首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
近30年南京市浅层地温场变化规律研究   总被引:6,自引:0,他引:6  
在收集南京市单一观测站点近50年气温资料和近30年浅层地温数据的基础上,对南京市地温变化趋势及其与气温变化的相关性进行了分析,对不同深度定时地温变化、日均地温伞年变化、地温日较差变化等进行了比较,同时也对地温变化对城市浅层土工程性质可能带来的影响进行了分析.结果表明:地温场与气温场变化规律基本一致,但存在一定的滞后现象;南京市月均地温变化规律基本相同,最高值出现在7,8月份,最低值出现在1,2月份;近30年来浅层地温场总体呈现上升趋势,其中地表上升最大值达2.8℃,0~20 cm土层温度变化幅度比较接近,上升最大值达2.0℃,40 cm处最大值达1.75℃;30年来地表最大温差高达84.5℃,40 cm深度最大地温差也超过27.5℃,因此多年地温变化对城市浅层土工程性质的影响不容忽视.  相似文献   

2.
1961-2015年山东省济宁市地温与气温变化的相关分析   总被引:2,自引:1,他引:1  
蔡鹏  李芳  王政权  赵娴 《冰川冻土》2016,38(6):1538-1543
土壤温度直接影响着作物的生长,在气候变暖的大背景下,研究地面浅层下温度的变化,对指导农业生产意义重大。利用1961-2015年济宁国家级气象站气温和0~20cm地温资料,采用气候倾向率、累积距平、信躁比、蒙特卡罗检验等统计方法,对气温和地温的年、季变化和气候突变及异常特征进行相关分析。结果表明:年、季平均气温和地温均呈极显著增温趋势,增幅为0.18~0.58℃·(10a)-1,地温增幅小于气温,地温春季增幅最大,气温冬季增幅最大。年平均地温与气温呈极显著正相关,相关系数均在0.87以上,其中20cm地温与气温的相关系数最大为0.93,5cm最小为0.87,春季最大,冬季最小。气温极值的变化与地表温度极值的变化相关性极为显著,平均最低值的相关系数最高。年平均气温和15cm、20cm平均地温在1986年、0cm平均地温在1993年发生了突变,突变前为冷期,突变后为暖期,自20世纪80年代末以来,气温与20cm地温的变化规律最为接近。四季中,气温与0cm地温的异常年份具有较好的一致性;春、夏、秋三季地温和气温分别在2014年、2013年、1998年异常偏高,冬季地温异常年份受气温异常的影响最小。  相似文献   

3.
西藏浅层地温对气候变暖的响应   总被引:9,自引:2,他引:7  
利用1971-2006年西藏13个站的0~20 cm浅层地温资料, 采用气候倾向率等现代统计诊断方法, 研究了近36 a来西藏年、季平均地温的变化趋势及气候突变. 结果表明: 西藏地表年平均地温绝大部分站点呈现显著的升高趋势, 升幅为0.26~0.91 ℃·(10a)-1, 以狮泉河升幅最大. 夏季10 cm平均地温, 改则以-0.28 ℃·(10a)-1的速率降低, 其它各站升幅为0.08~0.79 ℃·(10a)-1, 以江孜增温幅度最突出. 冬季10 cm平均地温除林芝变化趋势不大外, 其它各站均呈现显著的升温趋势. 就西藏平均而言, 年、季平均浅层地温表现为显著的升高趋势, 其中冬季增幅最大, 夏季最小. 绝大部分站点年、季浅层平均地温较同时期的平均气温增温幅度更明显, 年平均地温呈逐年代升高趋势, 20世纪70年代偏低, 90年代偏高. 昌都地区北部、林芝地区、泽当和日喀则年、季浅层地温从未发生突变, 其它大部分站点浅层年平均地温突变时间都发生在20世纪80年代中后期.  相似文献   

4.
ENSO对青藏铁路沿线气温和地温的影响及其预测   总被引:3,自引:2,他引:1  
董安祥  李栋梁  郭慧 《冰川冻土》2004,26(6):772-778
研究了天文因素对近500 a来厄尔尼诺事件的影响, 分析了近50 a来ENSO事件与青藏铁路沿线气温地温的关系. 结果表明: 年平均气温和年平均最高气温, 春季平均最高气温、夏季平均最低气温和秋季平均最低气温, 在El Nio年偏低; 而在La Nia年则偏高. 0 cm年平均最低地温、秋季平均最低地温和冬季平均最低地温, 在El Nio年偏低; 而在La Nia年则偏高. ENSO事件对从5 cm及其以下的地温没有明显影响. 厄尔尼诺事件有准60 a和准19 a周期, 其可能是对天体运动的响应.  相似文献   

5.
王萍  赵慧颖  闫平  朱海霞  翟墨  李秀芬 《冰川冻土》2021,43(6):1764-1772
黑龙江省春季土壤冻融剧烈,土壤湿度和温度受土壤冻融影响较大,利用黑龙江省64个气象观测站1961—2018年的逐日最高气温、最低气温、平均气温、降水量、地温资料及34个农气观测站人工观测的1981—2018年的土壤湿度资料,分析土壤冻结期间的气象要素变化,研究春季土壤冻融过程中湿度和温度的变化。结果表明:土壤冻结期从北向南缩短,且逐年缩短,冻结期平均气温从北向南升高,逐年上升,降水量西部少、东部和北部多,逐年增加;春季冻融次数平原少、山区多,逐年减少。春季融雪开始日期由北向南提前,并且呈现逐年提前的趋势,融雪期升温速率北部、东部低,中部、南部高;在春季冻融过程中,土壤湿度随着土壤深度的增加而增多,东部土壤湿度受土壤融冻影响最大;在整个冬季土壤冻结期间,北部、中部及东部土壤湿度是增加的,且随着土壤深度的增加,土壤湿度增加的越多,而西部土壤湿度是减少的,且随着土壤深度的增加,土壤湿度减少的越少;春季土壤冻融期间,0 cm平均地温全省平均在-17.3~22.1 ℃之间,南部与全省变化趋势基本一致,升温趋势明显,而北部升温速度明显慢于南部。  相似文献   

6.
赵雯颉  鞠琴  张译尹  王玥  周超  胡永胜  曹青 《水文》2023,43(1):102-107
基于五道沟水文实验站1964—2020年长系列气象和地温观测资料,采用线性趋势回归方法,开展了近57年汛期、非汛期、年三个不同时间尺度和浅层、中层、深层不同深度地温变化特征研究,并分析了地温与气温和降水变化的响应关系。结果表明:(1)近57年,年尺度,浅层及中层呈上升趋势,深层地温变化不大。汛期浅、中、深各层地温以0.12~0.17℃/10 a的速率减小;非汛期以0.07~0.29℃/10 a的速率增加。年代变化,浅层及中层地温呈先下降后上升趋势,深层地温变幅较小,呈现先上升后下降再上升。(2)年尺度及非汛期,各层地温与气温呈显著及低度正相关,与降水呈弱负相关,汛期与气温呈显著负相关,与降水呈低度相关。浅层20 cm地温与气温相关性最强,5 cm地温与降水相关性最强,地温与气温及降水的相关程度汛期均大于非汛期,同期均有浅层>中层>深层。  相似文献   

7.
以辽宁省为例,采用统计分析方法,根据辽宁省61个气象站1951-2013年0~320 cm地温资料,分析了季节性冻土区地温场结构和变化特征。结果表明:地温最冷月出现时间随着深度增加而推后,辽宁各地浅层地温最冷月基本均为1月,深层地温最冷月为1-5月,深度越深温度越高。地温最热月出现时间也随深度增加而推后,浅层地温最热月为7、8月,深层地温最热月为8-10月,深度越深温度越低。越深层地温受地表影响越小,320 cm深度与地表的月平均最大温差达到19℃左右,40 cm深度与地表的月平均最大温差仅在8℃左右。随着深度增加,地温的季节变化减小,沈阳320 cm深度地温年内温差不足8℃。5~80 cm深度3-8月为储能期,160 cm深度5-9月为储能期,320 cm深度6-10月为储能期。越接近地表,地温日变化越显著,40 cm以下深度基本可以忽略日变化。沈阳地温升高程度大于气温,以向大气输送热量为主。地表最冷月变暖率明显大于最热月,但随着土层加深各土层最冷月、最热月变暖的程度无明显规律。深层地温的年际变化有时会受到更深层热源的非气候扰动。地温变化对气候、冻土区域工程等的影响不容忽视。  相似文献   

8.
1981-2010年三江平原40~320cm深地温变化特征   总被引:4,自引:3,他引:1  
利用1981-2010年黑龙江佳木斯气象站40~320cm逐月平均地温观测资料,研究了三江平原地温变化规律、气候突变、异常年份及冻融特征等.结果表明:40~320cm年平均地温呈极显著升温趋势,升幅为0.496~0.574℃.(10a)-1,其中夏季升幅最大;月平均地温呈波形变化,振幅随深度增加而减小;1月随着深度的增加地温逐渐增大,7月地温随深度增加而减小,维持正梯度.除秋季40cm和80cm,冬季320cm平均地温变化相对平稳,未出现地温突变现象,其他各层年、季平均地温均发生了突变;40cm和80cm年平均地温在1981年出现了异常偏冷,320cm年平均地温在20世纪90年代末出现了异常偏冷,40cm和160cm年平均地温在2004年出现了异常偏暖;80cm土壤较40cm冻融时间出现晚,冻结期缩短18d左右,土壤的冻结过程比消融过程要快.  相似文献   

9.
全球土壤湿度的记忆性及其气候效应   总被引:7,自引:1,他引:6  
利用1948-2010年全球GPCC月平均降水,GHCN_CAMS月平均气温资料,GLDAS-NOAH月平均、3h土壤湿度和降水资料以及观测资料,分析了土壤湿度与降水和气温之间的关系。结果表明:全球土壤湿度记忆性的时间尺度在20~110d不等,干旱地区浅层(0~10cm)土壤湿度记忆性较短,中深层(10~200cm)较长,湿润区及高山地区土壤湿度记忆性均较长,北半球春季土壤湿度记忆性最长,南半球夏季土壤湿度记忆性最长;降水和气温对同期土壤湿度在不同地区的作用不同,北半球夏、秋季降水是土壤湿度的主要来源,除非洲干旱区以外的中低纬度地区及南半球,土壤湿度随降水的增加而增加,随气温的升高而减小;浅层土壤湿度受同期降水和气温的影响最为显著;前期降水和气温对土壤湿度的影响存在着较大的空间差异,北半球中高纬度地区,当年的夏、秋季降水是次年春季土壤湿度的主要来源,中层土壤(10~100cm)是降水的主要存储层。浅层土壤受外界影响较大,对前期气候信息的存贮有限。中低纬度地区及南半球,中深层土壤更多地是存储前一个季节的气温和降水信息,对跨季节气候信息的存储并不明显;低纬度地区春季土壤湿度的增加可能有利于后期降水的增多,高纬度地区春季土壤湿度的增加可能使后期降水减少,在季节尺度上中层土壤湿度对后期的降水影响较明显,在月至日尺度上浅层土壤湿度对后期降水的影响更重要;春季干旱区尤其是中层土壤湿度的增加可能有利于夏季气温的降低。  相似文献   

10.
新疆冬春季积雪及温度对冻土深度的影响分析   总被引:5,自引:3,他引:2  
利用新疆64个气象台站1960-2010年的气象资料,分析了新疆50 a来冻土深度的变化趋势,并讨论了温度(平均地温、平均气温)、降水(冬春季年降水、平均积雪深度)与冻土深度(平均冻土深度、最大冻土深度)的相关关系. 结果表明:以10 a时段的年代际变化分析,新疆50 a来平均冻土深度和最大冻土深度均呈明显减小趋势. 50 a来平均冻土深度全疆、北疆、南疆分别减小了约7 cm、10 cm、4 cm,最大冻土深度则分别减小了约11 cm、16 cm、9 cm. 新疆50 a来平均气温和平均地温均呈波动上升趋势,且与冻土深度均有着良好的相关性,其与平均冻土深度的相关系数分别达到了-0.67、-0.77,与最大冻土深度的相关系数也分别达到了-0.51、-0.65,地温与气温的上升对应着冻土深度的减小. 新疆冬春季年降水与冻土深度有着较好的相关性,其与平均冻土深度、最大冻土深度的相关系数分别达到了-0.40、-0.37. 新疆的平均积雪深度与冻土深度也有着一定的弱相关,其原因与积雪对地面的保温作用有关.  相似文献   

11.
季节冻土区黑土耕层土壤冻融过程及水分变化   总被引:6,自引:2,他引:4  
利用黑龙江省水利科学研究院水利试验研究中心综合实验观测场2011年11月-2012年4月整个冻结融化期的实测野外黑土耕层土壤温度和水分数据, 对中-深季节冻土区黑土耕层土壤冻融过程中冻结和融化特征分阴、阳坡进行了分析, 研究了冻融过程中不同深度土壤水分的变化情况, 并探讨了降水对不同深度耕层土壤含水量变化的影响. 结果表明:黑土耕层土壤冻结融化过程分为5个阶段, 历时164 d, 约5.5个月. 阶段I, 秋末冬初黑土耕层土壤开始步入冻结期; 阶段II, 黑土耕层土壤整日处于冻结状态, 阴坡比同样深度的阳坡土壤温度低; 阶段III为黑土耕层土壤稳定冻结期; 阶段IV, 黑土耕层土壤步入昼融夜冻的日循环交替状态, 冻融循环的土层逐渐向深部发展, 阳坡比阴坡融化得更深、更早, 阴坡比阳坡经历冻融循环次数更多; 阶段V为稳定融化期, 在融化过程不存在冻融交替的现象, 直到整个冻层内的土壤全部消融. 各深度位置阴坡土壤温度的最高值出现时间比阳坡晚约0.5 h. 经过整个冻结融化期后, 阴、阳坡各层土壤含水量均大于冻结前, 阴坡土壤含水量比阳坡整体偏低. 在整个冻结融化期, 阳坡地下1 cm、5 cm、10 cm 及15 cm处含水量最大值出现在地下5 cm; 阴坡的含水量整体趋于平稳且在融化期受降水影响明显.  相似文献   

12.
藏北高原D105点土壤冻融状况与温湿特征分析   总被引:6,自引:3,他引:3  
利用CAMP/Tibet在藏北高原D105点所观测的2002年1月1日-2005年12月31日土壤温度、含水量资料, 分析了该点的土壤温、湿度变化及其冻融特征. 结果表明: D105点40 cm深度以上土壤温度日变化明显, 随着深度增加, 土壤温度日变化相位明显滞后. 各层土壤温度月最高值出现在8-9月, 月最低值都出现在1-2月; 年际气候的差异至少可以反映到185 cm深处的土壤. 土壤冻结和消融都是由表层开始, 土壤随深度增加冻结快, 消融则慢. 冻结期间, 土壤温度分布上部低, 下部高; 消融期间, 则分布相反. 60 cm深度以上的土壤含水量在消融期有显著的波动, 表明60 cm深度以上的土壤与大气之间的水热交换比较频繁. 土壤温度的日变化和平均温度对土壤的冻融过程有较大的影响; 土壤含水量的多少会极大的影响土壤的冻融过程、土壤热量的分布状况以及地表能量的分配. 因此水(湿度)热(温度)相互耦合影响着土壤的冻融过程.  相似文献   

13.
龚强  晁华  朱玲  蔺娜  于秀晶  刘春生  汪宏宇 《冰川冻土》2021,43(6):1782-1793
根据东北地区144个国家气象站1951—2016年的地温和土壤冻结深度资料,采用实测资料统计及统计建模推算的方法,对东北地区地温和冻结深度时空特征进行了细化分析。结果表明:东北地区地温整体由南到北逐渐降低,冻结深度逐渐增大。各层年平均地温呈向北2个纬度降低1 ℃左右,年平均最大冻结深度为向北2~3个纬度加深30 cm左右,极端最大冻结深度为向北2个纬度加深30 cm左右。地温和冻结深度与纬度关系显著,与经度和海拔也有一定相关性,但在东北北部的多年冻土区基本不受后两者影响。不同深度的地温季节特征不同,地表温度季节特征与气温一致,160 cm以下深度四季温度从高到低为秋、夏、冬、春。地表夏季与冬季温差达到33.5 ℃,而320 cm深处最热季与最冷季的温差仅为7 ℃。气候变暖使得东北地区各层地温升高、冻结深度减小、冻结期缩短,尤其在多年冻土区及其临近的高纬度季节冻土区更为显著。相对于下层土壤,地表升温最大。伊春地表升温趋势达到1.16 ℃?(10a)-1,40~320 cm土层升温趋势为0.60 ℃?(10a)-1左右,冻结深度减小、冻结期缩短趋势分别达到 23 cm?(10a)-1、8 d?(10a)-1,大幅升温不利于多年冻土的存在。  相似文献   

14.
利用1971—2016年辽宁省61个气象站气温、地表温度、积雪日数和积雪深度资料,分析了积雪的保温作用及其对地气温差的影响。结果表明:更换自动站前后地表温度观测方式的差异导致地气温差显著增大,地气温差的增大程度受所在区域积雪日数、积雪深度的影响显著。在积雪期较长、积雪较厚的地区,积雪引起反照率增大,使得雪面温度降低,导致雪气温差减小,而雪的保温作用使得地气温差显著增大。因此,更换自动站前地(雪)气温差与积雪日数呈显著负相关,而更换自动站后地气温差与积雪日数呈显著正相关。各台站之间地气温差随积雪深度的变化系数差异较大,为0.045~0.858 ℃?cm-1,在年平均积雪日数<40 d、年平均极端积雪深度<10 cm的区域,积雪的保温作用随积雪深度增大而显著增大;在年平均积雪日数>40 d、年平均极端积雪深度>10 cm的区域,10 cm以下的积雪对土壤保温作用随积雪深度增大显著,当积雪深度>10 cm后,其保温作用随积雪深度增大的幅度明显减小。  相似文献   

15.
海北高寒草甸的季节冻土及在植被生产力形成过程中的作用   总被引:22,自引:7,他引:15  
海北高寒矮嵩草草甸区植被下的草毡寒冻雏形土属季节性冻土,因温度低,冻土在年内的每个月均可发生.一般在11月中旬可形成稳定的季节冻结层,至翌年3~4月冻土层厚度最大可达230cm.从3月下旬到4月中旬开始,土壤开始消融,至6月下旬到7月上旬冻土全部消失.分析发现,季节冻土在高寒草甸植被生产力形成过程中有着积极的影响作用,主要表现在:1)季节冻土的存在和维持将给高寒植物生长提供良好的土壤水分,对植物初期营养生长发育有利,可弥补春夏之交时降水不足所引起的干旱胁迫影响;2)季节冻土的长时间维持,有利于植物残体和土壤有机质留存于土壤,并随土壤冻结和融化过程发生迁移,可提高土壤肥力;3)较高的土壤水分有利于土壤胡敏酸的形成,可保证植物生长所需的其它有机元素的供给;4)冻土层所形成较高的土壤水分使土体热容量加大,从而调节因气候异常波动引起的土壤温度变化;5)季节冻土的变化对植物地上年生产量形成有一定的影响作用,表现出从10月或11月开始,土壤冻结速率快,对提高植物地上年生产量有利.这也证实,在未来气候变暖的趋势下,土壤有机质将加快分解速度,土壤水分因受温度升高、冻结期缩短,其贮存能力降低;受温度升高的影响,地表蒸发能力加大,若降水仍保持目前的水平,土壤水分将明显减少,将导致高寒草甸植被生产力有下降的可能.  相似文献   

16.
堤坝稳定性是评价冰湖溃决危险性的重要指标, 而堤坝的温度特征与其稳定性密切相关. 基于2012年11月-2013年9月对西藏定结县龙巴萨巴湖冰碛坝的0~150 cm不同深度的温度观测数据, 分析冰碛坝地温变化特征及其影响. 结果显示: 冰碛坝表层(<20 cm)地温与气温变化一致, 温度日变化常出现白天为正温梯度而夜间为负温度梯度的特征, 全年日均梯度一般为负温梯度(上部温度高、下部温度低); 中层(20~100 cm)和深层(>100 cm)表现为冬季下层温度高于上层温度的正温梯度, 夏季下层温度低于上层的负温梯度逐渐加强, 但地温日变幅逐渐减弱; 中间层地温变化不到气温变化幅度的1/5~1/10; 深层地温无明显的日变化. 冰碛坝的消融率约为2.1 cm·d-1, 夏季消融深度超过250 cm. 现有夏季消融深度对堤坝的稳定影响有限, 但是湖盆区如果持续升温, 冰碛坝冻土的年消融率和消融深度都将增大, 致使堤坝稳定性下降, 溃决风险增大.  相似文献   

17.
In this study, the vegetation dynamics in Heilongjiang province and their relationships with climate variability were assessed using normalized difference vegetation index (NDVI) and meteorological datasets from 1981 to 2003. The conclusions from our results are as follows: (1) After 1981, vegetation cover, as indicated by the NDVI, exhibited an insignificant increasing tendency. However, the inter-annual variations of the NDVI showed apparent spatial differentiations. (2) The inter-annual changes of the NDVI were different from season to season. The spring and autumn NDVI values increased, while the summer and winter NDVI decreased. (3) The annual NDVI was significantly correlated with precipitation. Thus, as compared to temperature, precipitation was the dominant climatic factor affecting the vegetation dynamics in Heilongjiang province. (4) The trend in the NDVI showed a marked homogeneity corresponding to regional and seasonal variations in climate. Additionally, land use changes also play an important role in influencing the NDVI trends over some regions. All of these findings will enrich our knowledge of the natural forces that impact the stability of boreal ecosystems and provide a scientific basis for the environmental management in Heilongjiang province in response to climate change and human activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号