首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The Dehsalm Cu–Mo-bearing porphyritic granitoids belong to the Lut Block volcanic–plutonic belt (central eastern Iran). These rocks range in composition from gabbro-diorite to granite, with dominance of monzonites and quartz monzonites, and have geochemical features of high-K calc-alkaline to shoshonitic volcanic arc suites. Primitive mantle-normalized trace element spider diagrams display strong enrichment in large-ion lithophile elements such as Rb, Ba and Cs and depletions in some high-field strength elements, e.g., Nb, Ti, Y and HREE. Chondrite-normalized plots display significant LREE enrichments, high LaN/YbN and a lack of Eu anomaly. High Sr/Y and La/Yb ratios of Dehsalm intrusives reveal that, despite their K-rich composition, these granitoids show some resemblances with adakitic rocks. A Rb–Sr whole rock–feldspar–biotite age of 33 ± 1 Ma was obtained in a quartz monzonite sample and coincides, within error, with a previous geochronological result in Chah-Shaljami granitoids, further northwest within the Lut Block. (87Sr/86Sr)i and εNdi isotopic ratios range from 0.70481 to 0.70508 and from +1.5 to +2.5, respectively, which fits into a supra-subduction mantle wedge source for the parental melts and indicates that crustal contribution for magma diversification was of limited importance. Sr and Nd isotopic compositions together with major and trace element geochemistry point to an origin of the parental magmas by melting of a metasomatized mantle source, with phlogopite breakdown playing a significant role in the geochemical fingerprints of the parental magmas; small amounts of residual garnet in the mantle source also help to explain some trace element patterns. Geochemical features of Dehsalm porphyries and its association with Cu–Mo mineralization agree with a mature continental arc setting related to the convergence of Afghan and Lut plates during Oligocene.  相似文献   

2.
The Shah Soltan Ali area (SSA) is located in the eastern part of the Lut Block metallogenic province. In this area different types of sub-volcanic intrusions including diorite porphyry, monzonite porphyry and monzodiorite porphyry have intruded into basaltic and andesitic rocks. Zircon U–Pb dating and field observations indicate that intermediate to mafic volcanic rocks (38.9 Ma) are older than subvolcanic units (38.3 Ma). The subvolcanic intrusions show high-K calc-alkaline to shoshonitic affinity and are metaluminous. Based on mineralogy, high values of magnetic susceptibility [(634 to 3208) × 10?5 SI], and low initial 87Sr/86Sr ratios, they are classified as belonging to the magnetite-series of oxidant I-type granitoids and are characterized by an enrichment in LREEs relative to HREEs, with negative Nb, Ti, Zr and Eu anomalies. These granitoids are related to volcanic arc (VAG) and were generated in an active continental margin. Low initial 87Sr/86Sr ratios (0.7043 to 0.7052) and positive εNd values (+1.48 to +3.82) indicate that the parental magma was derived from mantle wedge. Parental magma was probably formed by low degree of partial melting and metasomatized by slab derived fluids. Then assimilation and fractional crystallization processes (AFC) produced the SSA rocks. This magma during the ascent was contaminated with the crustal material.All data suggest that Middle-Late Eocene epoch magmatism in the SSA area, occurred during subduction of Neo-Tethys Ocean in east of Iran (between Afghan and Lut Blocks).  相似文献   

3.
Volcanic rocks from the Gümü?hane area in the southern part of the Eastern Pontides (NE Turkey) consist mainly of andesitic lava flows associated with tuffs, and rare basaltic dykes. The K-Ar whole-rock dating of these rocks range from 37.62?±?3.33 Ma (Middle Eocene) to 30.02?±?2.84 Ma (Early Oligocene) for the andesitic lava flows, but are 15.80?±?1.71 Ma (Middle Miocene) for the basaltic dykes. Petrochemically, the volcanic rocks are dominantly medium-K calc-alkaline in composition and show enrichment of large ion lithophile elements, as well as depletion of high field strength elements, thus revealing that volcanic rocks evolved from a parental magmas derived from an enriched mantle source. Chondrite-normalized rare-earth element patterns of the volcanic rocks are concave upwards with low- to-medium enrichment (LaCN/LuCN?=?3.39 to 12.56), thereby revealing clinopyroxene- and hornblende-dominated fractionations for andesitic-basaltic rocks and tuffs, respectively. The volcanic rocks have low initial 87Sr/86Sr ratios (0.70464 to 0.70494) and εNd(i) values (+1.11 to +3.08), with Nd-model ages (TDM) of 0.68 to 1.02 Ga, suggesting an enriched lithospheric mantle source of Proterozoic age. Trace element and isotopic data, as well as the modelling results, show that fractional crystallization and minor assimilation played an important role in the evolution of the volcanic rocks studied. The Eocene to Miocene volcanism in the region has resulted from lithospheric delamination and the associated convective thinning of the mantle, which led to the partial melting of the subduction-metasomatized lithospheric mantle.  相似文献   

4.
The northeastward subduction of the Neo-Tethyan oceanic lithosphere beneath the Iranian block produced vast volcanic and plutonic rocks that now outcrop in central (Urumieh–Dokhtar magmatic assemblage) and north–northeastern Iran (Alborz Magmatic Belt), with peak magmatism occurring during the Eocene. The Karaj Dam basement sill (KDBS), situated in the Alborz Magmatic Belt, comprises gabbro, monzogabbro, monzodiorite, and monzonite with a shoshonitic affinity. These plutonic rocks are intruded into the Karaj Formation, which comprise pyroclastic rocks dating to the lower–upper Eocene. The geochemical and isotopic signatures of the KDBS rocks indicate that they are cogenetic and evolved through fractional crystallization. They are characterized by an enrichment in LREEs relative to HREEs, with negative Nb–Ta anomalies. Geochemical modeling using Sm/Yb versus La/Yb and La/Sm ratios suggests a low-degree of partial melting of a phlogopite–spinel peridotite source to generate the KDBS rocks. Their low ISr = 0.70453–0.70535, ɛNd (37.2 Ma) = 1.54–1.9, and TDM ages ranging from 0.65 to 0.86 Ga are consistent with the melting of a Cadomian enriched lithospheric mantle source, metasomatized by fluids derived from the subducted slab or sediments during magma generation. These interpretations are consistent with high ratios of 206Pb/204Pb = 18.43–18.67, 207Pb/204Pb = 15.59, and 208Pb/204Pb = 38.42–38.71, indicating the involvement of subducted sediments or continental crust. The sill is considered to have been emplaced in an environment of lithospheric extension due to the slab rollback in the lower Eocene. This extension led to localized upwelling of the asthenosphere, providing the heat required for partial melting of the subduction-contaminated subcontinental lithospheric mantle beneath the Alborz magmatic belt. Then, the shoshonitic melt generates the entire spectrum of KDBS rocks through assimilation and fractional crystallization during the ascent of the magma.  相似文献   

5.
The Urumieh-Dokhtar magmatic arc (UDMA) of Central Iran has been formed during Neotethyan Ocean subduction underneath Eurasia. The Rabor-Lalehzar magmatic complex (RLMC), covers an area ~1000?km2 in the Kerman magmatic belt (KMB), SE of UDMA. RLMC magmatic rocks include both granitoids and volcanic rocks with calc-alkaline and adakitic signatures but with different ages.Miocene adakitic rocks are characterd by relatively enrichmented in incompatible elements, high (Sr/Y)(N) (>40), and (La/Yb)(N) (>10) ratios with slightly negative Eu anomalies (EuN/Eu*≈ 0.9), depletion in HFSEs, and relatively non-radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7048–0.7049). In contrast, the Oligocene granitoids exhibit low Sr/Y (<20) and La/Yb (<9) ratios, negative Eu anomalies (EuN/Eu*?≈?0.5), and enrichment in HFSEs and radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7050–0.7052), showing affinity to the island arc rocks. Eocene volcanic rocks which crusscut the younger granitoid rocks comprise andesites and dacites. Geochemically, lavas show calc-alkaline character without any Eu anomaly (EuN/Eu*?≈?1.0). Based on the geochemical and isotopic data we propose that melt source for both calc-alkaline and adakitic rocks from the RLMC can be related to the melting of a sub-continental lithospheric mantle (SCLM). Basaltic melts derived from a metasomatized mantle wedge might be emplaced at the mantle-crust boundary and formed the juvenile mafic lower crust. However, some melts fractionated in the shallow magma chambers and continued to rise forming the volcanic intermediate-mafic rocks at the surface. On the other hand, the assimilation and fractional crystallization in the shallow magma chambers of may have been responsible for the development of Oligocene granitoids with calc-alkaline affinity. In the mid-Late Miocene, following the collision between Afro-Arabia and Iranian block the juvenile mafic crust of UDMA underwent thickening and metamorphosed into garnet-amphibolites. Subsequent upwelling of a hot asthenosphere during Miocene was responsible for partial melting of thickened juvenile crust of the SE UDMA (RLM complex). The adakitic melts ascended to the shallow crust to form the adakitic rocks in the KMB.  相似文献   

6.
《International Geology Review》2012,54(13):1641-1659
Eocene mafic volcanic rocks occurring in an E–W-trending, curvilinear belt along and north of the Izmir–Ankara–Erzincan suture zone (IAESZ) in northern Anatolia, Turkey, represent a discrete episode of magmatism following a series of early Cenozoic collisions between Eurasia and the Gondwana-derived microcontinents. Based on our new geochronological, geochemical, and isotope data from the Kartepe volcanic units in northwest Anatolia and the extant data in the literature, we evaluate the petrogenetic evolution, mantle melt sources, and possible causes of this Eocene volcanism. The Kartepe volcanic rocks and spatially associated dikes range from basalt and basaltic andesite to trachybasalt and basaltic trachyandesite in composition, and display calc-alkaline and transitional calc-alkaline to tholeiitic geochemical affinities. They are slightly to moderately enriched in large ion lithophile (LILE) and light rare earth elements (LREE) with respect to high-field strength elements (HFSE) and show negative Nb, Ta, and Ti anomalies reminiscent of subduction-influenced magmatic rocks. The analysed rocks have 87Sr/86Sr(i) values between 0.70570 and 0.70399, positive ?Nd values between 2.7 and 6.6, and Pb isotope ratios of 206Pb/204Pb(i) = 18.6–18.7, 207Pb/204Pb(i) = 15.6–15.7, and 208Pb/204Pb(i) = 38.7–39.1. The 40Ar/39Ar cooling ages of 52.7 ± 0.5 and 41.7 ± 0.3 Ma obtained from basaltic andesite and basalt samples indicate middle to late Eocene timing of this volcanic episode in northwest Anatolia. Calculated two-stage Nd depleted mantle model (TDM) ages of the Eocene mafic lavas range from 0.6 to 0.3 Ga, falling between the TDM ages of the K-enriched subcontinental lithospheric mantle of the Sakarya Continent (1.0–0.9 Ga) to the north, and the young depleted mantle beneath central Western Anatolia (0.4–0.25 Ga) to the south. These geochemical and isotopic features collectively point to the interaction of melts derived from a sublithospheric, MORB-like mantle and a subduction-metasomatized, subcontinental lithospheric mantle during the evolution of the Eocene mafic volcanism. We infer triggering of partial melting by asthenospheric upwelling beneath the suture zone in the absence of active subduction in the Northern Neotethys. The geochemical signature of the volcanic rocks changed from subduction- and collision-related to intra-plate affinities through time, indicating an increased asthenospheric melt input in the later stages of Eocene volcanism, accompanied by extensional deformation and rifting.  相似文献   

7.
The Roshtkhar area is located in the Khaf-Kashmar-Bardaskan volcano-plutonic belt to the northeastern Iran along the regional E–W trending Dorouneh Fault, northeastern of the Lut Block. There are several outcrops of subvolcanic rocks occurring mainly as dikes in the area, which intruded into Cenozoic intrusive rocks. We present U–Pb dating of zircons from a diabase dike and syenite rock using LA-ICP-MS that yielded an age of 1778 ± 10 Ma for the dike, indicating this Cenozoic dike has zircon xenocrysts inherited from deeper sources; and 38.0 ± 0.5 Ma, indicating an Late Eocene crystallization age for the syenite. Geochemically, the dikes typical of high-K calc-alkaline to shoshonitic magmas. Petrographic observations and major and trace element variations suggest that diabase melts underwent variable fractionation of clinopyroxene, olivine, and Fe-Ti oxides and minor crustal contamination during the differentiation process. Primitive mantle-normalized multi-element diagrams display enrichment in LILE, such as Rb, Ba, Th, U, and Sr compared to HFSE, as well as negative anomalies of Nb, Ta, P, and Ti, suggesting derivation from subduction-modified mantle. Chondrite-normalized REE plots show moderately LREE enriched patterns (<3.83 LaN/YbN <8.27), and no significant Eu anomalies. Geochemical modelling using Sm/Yb versus La/Yb and La/Sm ratios suggests a low-degree of batch melting (~1–3%) of a phlogopite-spinel peridotite source to generate the mafic dikes. The geochemical signatures suggest that the Roshtkhar mafic dikes cannot be related directly to subduction and likely resulted from melting of upper mantle in an extensional setting where the heat flow was provided from deeper levels. These dikes presumably derived the zircon xenocrysts from the assimilation of upper crust of Gondwanian basement. Processes responsible for partial melting of metasomatized lithospheric mantle and post-collision magmatism in NE Iran was triggered by heating due to asthenospheric upwelling in an extensional setting.  相似文献   

8.
Geophysical data illustrate that the Indian continental lithosphere has northward subducted beneath the Tibet Plateau, reaching the Bangong–Nujiang suture in central Tibet. However, when the Indian continental lithosphere started to subduct, and whether the Indian continental crust has injected into the mantle beneath southern Lhasa block, are not clear. Here we report new results from the Quguosha gabbros of southern Lhasa block, southern Tibet. LA-ICP-MS zircon U–Pb dating of two samples gives a ca. 35 Ma formation age (i.e., the latest Eocene) for the Quguosha gabbros. The Quguosha gabbro samples are geochemically characterized by variable SiO2 and MgO contents, strongly negative Nb–Ta–Ti and slightly negative Eu anomalies, and uniform initial 87Sr/86Sr (0.7056–0.7058) and εNd(t) (− 2.2 to − 3.6). They exhibit Sr–Nd isotopic compositions different from those of the Jurassic–Eocene magmatic rocks with depleted Sr–Nd isotopic characteristics, but somewhat similar to those of Oligocene–Miocene K-rich magmatic rocks with enriched Sr–Nd isotopic characteristics. We therefore propose that an enriched Indian crustal component was added into the lithospheric mantle beneath southern Lhasa by continental subduction at least prior to the latest Eocene (ca. 35 Ma). We interpret the Quguosha mafic magmas to have been generated by partial melting of lithospheric mantle metasomatized by subducted continental sediments, which entered continental subduction channel(s) and then probably accreted or underplated into the overlying mantle during the northward subduction of the Indian continent. Continental subduction likely played a key role in the formation of the Tibetan plateau at an earlier date than previously thought.  相似文献   

9.
The timing and extent of cratonic destruction are crucial to understanding the crustal evolution of the North China Craton (NCC). Zircon U–Pb–Hf isotope data and the whole-rock major and trace element characteristics of the Huyu igneous rocks in northwestern Beijing, China, provide possible new evidence for the initial destruction of the NCC. The igneous rocks occur as several sills and dikes, including lamprophyre, monzonite porphyry, and aplite. The lamprophyres have high Mg# and K2O contents. The monzonite porphyries have high Mg#, high K2O contents, and negative εHf(t) values with zircon U–Pb ages of 225.5–227.7 Ma. These two types of rocks are both enriched in large ion lithosphere elements (LILEs) and light rare earth elements (LREEs) but are depleted in high field strength elements (HFSEs) and high rare earth elements (HREEs) and have almost no Eu anomalies and relatively high total rare earth element (ΣREE) contents. In contrast, the aplites exhibit high silica and K2O contents, low MgO contents, and more negative εHf(t) values with a zircon U–Pb age of 206.2 Ma. The aplites are also enriched in LILEs and LREEs but are depleted in HFSEs and HREEs, with strongly negative Eu, Ti, P, La, Ce, and Sr anomalies and relatively low ΣREE contents. These results indicate that the lamprophyres and monzonite porphyries represent a continuous cogenetic magma evolution series after melt derived from an enriched metasomatized lithospheric mantle experienced crust assimilation and fractional crystallization. The aplites were produced by the fractional crystallization of low-Mg parental magma derived from melting of the ancient Archaean crust. The occurrence of the Huyu intrusive rocks with many other plutons of similar ages on the northern margin of the NCC suggests that the northern NCC entered an intraplate extensional tectonic environment in the Late Triassic.  相似文献   

10.
The 40Ar–39Ar dating reveals three episodes of basaltic volcanism in eastern Guangdong of SE China since the late Eocene (i.e., 35.5, ~20 and 6.6 Ma). The Miocene alkali olivine basalts (~20 and 6.6 Ma) have OIB-like trace element characteristics, which is coupled with low (87Sr/86Sr)i, high εNd(t), and high εHf(t). In contrast, the late Eocene basalts (35.5 Ma) have overall characteristics of “Island Arc” basalts with strong negative Ta–Nb–Ti anomalies in the primitive mantle-normalized multi-element diagram with high (87Sr/86Sr)i, negative εNd(t), and relatively low εHf(t). All basalts have unexpectedly high 207Pb/204Pb and 208Pb/204Pb, delineating a DUPAL signature in the sources. The late Eocene Arc-like basalts may reflect contributions of relict ancient metasomatized mantle lithosphere that melted as the result of extension-induced asthenospheric upwelling and heating, whereas the Miocene OIB-like basalts may represent partial melting of the asthenospheric mantle beneath the thickened lithosphere. We propose that the Cenozoic basaltic volcanism in eastern Guangdong records an overall lithospheric thickening process beneath SE China, that is, a continental rift system from its maximum extension in the late Eocene to its waning in the Miocene. This interpretation is consistent with the evolution of the South China Sea, whose origin is most consistent with the development of a passive continental margin. The seafloor spreading of the South China Sea during ~ 32–16 Ma may not result from the effect of the “Hainan” mantle plume, but rather played a positive role in allowing the mantle plume to express on the surface.  相似文献   

11.
We conducted geochemical and isotopic studies on the Oligocene–Miocene Niyasar plutonic suite in the central Urumieh–Dokhtar magmatic belt, in order better to understand the magma sources and tectonic implications. The Niyasar plutonic suite comprises early Eocene microdiorite, early Oligocene dioritic sills, and middle Miocene tonalite + quartzdiorite and minor diorite assemblages. All samples show a medium-K calc-alkaline, metaluminous affinity and have similar geochemical features, including strong enrichment of large-ion lithophile elements (LILEs, e.g. Rb, Ba, Sr), enrichment of light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs, e.g. Nb, Ta, Ti, P). The chondrite-normalized rare earth element (REE) patterns of microdiorite and dioritic sills are slightly fractionated [(La/Yb)n = 1.1–4] and display weak Eu anomalies (Eu/Eu* = 0.72–1.1). Isotopic data for these mafic mantle-derived rocks display ISr = 0.70604–0.70813, ?Nd (microdiorite: 50 Ma and dioritic sills: 35 Ma, respectively) = +1.6 and ?0.4, TDM = 1.3 Ga, and lead isotopic ratios are (206Pb/204Pb) = 18.62–18.57, (207Pb/204Pb) = 15.61–15.66, and (208Pb/204Pb) = 38.65–38.69. The middle Miocene granitoids (18 Ma) are also characterized by relatively high REE and minor Eu anomalies (Eu/Eu* = 0.77–0.98) and have uniform initial 87Sr/86Sr (0.7065–0.7082), a range of initial Nd isotopic ratios [?Nd(T)] varying from ?2.3 to ?3.7, and Pb isotopic composition (206Pb/204Pb) = 18.67–18.94, (207Pb/204Pb) = 15.63–15.71, and (208Pb/204Pb) = 38.73–39.01. Geochemical and isotopic evidence for these Eocene–Ologocene mafic rocks suggests that the magmas originated from lithospheric mantle with a large involvement of EMII component during subduction of the Neotethyan ocean slab beneath the Central Iranian plate, and were significantly affected by crustal contamination. Geochemical and isotopic data of the middle Miocene granitoids rule out a purely crustal-derived magma genesis, and suggest a mixed mantle–crustal [MASH (melting, assimilation, storage, and homogenization)] origin in a post-collision extensional setting. Sr–Nd isotope modelling shows that the generation of these magmas involved ~60% to 70% of a lower crustal-derived melt and ~30% to 40% of subcontinental lithospheric mantle. All Niyasar plutons exhibit transitional geochemical features, indicating that involvement of an EMII component in the subcontinental mantle and also continental crust beneath the Urumieh–Dokhtar magmatic belt increased from early Eocene to middle Miocene time.  相似文献   

12.
The Eocene volcano-sedimentary units in the southern part of the Eastern Pontides (NE Turkey) are confined within a narrow zone of east–west trending, semi-isolated basins in Bayburt, Gümü?hane, ?iran and Alucra areas. The volcanic rocks in these areas are mainly basalt and andesite through dacite, with a dominant calc-alkaline to rare tholeiitic tendency. 40Ar–39Ar dating of these volcanic rocks places them between 37.7 ± 0.2 and 44.5 ± 0.2 Ma (Middle Eocene). Differences in the major and trace element variations can be explained by the fractionation of clinopyroxene ± magnetite in basaltic rocks and that of hornblende + plagioclase ± magnetite ± apatite in andesitic rocks. Primitive mantle-normalized multi-element variations exhibit enrichment of large-ion lithophile elements and to a lesser extent, of light rare earth elements, as well as depletion of high field strength elements, thus revealing that volcanic rocks evolved from a parental magma derived from an enriched mantle source. Chondrite-normalized rare earth element patterns of the aforementioned volcanic rocks resemble each other and are spoon-shaped with low-to-medium enrichment (LaN/LuN = 2–14), indicating similar spinel lherzolitic mantle source(s). Sr, Nd and Pb isotopic systematics imply that the volcanic rocks are derived from a subduction-modified subcontinental lithospheric mantle. Furthermore, post-collisional thickened continental crust, lithospheric delamination and a subduction-imposed thermal structure are very important in generating Tertiary magma(s). The predominantly calc-alkaline nature of Eocene volcanic rocks is associated with increasing geodynamic regime-extension, whereas tholeiitic volcanism results from local variations in the stress regime of the ongoing extension and the thermal structure, as well as the thickness of the crust and the mantle-crust source regions. Based on volcanic variety and distribution, as well as on petrological data, Tertiary magmatic activity in Eastern Pontides is closely related to post-collisional thinning of the young lithosphere, which, in turn, is caused by extension and lithospheric delamination after collisional events between the Tauride–Anatolide Platform and the Eurasian Plate.  相似文献   

13.
The composite Meghri–Ordubad and Bargushat plutons of the Zangezur–Ordubad region in the southernmost Lesser Caucasus consist of successive Eocene to Pliocene magmatic pulses, and host two stages of porphyry Cu–Mo deposits. New high-precision TIMS U–Pb zircon ages confirm the magmatic sequence recognized by previous Rb–Sr isochron and whole-rock K–Ar dating. A 44.03 ± 0.02 Ma-old granite and a 48.99 ± 0.07 Ma-old granodiorite belong to an initial Eocene magmatic pulse, which is coeval with the first stage of porphyry Cu–Mo formation at Agarak, Hanqasar, Aygedzor and Dastakert. A subsequent Oligocene magmatic pulse was constrained by U–Pb zircon ages at 31.82 ± 0.02 Ma and 33.49 ± 0.02 Ma for a monzonite and a gabbro, and a late Miocene porphyritic granodioritic and granitic pulse yielded ages between 22.46 ± 0.02 Ma and 22.22 ± 0.01 Ma, respectively. The Oligo-Miocene magmatic evolution broadly coincides with the second porphyry-Cu–Mo ore deposit stage, including the major Kadjaran deposit at 26–27 Ma.Primitive mantle-normalized spider diagrams with negative Nb, Ta and Ti anomalies support a subduction-like nature for all Cenozoic magmatic rocks. Eocene magmatic rocks have a normal arc, calc-alkaline to high-K calc-alkaline composition, early Oligocene magmatic rocks a high-K calc-alkaline to shoshonitic composition, and late Oligocene to Mio-Pliocene rocks are adakitic and have a calc-alkaline to high-K calc-alkaline composition. Radiogenic isotopes reveal a mantle-dominated magmatic source, with the mantle component becoming more predominant during the Neogene. Trace element ratio and concentration patterns (Dy/Yb, Sr/Y, La/Yb, Eu/Eu*, Y contents) correlate with the age of the magmatic rocks. They reveal combined amphibole and plagioclase fractionation during the Eocene and the early Oligocene, and amphibole fractionation in the absence of plagioclase during the late Oligocene and the Mio-Pliocene, consistent with Eocene to Pliocene progressive thickening of the crust or increasing pressure of magma differentiation. Characteristic trace element and isotope systematics (Ba vs. Nb/Y, Th/Yb vs. Ba/La, 206Pb/204Pb vs. Th/Nb, Th/Nb vs. δ18O, REE) indicate that Eocene magmatism was dominated by fluid-mobile components, whereas Oligocene and Mio-Pliocene magmatism was dominated by a depleted mantle, compositionally modified by subducted sediments.A two-stage magmatic and metallogenic evolution is proposed for the Zangezur–Ordubad region. Eocene normal arc, calc-alkaline to high-K calc-alkaline magmatism was coeval with extensive Eocene magmatism in Iran attributed to Neotethys subduction. Eocene subduction resulted in the emplacement of small tonnage porphyry Cu–Mo deposits. Subsequent Oligocene and Miocene high-K calc-alkaline and shoshonitic to adakitic magmatism, and the second porphyry Cu–Mo deposit stage coincided with Arabia–Eurasia collision to post-collision tectonics. Magmatism and ore formation are linked to asthenospheric upwelling along translithospheric, transpressional regional faults between the Gondwana-derived South Armenian block and the Eurasian margin, resulting in decompression melting of lithospheric mantle, metasomatised by sediment components added to the mantle during the previous Eocene subduction event.  相似文献   

14.
The northern Noorabad area in western Iran contains several gabbro and basalt bodies which were emplaced along the Zagros suture zone. The basalts show pillow and flow structures with amygdaloidal textures, and the gabbroic rocks show massive and foliated structures with coarse to fine-grained textures. The SiO2 contents of the gabbros and basalts are similar and range from 46.1–51.0 wt.%, and the Al2O3 contents vary from 12.3–18.8 wt.%, with TiO2 contents of 0.4–3.0 wt.%. The Nb concentrations of some gabbros and basalts are high and can be classified as Nb-enriched arc basalts. The positive εNd(t) values (+3.7 to +9.8) and low 87Sr/86Sr(initial) ratios (0.7031–0.7071) of both bodies strongly indicate a depleted mantle source and indicate that the rocks were formed by partial melting of a depleted lithospheric mantle and interaction with slab fluids/melts. The chemical composition of trace elements, REE pattern and initial 87Sr/86Sr-143Nd/144Nd ratios show that the rocks have affinities to tholeiitic magmatic series and suggest an extensional tectonic regime over the subduction zone for the evolution of these rocks. We propose an extensional tectonic regime due to the upwelling of metasomatized mantle after the late Cretaceous collision in the Harsin-Noorabad area. These rocks can be also considered as Eocene back arc magmatic activity along the Zagros suture zone in this area.  相似文献   

15.
Basic volcanic rocks from the West Nain area of the Urumieh–Dokhtar Magmatic Assemblage demonstrate significant subduction-related geochemical characteristics; these along with the new age data obtained for the volcanic rocks shed new light on the geodynamic evolution of the Iranian segment of Alpine–Himalayan orogeny. The late Oligocene (26.5 Ma) high-Nb basic volcanic rocks are likely to represent a transient rather enriched asthenospheric mantle underlying the otherwise dominantly Eocene–early Oligocene West Nain island arc. Lithospheric mantle geochemical signatures of the low-Zr volcanic rocks (20.6 Ma) and high-Th volcanic rocks (19.7 Ma) imply replacement of the underlying mantle. The substitution of asthenospheric mantle by a lithospheric mantle wedge might have been associated with – or perhaps caused by – an increase in the subduction rate. Culmination of the West Nain magmatism into slab melting that produced the early Miocene (18.7 Ma) adakitic rocks is compatible with subsequent ascent that triggered slab decompression melting.  相似文献   

16.
ABSTRACT

Large-scale Cu–Au mineralization is associated with Late Mesozoic intrusive rocks in the Tongling region of eastern China, which mainly comprise pyroxene monzodiorite, quartz monzodiorite, and granodiorite. To constrain the petrogenesis of the intrusive rocks and Cu–Au mineralization, detailed analyses of the geochronology, apatite in situ geochemistry, whole-rock geochemistry, and zircon Hf isotopic compositions were performed. Magmatic zircons from pyroxene monzodiorites, quartz monzodiorites, and granodiorites yield U–Pb ages of 136–149 Ma, 136–146 Ma, and 138–152 Ma, respectively, indicating that their formation ages are contemporaneous. Quartz monzodiorites and granodiorites (SiO2 = 57.9–69.5 wt.%) are highly potassic calc-alkaline rocks with adakitic affinity and have low MgO and Y contents, low zircon εHf(t) values (?11.7 to ?39.0), high apatite Cl contents (>0.2 wt.%), and log fO2 values (?23.2 to ?8.23), indicating that they may have formed when metasomatized mantle-derived magmas mixed with slab-derived magmas before undergoing crustal assimilation and fractional crystallization. Pyroxene monzodiorites (SiO2 = 48.4–53.0 wt.%) are shoshonitic and record high MgO, P2O5, and Y contents, high zircon εHf(t) values (1.55 to ?7.87), high oxygen fugacity, low Nb and Ta contents, and low apatite Cl contents (mainly <0.2 wt.%), suggesting that they were primarily derived from a metasomatized lithospheric mantle-derived magma that experienced the assimilation of lower crustal materials. The results indicate that the intrusive rocks and associated large-scale Cu–Au mineralization of the Tongling region resulted from the partial melting of the subducted oceanic slab in an oxidizing environment.  相似文献   

17.
ABSTRACT

Both Pacific and Neo-Tethys plates had major influences on the Cretaceous magmatisms in southeastern China. The subduction of the Neo-Tethys plate is, however, not well studied. This paper reports zircon U–Pb ages, Lu–Hf isotopes, whole-rock geochemistry, and Sr–Nd isotopes for the Qianjia intrusive rocks in Hainan Island, southeast China. LA-inductively coupled plasma mass spectrometry zircon U–Pb dating of granites and dark enclave monzonite in the area yield magmatic crystallization ages of ca. 100 Ma, which are consistent with other Late Cretaceous granites, e.g. Baocheng, Tunchang, and Yaliang. Both rocks show high-K calc-alkaline compositions and metaluminous to weakly peraluminous signatures belonging to I-type rocks. They are enriched in the alkalis, Rb, Th, U, K, and light rare earth elements, depleted in Nb, Ta, Ti, and P, and characterized by high Al2O3 contents (14–15 wt%) and high Mg# values (50–53). Among them, some of granodiorites have geochemical affinities of adakitic rocks. Zircon εHf(t) values range from ?5.97 to ?1.18, with fairly constant whole-rock Sr–Nd isotopes (ISr = 0.7084–0.7086; εNd(t) = ?4.97 to ?4.29) similar with those of the Cretaceous mafic dikes (136–81 Ma) in Hainan Island, which are the result of partial melting of subduction-related sub-continental lithospheric mantle. Combined with Sr–Nd isotopes and negative Hf isotope, Qianjia intrusive rocks were likely derived from hybrid melts of underplated continental crust-derived with mantle-derived, then experienced varied degrees of fractional crystallization. According to the latest geophysical, sedimentological, and geochemical data, previous authors identified a Cretaceous E–W-trend subduction zone in the northern margin of the South China Sea. Combined with the southern margin magmatisms (110–80 Ma) and magmatisms of ~120 Ma distributed east–west ward from the Philippines to the Vietnam, We preferred that the subduction of the E–W-trend Neo-Tethys plate was the main geodynamic mechanism which induced the Cretaceous large-scale magmatisms in the southern margin of South China Block.  相似文献   

18.
Eastern Iran has great potential for the discovery of different types of mineralization. The study area encompasses Tertiary magmatism in the northern Lut block located in northern Khur, South Khorasan, eastern Iran and is mostly covered by volcanic rocks, which are intruded by porphyritic subvolcanic intrusions in some places. Application of the spectral angle mapper (SAM) technique to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images detected sericitic, argillic, and propylitic alterations, silicification, and secondary iron oxides. The alteration is linear and associated within vein-type mineralization. Twelve prospective areas are selected for detailed exploration and based on our processing results, in addition to NW-SE faults, which are associated with Cu mineralization indications, NE-SW faults are also shown to be important. Based on the presence of subvolcanic rocks and numerous Cu ± Pb-Zn vein-type mineralizations, extensive alteration, high anomaly of Cu and Zn (up to 100 ppm), the age (43.6 to 31.4 Ma) and the initial 87Sr/86Sr ratio (0.7047 to 0.7065) of the igneous rocks, and the metallogenic epoch of the Lut block (middle Eocene-lower Oligocene) for the formation of porphyry Cu and epithermal deposits, the studied area shows great potential for porphyry copper deposits.  相似文献   

19.
Geochemical and isotopic data for Cretaceous mafic rocks (basalt, gabbro, and diorite) from the Lower Yangtze region, northern Yangtze block, constrain the evolution of the lithospheric mantle. The mafic rocks, separated into the northeast and southwest groups, are alkaline and evolved, with low Mg# values (44–58) and variable SiO2 contents (47.6–57.4 wt%). Enriched LREEs, LILEs, and Pb, together with depleted Nb, Zr, and Ti, suggest that the mantle sources were metasomatized by slab-derived fluid/melt. All samples show high radiogenic 207Pb/204Pb(t) (15.41–15.65) and 208Pb/204Pb(t) (37.66–38.51) ratios at given 206Pb/204Pb(t) (17.65–19.00) ratios, consistent with the mantle sources having been metasomatized by ancient slab-derived material. Mafic rocks of the southwest group show enriched Sr–Nd isotopic characteristics, with 87Sr/86Sr(t) ranging from 0.7056 to 0.7071 and εNd(t) ranging from −5.3 to −8.3, indicating an origin from enriched lithospheric mantle. Mafic rocks of the northeast group, which record 87Sr/86Sr(t) ratios of between 0.7044 and 0.7050 and εNd(t) of −2.8 to −0.7, possibly formed by the mixing of melts from isotopically enriched lithospheric mantle and isotopically depleted asthenospheric mantle. Taking into consideration the geochemical and isotopic characteristics of Cretaceous mafic rocks, Cenozoic basalts, and basalt-hosted peridotite xenoliths from the Lower Yangtze region, we propose that an isotopically enriched, subduction-modified lithospheric mantle was replaced by or transformed into an isotopically depleted “oceanic-type” mantle. Such a process appears to have occurred in the eastern North China Craton as well as the eastern Yangtze block, probably in response to subduction of the paleo-Pacific plate beneath East Asia.  相似文献   

20.
The widespread late Carboniferous calc-alkaline and shoshonitic magmatic rocks in the Awulale mountain provide crucial constraints on the tectonic evolution of the western Tianshan. Here, we perform detailed petrological investigations as well as zircon U-Pb chronological, whole-rock geochemical and Sr-Nd isotopic analyses on these magmatic rocks from two geological sections along the Duku road. Magmatic rocks in the section I with zircon SHRIMP U-Pb ages of 306.8 Ma and 306.4 Ma are composed of medium-K calc-alkaline to shoshonitic basalt, trachy-andesite and trachyte, while those in the section II consist of shoshonitic trachy-andesite, trachyte with a U-Pb age of 308.1 Ma, and monzonite with a U-Pb age of 309.6 Ma. All these magmatic rocks are characterized by strong enrichments in large iron lithophile elements with depletions of Nb, Ta and Ti, indicating the origination from subduction-modified lithospheric mantle. The εNd(t) values of the rock samples collected from the section I (2.80–5.45) and section II (3.34–5.37) are generally higher than those of the Devonian to early Carboniferous arc-type magmatic rocks in the Yili-central Tianshan, suggesting that depleted asthenosphere might also be involved in their generation. Based on these geochemical data and petrological observations, we suggest that the early-stage (308.1–309.6 Ma) shoshonitic monzonite, trachy-andesite and trachyte in the section II were generated by mixing between mafic magmas and trachytic melts, while the late-stage (306.4–306.8 Ma) medium-K calc-alkaline to shoshonitic basalt, trachy-andesite and trachyte in the section I were produced by partial melting of depleted asthenospheric and metasomatized lithospheric mantle, followed by the processes of fractional crystallization and crustal contamination. Taking into account the available regional geological data, the subduction of south Tianshan ocean was probably ceased at ∼310 Ma, and these calc-alkaline and shoshonitic magmatic rocks in the Awulale mountain formed in a post-collisional setting subsequent to slab break-off.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号