and trench-slope basin evolution are compatible with the overall coarsening-upward lithofacies sequence filling the Humboldt Basin. Early structural barriers precluded deposition of terrigenous material except from locally derived debris flows; subsequent shoaling and burial of deactivated thrust-folds enabled turbidity flows to reach the basin floor. However, late-stage tectonism apparently controlled the onset of coarse-grained deposition in this sequence. Significant sand-rich turbidite deposition began in the middle Pliocene, synchronous with tectonic uplift of the southern basin margin. Conversely, cessation of turbidite deposition in the eastern basin area in latest Pliocene time was synchronous with growth of anticlinal structures which again blocked widespread dispersal of turbidity flows. This middle Pliocene to Holocene period of crustal shortening is synchronous with continued reduction in spreading rate along the southern Juan de Fuca ridge, and probably reflects partial coupling between the subducting lithosphere and the overlying accretionary prism.  相似文献   

5.
一、概况位于滇、黔、桂三省间的南盘江断陷区面积达十万平方公里以上,自下二叠统茅口阶顶部至下三叠统印度阶,除周边和区内的一些孤立的碳酸盐岩台地外,连续地沉积了一套火山碎屑浊积岩及其伴生的富含放射虫、硅质海绵骨针的硅质岩,区域上大致作北西向的南、北两带展布,延伸约400公里,宽30-60公里不等,并于三省交界处汇合(图1)。地层东薄西厚,以茅口阶顶部和上二叠统的火山碎屑浊积岩厚度为准,南带最东端出露于广西武鸣、灵马等地,仅厚7 0-100米,向西至百色阳坪厚200米左右,至田林八渡厚361.44米,至隆林岭芬厚673米,西林石炮厚675米,再西至贵州雄武厚910米,云南师宗花桂一号井厚达1400米以上3北苹情况类似,东端的广西南丹龙王坡厚不足100米,向西至拥里厚127米,再西至贵州乐康厚612米,紫云卡务厚796米。  相似文献   

6.
The deep-tow instrument package of Scripps Institution of Oceanography provides a unique opportunity to delineate small-scale features of a size comparable to those features usually described from ancient deep-sea fan deposits. On Navy Fan, the deep-tow side-scanning sonar readily detected steep channel walls and steps and terraces within channels. The most striking features observed in side-scan are large crescentic depressions commonly occurring in groups. These appear to be large scours or flutes carved by turbidity currents. Four distinct acoustic facies were mapped on the basis of qualitative assessment of reflectivity of 4 kHz reflection profiles. There is a distinct increase in depth of acoustic penetration, number of sub-bottom reflectors, and reflector continuity from the upper fan-valley to the lower fan. These changes are accompanied by a decrease in surface relief. Navy Fan is made up of three active sectors. The active upper fan is dominated by a single channel with prominent levees that decrease in height downstream. The active mid-fan region or suprafan is where sand is deposited. Well defined distributary channels with steps, terraces, and other mesotopography terminate in depositional lobes. Interchannel areas are rough, containing giant scours as well as other relief. The active lower fan accumulates mud and silt and is without resolvable surface morphology. The morphological features seen on Navy Fan other than levees, interchannel areas, and lobes are principally erosional. The distributary channels are up to 0.5 km wide and 5–15 m deep. Such features, because of their large size and low relief, are rarely completely exposed or easily detectable in ancient rock sequences. Some flute-shaped scours are larger than channels in cross section but many are 5-30 m across and 1-2 m deep. If observed in ancient rocks transverse to palaeo-current direction, they would perhaps be indistinguishable from channels. Surface sediment distribution combined with fan morphology can be used to relate modern sediments to facies models for ancient fan sediments. Gravel and sand occur in the upper valley, massive sand beds in the mid-fan distributary channels, classical complete Bouma sequences on depositional lobes, incomplete Bouma sequences (lacking division a) on the lower mid-fan, and Bouma sequence with lenticular shape or other limited extent on mid-fan interchannel areas and on levees.  相似文献   

7.
The Cow Head Group is an Early Palaeozoic base-of-slope sediment apron composed of carbonate and shale. Whereas coarse-grained conglomerate and calcarenite are readily interpreted as debris-flow and turbidite deposits, calcilutite (lime mudstone), calcisiltite, and shale combine to form three distinct lithofacies whose present attributes are a function of both sedimentation and early diagenesis. Shale is the most common lithology. Black, green, and red shale colour variations reflect the abundance of organic matter in the source area and oxygenation conditions of the sea bottom. In black and green shale, millimetre- to centimetre-thick, alternating dark and light laminations represent terrigenous mud turbidites and hemipelagites, respectively. The calcisiltite/shale facies is uncommon and is composed of numerous graded carbonate-shale sequences (GCSS) deposited from waning carbonate turbidites and fall-out of terrigenous muds. Some of the characteristics of ribbon and parted lime mudstones in the calcilutite/shale facies can be explained by deposition of carbonate mud from dilute turbidity currents or hemipelagic settling. Other features are diagenetic in origin. The lack of micrite in GCSS and in the interbedded shales of the calcilutite/shale facies is interpreted to reflect early dissolution of the finer carbonate from these sediments. This remobilized carbonate was precipitated locally to: lithify lime mudstone turbidites or hemipelagites; form diagenetic lime mudstone beds and nodules; cement calcisiltites; and form dolomite. Many of the calcisiltites and calcilutites were, therefore, carbonate enriched at the expense of adjacent argillaceous sediments. These attributes characterize not only fine-grained sediments of the Cow Head Group but many other Early Palaeozoic slope carbonates as well, suggesting that the model proposed here for depositionl diagenesis has wider application.  相似文献   

8.
ABSTRACT The Moroccan Turbidite System (MTS) on the north‐west African margin extends 1500 km from the head of the Agadir Canyon to the Madeira Abyssal Plain, making it one of the longest turbidite systems in the world. The MTS consists of three interconnected deep‐water basins, the Seine Abyssal Plain (SAP), the Agadir Basin and the Madeira Abyssal Plain (MAP), connected by a network of distributary channels. Excellent core control has enabled individual turbidites to be correlated between all three basins, giving a detailed insight into the turbidite depositional architecture of a system with multiple source areas and complex morphology. Large‐volume (> 100 km3) turbidites, sourced from the Morocco Shelf, show a relatively simple architecture in the Madeira and Seine Abyssal Plains. Sandy bases form distinct lobes or wedges that thin rapidly away from the basin margin and are overlain by ponded basin‐wide muds. However, in the Agadir Basin, the turbidite fill is more complex owing to a combination of multiple source areas and large variations in turbidite volume. A single, very large turbidity current (200–300 km3 of sediment) deposited most of its sandy load within the Agadir Basin, but still had sufficient energy to carry most of the mud fraction 500 km further downslope to the MAP. Large turbidity currents (100–150 km3 of sediment) deposit most of their sand and mud fraction within the Agadir Basin, but also transport some of their load westwards to the MAP. Small turbidity currents (< 35 km3 of sediment) are wholly confined within the Agadir Basin, and their deposits pinch out on the basin floor. Turbidity currents flowing beyond the Agadir Basin pass through a large distributary channel system. Individual turbidites correlated across this channel system show major variations in the mineralogy of the sand fraction, whereas the geochemistry and micropalaeontology of the mud fraction remain very similar. This is interpreted as evidence for separation of the flow, with a sand‐rich, erosive, basal layer confined within the channel system, overlain by an unconfined layer of suspended mud. Large‐volume turbidites within the MTS were deposited at oxygen isotope stage boundaries, during periods of rapid sea‐level change and do not appear to be specifically connected to sea‐level lowstands or highstands. This contrasts with the classic fan model, which suggests that most turbidites are deposited during lowstands of sea level. In addition, the three largest turbidites on the MAP were deposited during the largest fluctuations in sea level, suggesting a link between the volume of sediment input and the magnitude of sea‐level change.  相似文献   

9.
Small turbidite systems offshore from southern California provide an opportunity to track sediment from river source through the turbidity‐current initiation process to ultimate deposition, and to evaluate the impact of changing sea level and tectonics. The Santa Monica Basin is almost a closed system for terrigenous sediment input, and is supplied principally from the Santa Clara River. The Hueneme fan is supplied directly by the river, whereas the smaller Mugu and Dume fans are nourished by southward longshore drift. This study of the Late Quaternary turbidite fill of the Santa Monica Basin uses a dense grid of high‐resolution seismic‐reflection profiles tied to new radiocarbon ages for Ocean Drilling Program (ODP) Site 1015 back to 32 ka. Over the last glacial cycle, sedimentation rates in the distal part of Santa Monica Basin averaged 2–3 mm yr?1, with increases at times of extreme relative sea‐level lowstand. Coarser‐grained mid‐fan lobes prograded into the basin from the Hueneme, Mugu and Dume fans at times of rapid sea‐level fall. These pulses of coarse‐grained sediment resulted from river channel incision and delta cannibalization. During the extreme lowstand of the last glacial maximum, sediment delivery was concentrated on the Hueneme Fan, with mean depositional rates of up to 13 mm yr?1 on the mid‐ and upper fan. During the marine isotope stage (MIS) 2 transgression, enhanced rates of sedimentation of > 4 mm yr?1 occurred on the Mugu and Dume fans, as a result of distributary switching and southward littoral drift providing nourishment to these fan systems. Longer‐term sediment delivery to Santa Monica Basin was controlled by tectonics. Prior to MIS 10, the Anacapa ridge blocked the southward discharge of the Santa Clara River into the Santa Monica Basin. The pattern and distribution of turbidite sedimentation was strongly controlled by sea level through the rate of supply of coarse sediment and the style of initiation of turbidity currents. These two factors appear to have been more important than the absolute position of sea level.  相似文献   

10.
The study of new seismic data permits the identification of sediment gravity flows in terms of internal architecture and the distribution on shelf and abyssal setting in the Qiongdongnan Basin (QDNB). Six gravity flow types are recognized: (1) turbidite channels with a truncational basal and concordant overburden relationship along the shelf edge and slope, comprising laterally-shifting and vertically-aggrading channel complexes; (2) slides with a spoon-shaped morphology slip steps on the shelf-break and generated from the deformation of poorly-consolidated and high water content sediments; (3) slumps are limited on the shelf slope, triggered either by an anomalous slope gradient or by fault activity; (4) turbidite sheet complexes (TSC) were ascribed to the basin-floor fan and slope fan origin, occasionally feeding the deep marine deposits by turbidity currents; (5) sediment waves occurring in the lower slope-basin floor, and covering an area of approximately 400?km2, were generated beneath currents flowing across the sea bed; and (6) the central canyon in the deep water area represents an exceptive type of gravity flow composed of an association of debris flow, turbidite channels, and TSC. It presents planar multisegment and vertical multiphase characteristics. Turbidite associated with good petrophysical property in the canyon could be treated as a potential exploration target in the QDNB.  相似文献   

11.
New observations concerning the degree of current-induced erosion and deposition in the path of the 1929 Grand Banks turbidity current are presented. Most of the observations are available from Eastern Valley, Laurentian Fan. Seabeam and SeaMARC I data reveal widespread current erosion along the valley over a distance of 200 km from the shelfbreak. Erosional valley-floor channels are preferentially developed adjacent to the valley margins and the flanks of intravalley highs. Asymmetric transverse bedforms (herein termed gravel waves) are moulded in a deflationary pebble and cobble lag that overlies the eroded valley floor. In contrast, at the distal limit of Eastern Valley, thick deposits of massive granule gravel indicate deposition beneath a decelerating turbidity current. Symmetrical transverse bedforms (herein termed macrodunes) are developed within these granule gravel sediments. The spatial distribution of both bedforms and the areas of erosive excavation suggest that the turbidity current in 1929 was accelerating over the first 100 km from the shelfbreak and was eroding and entraining sediment from the valley floor over a distance of at least 200 km. With the loss of lateral constraint at the distal limit of Eastern Valley the turbidity current spread laterally and started depositing sediment as it decelerated. Current-induced erosion of the valley floor represented a potential source of between 50 and 100 km3 of sediment for incorporation into the resulting turbidite.  相似文献   

12.
R. D. WINN  JR  R. H. DOTT  JR 《Sedimentology》1979,26(2):203-228
The exceptionally well exposed Lago Sofia conglomerate and sandstone lenses in the Upper Cretaceous Cerro Toro Formation of southern Chile are interpreted as the channel and channel margin facies of a deep-sea fan. The north-to-south oriented channels formed on an elongate fan in a narrow retroarc basin between a rising cordillera to the west and the South American craton to the east. The great length of some of the channels (> 120 km) seems to reflect the long duration (> 30 m.y.) and stable nature of the basin. Enclosing the lenses is the fine-grained Cerro Toro Formation which represents overbank turbidite flows and hemipelagic sedimentation on levee and levee flank areas. Foraminiferal assemblages suggest deposition in 1000-2000 m of water. Most of the conglomerate has features developed by tractive currents (parallel- and cross-stratified conglomerate). Most is moderately well sorted, imbricated, and has parallel to inclined stratification; large-scale dunes up to 4 m high are exposed. Typical sediment, gravity flow structures and bedding styles (e.g. pebbly mudstones, graded conglomerate, giant flutes) are not as common in the channel deposits as are tractive features. Tractive features in the gravels apparently were developed by rolling, sliding, and saltation as the bed-load component of highly turbulent, moderate- to low-density turbidity currents flowing in a confined channel. Graded-to-massive conglomerates appear to have been deposited rapidly from fully turbulent flows; diamictites were deposited from debris flows in which fluid viscosity, yield strength, and buoyancy of the fluid were dominant. The three major conglomerate classes recognized do not occur in a systematic manner; vertical and lateral heterogeneity is the rule.  相似文献   

13.
The Petit-Rhône Fan Valley (north-western Mediterranean) is a broad, sinuous, filled valley that is deeply incised by a narrow, sinuous thalweg. The valley fill is differentiated into three seismic subunits on high-resolution seismic-reflection profiles. The lower chaotic subunit probably consists of channel lag deposits that seem to be in lateral continuity with high-amplitude reflections representing levee facies. The intermediate transparent subunit, which has an erosional base and clearly truncates levee deposits, is interpreted to be mass-flow deposits resulting from the disintegration of the fan-valley flanks. The upper bedded subunit shows an overall lens-shaped geometry and the seismic reflections onlap either onto the top of the underlying transparent subunit or onto the Rhône levees. Piston core data show that the upper few meters of this upper subunit consist of thin turbidites, probably deposited by overflow processes. The few available 14C ages suggest that the upper stratified subunit filled the Petit-Rhône Fan Valley between 21 and 11 kyr BP. The upper bedded subunit is deposited within the Petit-Rhône Fan Valley downslope of a major decrease in slope gradient. This upper subunit and the thalweg are genetically related and represent a small channel/levee system confined within the fan valley. Previous studies interpreted this thalweg to be an erosional feature resulting from a recent avulsion of the major channel course. Our interpretation implies that the thalweg is not a purely erosional feature but a depositional/erosional channel. This small channel/levee system is superimposed on a large muddy channel/levee system after the sediment supply changed from thick muddy flows during the main phase of aggradation of the Rhône Fan levees, to thin, mixed (sand and mud) flows at the end of Isotope Stage 2 (~16–18 ka BP). The pre-existing morphology of the Petit-Rhône Fan Valley played a determinant role in the sediment dispersal leading to the creation of this small and confined channel/levee system. These mixed flows have undergone flow stripping resulting from the changes in the slope gradient along the thalweg course. The finer sediment overflowed from the thalweg and were deposited in the Petit-Rhône Fan Valley. Coarser channelled sediment remaining in the thalweg were deposited as a ‘sandy’lobe (Neofan). As indicated by 14C dating, sedimentation on this lobe continued until very recently, suggesting a further evolution of the turbidity flows from small mixed flows to small sandy flows. the deposition of this study lobe and the sedimentary fill of the Petit-Rhône Fan Valley may be related to widespread shelf edge and canyon wall failures with a resulting downslope evolution of failed sediment into turbidity currents.  相似文献   

14.
The discharge of taconite tailings into Lake Superior at Silver Bay, Minnesota, produces turbidity current flow. The silty fine-sand tailings fraction transported to the deepest part of the lake has formed a small fan with valleys similar in gross morphology to a submarine fan. Current meters anchored 5 m above the lake floor over the wall and over the levee of a distributary valley on the fan recorded intermittent turbidity current flows during 30 weeks in 1972–73. At least twenty-five discrete periods of observation of turbidity current flow were obtained; single episodes lasted 4?328+ h. Only flows thick enough to overflow the eastern levee of the valley could be observed, and this accounts for the intermittent nature of our observations, as flow within the valleys is expected to be continuous as long as tailings are discharged. Flow velocities were higher near the valley axis where the flow is thicker. Velocities measured over the valley wall averaged 10.8 cm/s for eleven episodes; velocities measured over the levee, more than 1/2 km from the valley axis, only 3.3 cm/s. The maximum velocity during 1300 h of observation did not exceed 31 cm/s. This agrees reasonably well with velocities calculated from channel properties, as commonly done for turbidity currents on deep-sea fans. Current meters tethered above the bottom meters indicate that lake currents normally parallel the shore throughout the water column. With the onset of a turbidity current, currents higher in the water column remain unchanged but velocities near the bottom go to zero, currents then change azimuth by 90° to parallel the downslope (down-valley) direction of the fan, then increase in velocity. During a turbidity current episode, the direction of bottom flow stays relatively constant (± 20° of the down-valley trend) but the velocity oscillates (commonly with 10 cm/s amplitude), periods being of 1/2 h or less to several hours. Turbidity currents generated on Reserve Mining Company's delta are effective in carrying essentially all tailings discharged into the lake into deeper water, where they are deposited.  相似文献   

15.
西藏沙丁、荣布地区三叠系—老第三系沉积地质特征   总被引:1,自引:1,他引:0  
研究区从三叠纪到老第三纪,发育的岩石地层主要有确哈拉群(T3)、希湖群(J1-2)、拉贡塘组(J2-3)、多尼组(K1)、竟柱山组(K2)和牛堡组(E2-3)。在沉积相上,经历了从深水沉积到浅水直至陆相沉积的演变,发育有冲积扇、河流、湖泊、三角洲(潮汐)、障壁海岸、浅海、深海和火山碎屑流沉积。古地理分析表明,研究区晚三叠世古地理轮廓是一个从东南向西北和东北方向由浅水碳酸盐台地及深水陆层海底扇沉积共同发育的沉积盆地;早中侏罗世,演变成为一个由深水砂质浊积岩和细屑浊积岩组成的水下席状体沉积;进入中晚侏罗世,其古地理表现为一个陆屑浅海有障壁海岸;到了晚白垩世,研究区表现为以含煤沉积为特征的三角洲相沉积。  相似文献   

16.
The Late Quaternary Amazon deep-sea fan provides a modern analogue to ancient fan systems containing coarse-grained hydrocarbon reservoirs. Sand lenses deposited within the Amazon Fan, due to abrupt shifts in channel pathways called avulsion events, were drilled as part of ODP Leg 155. The hemipelagic sediment directly on top of the avulsion sands was dated using primarily AMS radio carbon dating. This dating shows that these large sand lobes (1 km3) are triggered by relatively small, millennial scale changes in marine transgression and regression (±5–10 m). Relative sea level also controls the architecture of the Channel–levee distributive systems within the Amazon Fan. For example prior to 22 k calendar years BP there is a tripartite channel system. After 22 ka there is only one active Channel–levee system. Transitions between the multi-channel and single channel configurations are related to variations in the volume of sediment supply resulting in aggradation or erosion of channel floor and levee growth in the canyon-channel transition area. The sensitivity of the Amazon deep-sea Fan sedimentation to relatively small changes in sea level supports one of the central assumptions of the theory of Sequence Stratigraphy. In addition this study demonstrates how traps for hydrocarbons may have been formed in ancient fan systems.  相似文献   

17.
High-resolution seismic boomer profiles, with a vertical resolution of less than 1 m, together with piston cores and previous side-scan sonar data, are used to describe late Quaternary sedimentation on the Var deep-sea fan. Chronological control is provided by foram biostratigraphy and radiocarbon dating in cores, and is extended over the fan by seismic correlation. Regional erosional events correspond to the oxygen isotopic stage 2 and 6 glacial maxima. Cores and seismic data define a widespread surface sand layer that is correlated with prodelta failure in 1979 and subsequent submarine cable breaks. Numerical modelling constrains the character of this 1979 turbidity current. It originated from a relatively small slide on the upper prodelta that put sufficient material in suspension to form an accelerating turbidity current which eroded sand from the Var Canyon. The turbidity current was only 30 m thick on the Upper Valley, but experienced significant flow expansion in the Middle Valley to thicknesses of more than 120 m, where it spilled over the eastern Var Sedimentary Ridge at a velocity of about 2·5 m s?1. Other Holocene turbidity currents (with a recurrence interval of 1000 years) were somewhat muddier and thicker, but also deposited sand on the levees of the Middle Valley, and are inferred to have had a similar slide-related origin. Late Pleistocene turbidity currents deposited thick mud beds on the Var Sedimentary Ridge. The presence of sediment waves and the mean cross-flow slope inferred from levee asymmetry indicates that some of these flows were many hundreds of metres thick and flowed at velocities of about 0·35 m s?1. This contrast with Holocene turbidites suggests that a slide origin is unlikely. Estimated times for deposition of thick mud beds on the levees are many days to weeks. The Late Pleistocene flows may therefore result from hyperpycnal flow of glacial outwash in the Var River. The variation in the Late Pleistocene to Holocene turbidite sedimentation is controlled more by variations in sediment supply than by sea-level change.  相似文献   

18.
Rivière粒度资料解释法以数学方法模拟实测粒度累积曲线、并援用若干曲线特征参数判别沉积物形成的流体动力条件,是独树一帜且甚有成效的环境分析方法之一。孟加拉深水扇细粒沉积物经此方法检验,表明半远海环境构成了该深水扇的沉积背景,在此背景下,穿插有低密度阵发性浊流的直接生成物或出现沉积物受等深流的局部改造。总体能量较弱的流体动力环境有利于该地区正常地层记录的保存。  相似文献   

19.
A detailed survey of the upper and middle Nova Scotian continental slope at 42°50′N and 63°30′W indicates a complex morphology dominated by mass movements on various scales and an immature turbidity current channel. The range of sediment facies is diverse including hemipelagic and turbidite muds, turbidite sands and gravelly sandy muds of debris flow origin. Deformed units, interpreted as slump deposits are also observed. Several facies associations, related to discrete morphological environments, are recognized. Thick turbidite sand units with minor intervening mud beds are characteristic of the high-relief uppermost slope and channel margin. Thinner turbidite sands, deformed slump beds and various mud facies are associated with small-scale, hummocky mid-slope topography. Sand beds are more abundant in the depressions than on intervening hummocks indicating the preferred transport paths of small turbidity currents. At the lower end of the main turbidity current channel, frequent turbidite sand beds with relatively minor mud beds are deposited on a depositional lobe. In areas unaffected by mass movements, alternating bioturbated mud and sandy muds make up the core sequences. A local model of sedimentation is proposed for this area and illustrates that simple models of continental slope sedimentation only apply to a limited range of settings.  相似文献   

20.
DONALD R. LOWE 《Sedimentology》2012,59(7):2042-2070
Deposits of submarine debris flows can build up substantial topography on the sea floor. The resulting sea floor morphology can strongly influence the pathways of and deposition from subsequent turbidity currents. Map views of sea floor morphology are available for parts of the modern sea floor and from high‐resolution seismic‐reflection data. However, these data sets usually lack lithological information. In contrast, outcrops provide cross‐sectional and lateral stratigraphic details of deep‐water strata with superb lithological control but provide little information on sea floor morphology. Here, a methodology is presented that extracts fundamental lithological information from sediment core and well logs with a novel calibration between core, well‐logs and seismic attributes within a large submarine axial channel belt in the Tertiary Molasse foreland basin, Austria. This channel belt was the course of multiple debris‐flow and turbidity current events, and the fill consists of interbedded layers deposited by both of these processes. Using the core‐well‐seismic calibration, three‐dimensional lithofacies proportion volumes were created. These volumes enable the interpretation of the three‐dimensional distribution of the important lithofacies and thus the investigation of sea floor morphology produced by debris‐flow events and its impact on succeeding turbidite deposition. These results show that the distribution of debris‐flow deposits follows a relatively regular pattern of levées and lobes. When subsequent high‐density turbidity currents encountered this mounded debris‐flow topography, they slowed and deposited a portion of their sandy high‐density loads just upstream of morphological highs. Understanding the depositional patterns of debris flows is key to understanding and predicting the location and character of associated sandstone accumulations. This detailed model of the filling style and the resulting stratigraphic architecture of a debris‐flow dominated deep‐marine depositional system can be used as an analogue for similar modern and ancient systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号