首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
滇西潞西地区位于青藏高原东南缘,大地构造位置上属于保山地体。由于新生代强烈的陆内变形作用,保山地体与青藏高原腹地体的对应关系难以确定。野外观察及LA-ICP-MS锆石U-Pb测年结果表明,潞西新元古代—早古生代地层(震旦系—寒武系蒲满哨群及下奥陶统大矿山组)大部分碎屑锆石Th/U0.1,说明其大多为岩浆成因。U-Pb年龄跨度较大,太古宙—早古生代都有分布,且具有明显的562Ma、892Ma及2265Ma年龄峰,以及较弱的1680Ma和2550Ma年龄峰。保山地体潞西地区沉积岩碎屑锆石年龄分布特征与特提斯喜马拉雅、南羌塘沉积地层碎屑锆石年龄分布特征相似,说明其具有相同的物源——冈瓦纳大陆北部的印度大陆。在新元古代晚期—早古生代,保山地体位于印度大陆北缘,与南羌塘、喜马拉雅地体相邻。伴随着俯冲相关的增生造山过程,保山地体形成相应的新元古代末期—早古生代沉积地层。  相似文献   

2.
青藏高原的成因与形成过程一直是全球地质学家争议的焦点。为了约束青藏高原腹地晚中生代的构造隆升运动。本文在青藏高原中部的羌塘盆地内三个地区采集了14件锆石裂变径迹测年样品,并进行了系统测年分析。结果显示,羌塘盆地在早白垩世(148Ma^94Ma)发生了强烈的构造运动。由于新特提斯洋向拉萨地块之下不断消减挤压,羌资盆地与拉萨地块之间发生了重要的板块碰撞,从而使羌塘盆地在28Ma^48Ma的时间间隔内发生了快速的隆升运动,岩石迅速从~300℃冷却到~180℃以下,降温幅度达120℃。快速的构造隆升使得羌塘盆地的古海拔迅速增大,进而可能形成一个以南羌塘为核部,地貌向南、北逐渐降低的原始高原。原始高原的出现使得南羌塘地区成为剥蚀区,为拉萨地块内的萎缩海盆提供物源供给。羌塘盆地晚白垩世(89Ma^73Ma)的构造隆升很有限,但此次构造隆升可能在拉萨地块内比较显著,从而导致了拉萨地块内海相沉积的结束和大量陆相粗碎屑沉积的开始,并且可能使原始高原的范围不断扩大,甚至延伸到整个拉萨地块。  相似文献   

3.
包创  陈岳龙  步小飞  陈雪  李大鹏 《地质通报》2015,34(8):1413-1425
采用LA-MC-ICP-MS测定技术,对怒江河流沉积物中的碎屑锆石进行了U-Pb和Lu-Hf同位素测定。结果显示,碎屑锆石U-Pb年龄可分为6个组段:50~74Ma、84~235Ma、275~413Ma、451~569Ma、657~1429Ma和1602~3436Ma,其中最主要的年龄组段为50~74Ma和84~235Ma。50~74Ma的年龄段为新特提斯洋从俯冲到碰撞闭合的阶段,约65Ma的年龄峰值可能是印度大陆与欧亚大陆主体碰撞的远程地质记录。84~235Ma年龄段代表了中特提斯洋演化阶段,年龄峰值约为110Ma,可能指示羌塘地块与拉萨地块的碰撞拼接此时已经完成,通过U-Pb年龄分布对比,羌塘地块几乎没有给怒江河流沉积物提供物质。怒江河流沉积物中碎屑锆石的εHf(t)值介于-18.7~+11.7之间,模式年龄分布于0.65~4.05Ga之间,其中中生代碎屑锆石的εHf(t)值分布于-16.4~+2.9之间,与中拉萨地块有密切的亲缘性,同时含有少量北拉萨地块的特征。因此,怒江河流沉积物代表了中拉萨地块与北拉萨地块的特征。  相似文献   

4.
青藏高原的成因与形成过程一直是全球地质学家争议的焦点。为了约束青藏高原腹地晚中生代的构造隆升运动。本文在青藏高原中部的羌塘盆地内三个地区采集了14件锆石裂变径迹测年样品,并进行了系统测年分析。结果显示,羌塘盆地在早白垩世(148Ma~94Ma)发生了强烈的构造运动。由于新特提斯洋向拉萨地块之下不断消减挤压,羌资盆地与拉萨地块之间发生了重要的板块碰撞,从而使羌塘盆地在28Ma~48Ma的时间间隔内发生了快速的隆升运动,岩石迅速从~300℃冷却到~180℃以下,降温幅度达120℃。快速的构造隆升使得羌塘盆地的古海拔迅速增大,进而可能形成一个以南羌塘为核部,地貌向南、北逐渐降低的原始高原。原始高原的出现使得南羌塘地区成为剥蚀区,为拉萨地块内的萎缩海盆提供物源供给。羌塘盆地晚白垩世(89Ma~73Ma)的构造隆升很有限,但此次构造隆升可能在拉萨地块内比较显著,从而导致了拉萨地块内海相沉积的结束和大量陆相粗碎屑沉积的开始,并且可能使原始高原的范围不断扩大,甚至延伸到整个拉萨地块。  相似文献   

5.
仲巴微地体夹持在拉萨地块和特提斯喜马拉雅之间,两侧均被蛇绿混杂岩带所围限,是雅鲁藏布江西段重要的地质单元。揭示其构造亲缘性对于探讨新特提斯洋构造演化和青藏高原多地体拼合过程具有重要意义。仲巴微地体中段马攸木地区较好地出露一套志留系—石炭系沉积地层,其中志留系为片理化钙质片岩、大理岩夹砂岩,泥盆系为一套片理化的结晶灰岩夹钙质片岩,石炭系为一套砂岩、粉砂岩夹钙质片岩的碎屑岩组合。碎屑锆石年代学数据表明,志留系、泥盆系和石炭系均表现出约530 Ma和950 Ma的特征年龄峰值,年龄分布样式与西羌塘地体和喜马拉雅地体具有高度的相似性,缺乏拉萨地体以约1 170 Ma的特征的年龄峰值。结合区域地层对比,认为在志留纪—石炭纪,仲巴微地体具有明显的喜马拉雅亲缘性,其构造位置临近印度大陆北缘,是西羌塘—大印度—特提斯喜马拉雅构造体系的一部分。  相似文献   

6.
杨洋  刘函  崔浩杰  李俊  苟正彬  胡志忠 《地质通报》2019,38(6):1006-1017
晚古生代是拉萨地块地质演化的重要转折期,一些关键地质问题存在争论,如拉萨地块来源问题。选择西藏措勤地区上石炭统永珠组为研究对象,石英砂岩中碎屑锆石U-Pb测年数据显示523Ma、920Ma两个年龄峰值。通过与拉萨地块及其周缘晚石炭世冰期之前地层碎屑锆石对比,认为拉萨地块永珠组920Ma年龄峰值更具有冈瓦纳大陆靠印度一侧的物源特征,其与南羌塘、拉萨、喜马拉雅微陆块在裂离之前具有显著的亲缘关系。而含有冰筏碎屑的拉嘎组和来姑组中包含的西澳大利亚物源信息(约1180Ma年龄峰值),暗示来自西澳大利亚的冰筏可能通过洋流作用漂移至拉萨地块而后沉积冰筏碎屑。  相似文献   

7.
印度-亚洲碰撞:从挤压到走滑的构造转换   总被引:10,自引:0,他引:10       下载免费PDF全文
印度-亚洲板块碰撞导致喜马拉雅山脉的崛起、青藏高原的生长、两倍于正常地壳厚度的巨厚陆壳体,以及大量青藏高原腹地的物质沿着大型走滑断裂朝东、东南、西的方向逃逸。印度-亚洲碰撞如何造成板块汇聚边界由挤压到走滑的构造转换对认识大陆岩石圈的变形机制具有重要意义。本文通过总结喜马拉雅造山带及青藏东南缘~55Ma以来的构造、变质、岩浆记录,发现高喜马拉雅的挤出起始于始新世加厚的喜马拉雅造山带中—下地壳的部分熔融,受控于渐新世以来同期发育的向南逆冲和平行造山带的韧性伸展,并建立了高喜马拉雅"三维挤出"构造模式。晚始新世以来,羌塘地块和拉萨地块的物质通过"岩石圈横弯褶皱和壳内解耦"的运动学机制,围绕东构造结发生顺时针旋转并向青藏高原东南缘逃逸。结合东南亚板块重建的资料,我们认为:印度-亚洲的"陆-陆碰撞"到印度洋板块-亚洲东南大陆的"洋-陆俯冲"的转换是导致从印度-亚洲主碰撞带的挤压到青藏东南缘走滑转换的根本原因。  相似文献   

8.
富含继承锆石的过铝质花岗岩一般来源于富铝质岩石(如变泥质岩)的部分熔融,因而分析这些继承锆石的U-Pb年龄可以像分析沉积岩碎屑锆石的U-Pb年龄一样,提供过铝质花岗岩源区物质中碎屑沉积物物源区的丰富信息。本文报道了中部拉萨地块早侏罗世过铝质花岗岩的全岩地球化学和锆石U-Pb年代学数据,结合拉萨地块已有二叠纪和晚三叠世过铝质花岗岩的继承锆石年代学数据,总结了目前已有的拉萨地块过铝质花岗岩的继承锆石U-Pb年龄特征(共199个谐和测点)。这些过铝质花岗岩属强过铝质S型花岗岩,其中的继承锆石定义了1250~1100Ma(峰值1181±14Ma)和550~450Ma(峰值494±7Ma)2个最突出的年龄群,分别可比于拉萨地块古生代沉积岩的碎屑锆石年龄峰值(约1170Ma)和寒武纪火山岩的侵位时代,明显不同于西羌塘、安多和特提斯喜马拉雅新元古代-古生代沉积岩中的碎屑锆石年龄频谱。拉萨地块过铝质花岗岩中约1181Ma的继承锆石,可能与拉萨地块古生代沉积岩中的同期碎屑锆石一样,都来自澳大利亚南西部Albany-Fraser造山带和东南极Wilkes等地,而约494的继承锆石,既可能来自澳大利亚西部,也可能来自拉萨地块本地。本文提供了拉萨地块与澳大利亚大陆北缘具有古地理联系的过铝质花岗岩继承锆石U-Pb年龄证据。拉萨地块的研究实践表明,采用过铝质花岗岩继承锆石和古生代沉积岩碎屑锆石相结合的锆石U-Pb年代学方法,可为重建冈瓦纳大陆北缘其它微陆块的古地理和构造岩浆演化提供重要约束。  相似文献   

9.
青藏高原东南缘滇西早古生代早期造山事件   总被引:22,自引:10,他引:12  
野外观察、LA-ICP-MS锆石U-Pb测年和Hf同位素分析结果表明:青藏高原东南缘滇西芒市地区存在奥陶系底砾岩与前寒武-寒武系之间的地层不整合;龙江眼球状片麻岩锆石边部U-Pb年龄约为502 ~ 518Ma,代表原岩花岗岩结晶时代;继承性锆石核部具有与拉萨地体相似的年龄谱,说明早古生代早期腾冲地体与拉萨地体属于统一陆块;锆石边部具有负的、变化范围较大的εHf(t)值(-15.7 ~-2.0),结合眼球状片麻岩野外、岩相学特征及区域构造背景说明原岩花岗岩来源于古老地壳部分熔融,并伴随不同程度幔源物质的注入,可能为岩浆弧的一部分.综合野外观察及锆石同位素研究结果,明确了青藏高原东南缘存在早古生代早期造山事件.与喜马拉雅、拉萨、羌塘等地体的同一时代构造事件对比,认为青藏高原东南缘滇西地区早古生代早期造山带为形成在冈瓦纳大陆北缘的安第斯型造山带的一部分,为认识冈瓦纳大陆北缘早古生代演化提供新的证据.  相似文献   

10.
藏北商旭金矿床的碎屑锆石U-Pb年龄及其地质意义   总被引:2,自引:0,他引:2  
商旭金矿床处于班公湖—怒江缝合带中段南侧,位于藏北双湖县境内,是班公湖—怒江缝合带已发现的一例造山型金矿。本文选择该矿床木嘎岗日群(J1-2M)的变质砂岩进行碎屑锆石U-Pb定年研究,以期获得碎屑沉积物物源区的丰富信息。随机选取114颗锆石进行分析,可知:(1)锆石颗粒大小在80~150μm之间,绝大多数锆石颗粒的Th/U比值0.4;(2)年龄分布范围在223~2 615 Ma之间,年龄峰值分别为280 Ma、451 Ma、908 Ma、1 900 Ma和2 430 Ma。将商旭矿区碎屑锆石U-Pb年龄谱图分别与拉萨地块、羌塘地块沉积岩的碎屑锆石年龄谱图对比分析,获得如下初步结论:该区的沉积物的最大沉积年龄为223 Ma,峰值为908 Ma的年龄群,可比于南羌塘沉积岩的碎屑锆石年龄峰值(~950 Ma),明显不同于拉萨地块沉积岩的碎屑锆石年龄峰值(~1 170 Ma)。综合分析表明,该区的沉积物可能为班公湖—怒江洋残余洋盆的产物,暗示班公湖—怒江洋壳在中生代存在北向俯冲。  相似文献   

11.
Early Cenozoic Tectonics of the Tibetan Plateau   总被引:1,自引:0,他引:1  
Geological mapping at a scale of 1:250000 coupled with related researches in recent years reveal well Early Cenozoic paleo-tectonic evolution of the Tibetan Plateau. Marine deposits and foraminifera assemblages indicate that the Tethys-Himalaya Ocean and the Southwest Tarim Sea existed in the south and north of the Tibetan Plateau, respectively, in Paleocene-Eocene. The paleooceanic plate between the Indian continental plate and the Lhasa block had been as wide as 900km at beginning of the Cenozoic Era. Late Paleocene transgressions of the paleo-sea led to the formation of paleo-bays in the southern Lhasa block. Northward subduction of the Tethys-Himalaya Oceanic Plate caused magma emplacement and volcanic eruptions of the Linzizong Group in 64.5-44.3 Ma, which formed the Paleocene-Eocene Gangdise Magmatic Arc in the north of Yalung-Zangbu Suture (YZS), accompanied by intensive thrust in the Lhasa, Qiangtang, Hoh Xil and Kunlun blocks. The Paleocene-Eocene depression of basins reached to a depth of 3500-4800 m along major thrust faults and 680-850 m along the boundary normal faults in central Tibetan Plateau, and the Paleocene-Eocene depression of the Tarim and Qaidam basins without evident contractions were only as deep as 300-580 m and 600-830 m, respectively, far away from central Tibetan Plateau. Low elevation plains formed in the southern continental margin of the Tethy-Himalaya Ocean, the central Tibet and the Tarim basin in Paleocene-Early Eocene. The Tibetan Plateau and Himalaya Mts. mainly uplifted after the Indian-Eurasian continental collision in Early-Middle Eocene.  相似文献   

12.
中国大陆构造及动力学若干问题的认识   总被引:17,自引:2,他引:15  
中国(东亚)大陆受特提斯、古亚洲和太平洋构造体系的制约,具有复杂的地体构架和特殊的岩石圈结构。本文从地学前沿——大陆动力学的视野出发,围绕中国大陆构造及动力学四个方面的研究,总结已有的进展并提出新的思考:①中国大陆板块下的构造和整个地幔运动的构架:地震层析资料揭示西太平洋板片向西俯冲到东亚大陆之下,其倾角逐渐减小,最后近水平地插进400~600km深度的地幔过渡带中,成为箕状几何形态的超深俯冲板片。印度岩石圈板片超深俯冲至青藏高原之下~800km的深度,在喜马拉雅西构造结部位发生双向不对称深俯冲,印度岩石圈板片向东俯冲至东构造结东侧之下300~500km的深度。②中国大陆变质基底的再活化:中国大陆的大部分陆块未受显生宙以来构造、变质和岩浆事件的改造与激活,在冈瓦纳大陆北缘的印度陆块和阿拉伯陆块北缘还发育有形成于泛非期(530~470Ma)的造山带,其影响范围至高喜马拉雅、拉萨地体和三江地区。新生代的变质活化普遍出现在喜马拉雅、南迦巴瓦、拉萨地体和三江-缅甸地区,最新的变质年龄仅2~1Ma(南迦巴瓦)。③中国主要高压-超高压变质带的大地构造背景及深俯冲-折返机制:中国及邻区含榴辉岩的高压-超高压(HP/UHP)变质带有洋壳(深)俯冲和陆壳(深)俯冲之分。青藏高原中,大部分洋壳俯冲形成的高压/超高压变质带与原-古特提斯洋盆中诸多微陆块之间的小洋盆的汇聚碰撞有关,陆壳深俯冲作用有两种机制,它们分别是大陆块之间剪式碰撞和撕裂式岩石圈舌形板片的深俯冲。④中国大陆造山带的深部物质可经3类机制挤出,即深部地壳物质"牙膏式"挤出、侧向挤出和"挤压转换式"挤出。  相似文献   

13.
The tectonic setting of Cretaceous granitoids in the southeastern Tibet Plateau, east of the Eastern Himalaya Syntax, is debated. Exploration and mining of the Laba Mo–Cu porphyry-type deposit in the area has revealed Late Cretaceous granites. New and previously published zircon U–Pb dating indicate that the Laba granite crystallized at 89–85 Ma. Bulk-rock geochemistry, Sr–Nd isotopic data and in situ zircon Hf isotopic data indicate that the granite is adakitic and was formed by partial melting of thickened lower crust. The Ca, Fe, and Al contents decrease with increasing SiO2 content.These and other geochemical characteristics indicate that fractional crystallization of garnet under high-pressure conditions resulted in the adakitic nature of the Laba granite. Cretaceous granitoids are widespread throughout the Tibetan Plateau including its southeastern area, forming an intact curved belt along the southern margin of Eurasia. This belt is curved due to indenting by the Indian continent during Cenozoic, but strikes parallel to both the Indus–Yarlung suture zone and the Main Frontal Thrust belt. It is therefore likely that Cretaceous granitoids in both the Gangdese and southeastern Tibetan Plateau areas resulted from subduction of Neo-Tethyan lithosphere.  相似文献   

14.
Tectonics and Topography of the Tibetan Plateau in Early Miocene   总被引:1,自引:0,他引:1  
Early Miocene stratigraphy, major structural systems, magmatic emplacement, volcanic eruption, vegetation change and paleo-elevation were analyzed for the Tibetan Plateau after regional geological mapping at a scale of 1:250,000 and related researches, revealing much more information for tectonic evolution and topographic change of the high plateau caused by Indian-Asian continental collision. Lacustrine deposits of dolostone, dolomite limestone, limestone, marl, sandstone and conglomerate of weak deformation formed extensively in the central Tibetan Plateau, indicating that vast lake complexes as large as 100,000–120,000 km2 existed in the central plateau during Early Miocene. Sporopollen assemblages contained in the lacustrine strata indicate the disappearance of most tropical-subtropical broad-leaved trees since Early Miocene and the flourishing of dark needleleaved trees during Early Miocene. Such vegetation changes adjusted for latitude and global climate variations demonstrate that the central Tibetan Plateau rose to ca. 4,000–4,500 m and the northeastern plateau uplifted to ca. 3,500–4,000 m before the Early Miocene. Intensive thrust and crustal thickening occurred in the areas surrounding central Tibetan Plateau in Early Miocene, formed Gangdise Thrust System(GTS) in the southern Lhasa block, Zedong-Renbu Thrust(ZRT) in the northern Himalaya block, Main Central Thrust(MCT) and Main Boundary Thrust(MBT) in the southern Himalaya block, and regional thrust systems in the Qaidam, Qilian, West Kunlun and Songpan-Ganzi blocks. Foreland basins formed in Early Miocene along major thrust systems, e.g. the Siwalik basin along MCT, Yalung-Zangbu Basin along GTS and ZRT, southwestern Tarim depression along West Kunlun Thrust, and large foreland basins along major thrust systems in the northeastern margin of the plateau. Intensive volcanic eruptions formed in the Qiangtang, Hoh-Xil and Kunlun blocks, porphyry granites and volcanic eruptions formed in the Nainqentanglha and Gangdise Mts., and leucogranites and granites formed in the Himalaya and Longmenshan Mts. in Early Miocene. The K2O weight percentages of Early Miocene magmatic rocks in the Gangdise and Himlayan Mts. are found to increase with distance from the MBT, indicating the genetic relationship between regional magmatism and subduction of Indian continental plate in Early Miocene.  相似文献   

15.
《Gondwana Research》2013,24(4):1429-1454
Different hypotheses have been proposed for the origin and pre-Cenozoic evolution of the Tibetan Plateau as a result of several collision events between a series of Gondwana-derived terranes (e.g., Qiangtang, Lhasa and India) and Asian continent since the early Paleozoic. This paper reviews and reevaluates these hypotheses in light of new data from Tibet including (1) the distribution of major tectonic boundaries and suture zones, (2) basement rocks and their sedimentary covers, (3) magmatic suites, and (4) detrital zircon constraints from Paleozoic metasedimentary rocks. The Western Qiangtang, Amdo, and Tethyan Himalaya terranes have the Indian Gondwana origin, whereas the Lhasa Terrane shows an Australian Gondwana affinity. The Cambrian magmatic record in the Lhasa Terrane resulted from the subduction of the proto-Tethyan Ocean lithosphere beneath the Australian Gondwana. The newly identified late Devonian granitoids in the southern margin of the Lhasa Terrane may represent an extensional magmatic event associated with its rifting, which ultimately resulted in the opening of the Songdo Tethyan Ocean. The Lhasa−northern Australia collision at ~ 263 Ma was likely responsible for the initiation of a southward-dipping subduction of the Bangong-Nujiang Tethyan Oceanic lithosphere. The Yarlung-Zangbo Tethyan Ocean opened as a back-arc basin in the late Triassic, leading to the separation of the Lhasa Terrane from northern Australia. The subsequent northward subduction of the Yarlung-Zangbo Tethyan Ocean lithosphere beneath the Lhasa Terrane may have been triggered by the Qiangtang–Lhasa collision in the earliest Cretaceous. The mafic dike swarms (ca. 284 Ma) in the Western Qiangtang originated from the Panjal plume activity that resulted in continental rifting and its separation from the northern Indian continent. The subsequent collision of the Western Qiangtang with the Eastern Qiangtang in the middle Triassic was followed by slab breakoff that led to the exhumation of the Qiangtang metamorphic rocks. This collision may have caused the northward subduction initiation of the Bangong-Nujiang Ocean lithosphere beneath the Western Qiangtang. Collision-related coeval igneous rocks occurring on both sides of the suture zone and the within-plate basalt affinity of associated mafic lithologies suggest slab breakoff-induced magmatism in a continent−continent collision zone. This zone may be the site of net continental crust growth, as exemplified by the Tibetan Plateau.  相似文献   

16.
青藏高原南部拉萨地体的变质作用与动力学   总被引:3,自引:0,他引:3  
董昕  张泽明  向华  贺振宇 《地球学报》2013,34(3):257-262
拉萨地体位于欧亚板块的最南缘,它在新生代与印度大陆的碰撞形成了青藏高原和喜马拉雅造山带。因此,拉萨地体是揭示青藏高原形成与演化历史的关键之一。拉萨地体中的中、高级变质岩以前被认为是拉萨地体的前寒武纪变质基底。但新近的研究表明,拉萨地体经历了多期和不同类型的变质作用,包括在洋壳俯冲构造体制下发生的新元古代和晚古生代高压变质作用,在陆-陆碰撞环境下发生的早古生代和早中生代中压型变质作用,在洋中脊俯冲过程中发生的晚白垩纪高温/中压变质作用,以及在大陆俯冲带上盘加厚大陆地壳深部发生的两期新生代中压型变质作用。这些变质作用和伴生的岩浆作用表明,拉萨地体经历了从新元古代至新生代的复杂演化过程。(1)北拉萨地体的结晶基底包括新元古代的洋壳岩石,它们很可能是在Rodinia超大陆裂解过程中形成的莫桑比克洋的残余。(2)随着莫桑比克洋的俯冲和东、西冈瓦纳大陆的汇聚,拉萨地体洋壳基底经历了晚新元古代的(~650Ma)的高压变质作用和早古代的(~485Ma)中压型变质作用。这很可能表明北拉萨地体起源于东非造山带的北端。(3)在古特提斯洋向冈瓦纳大陆北缘的俯冲过程中,拉萨地体和羌塘地体经历了中古生代的(~360Ma)岩浆作用。(4)古特提斯洋盆的闭合和南、北拉萨地体的碰撞,导致了晚二叠纪(~260Ma)高压变质带和三叠纪(~220Ma)中压变质带的形成。(5)在新特提斯洋中脊向北的俯冲过程中,拉萨地体经历了晚白垩纪(~90Ma)安第斯型造山作用,形成了高温/中压型变质带和高温的紫苏花岗岩。(6)在早新生代(55~45Ma),印度与欧亚板块的碰撞,导致拉萨地体地壳加厚,形成了中压角闪岩相变质作用和同碰撞岩浆作用。(7)在晚始新世(40~30Ma),随着大陆的继续汇聚,南拉萨地体经历了另一期角闪岩相至麻粒岩相变质作用和深熔作用。拉萨地体的构造演化过程是研究汇聚板块边缘变质作用与动力学的最佳实例。  相似文献   

17.
The Upper Triassic flysch sediments(Nieru Formation and Langjiexue Group)exposed in the Eastern Tethyan Himalayan Sequence are crucial for unraveling the controversial paleogeography and paleotectonics of the Himalayan orogen.This work reports new detrital zircon U-Pb ages and whole-rock geochemical data for clastic rocks from flysch strata in the Shannan area.The mineral modal composition data suggest that these units were mainly sourced from recycled orogen provenances.The chemical compositions of the sandstones in the strata are similar to the chemical composition of upper continental crust.These rocks have relatively low Chemical Index of Alteration values(with an average of 62)and Index of Compositional Variability values(0.69),indicating that they experienced weak weathering and were mainly derived from a mature source.The geochemical compositions of the Upper Triassic strata are similar to those of graywackes from continental island arcs and are indicative of an acidicintermediate igneous source.Furthermore,hornblende and feldspar experienced decomposition in the provenance,and the sediment became enriched in zircon and monazite during sediment transport.The detrital zircons in the strata feature two main age peaks at 225-275 Ma and 500-600 Ma,nearly continuous Paleoproterozoic to Neoproterozoic ages,and a broad inconspicuous cluster in the Tonian-Stenian(800-1200 Ma).The detrital zircons from the Upper Triassic sandstones in the study area lack peaks at 300-325 Ma(characteristic of the Lhasa block)and 1150-1200 Ma(characteristic of the Lhasa and West Australia blocks).Therefore,neither the Lhasa block nor the West Australia blocks likely acted as the main provenance of the Upper Triassic strata.Newly discovered Permian-Triassic basalt and mafic dikes in the Himalayas could have provided the 225-275 Ma detrital zircons.Therefore,Indian and Himalayan units were the main provenances of the flysch strata.The Tethyan Himalaya was part of the northern passive margin and was not an exotic terrane separated from India during the Permian to Early Cretaceous.This evidence suggests that the Neo-Tethyan ocean opened prior to the Late Triassic and that the Upper Triassic deposits were derived from continental crustal fragments adjacent to the northern passive continental margin of Greater India.  相似文献   

18.
《Gondwana Research》2016,29(4):1530-1542
In this study, we conducted profile measurements, gravel composition analyses, and U–Pb dating on detrital zircons from a representative glacial marine diamictite in the Gangmaco–Dabure area of the Southern Qiangtang–Baoshan block, Tibetan Plateau. We conclude that the diamictite was formed in a glacial marine environment from the outer edge of the continental shelf to the continental slope and deep sea, in what is now the Southern Qiangtang–Baoshan block. Four distinct glacial–interglacial cycles were identified in the diamictite, which record a minimum of four stages of Gondwana glaciation in the area of the Southern Qiangtang–Baoshan block. Combined with regional geological information, we also conclude that during the Carboniferous–Permian, sediments containing the glacial marine diamictite derived from Gondwana, in the region extending from India to the Tethys Himalaya area, and Lhasa and Southern Qiangtang–Baoshan blocks, recorded the transition from continental, neritic to abyssal environments. Gravel assemblages and U–Pb dating of detrital zircons in the glacial marine diamictite indicate that the provenance of the diamictite was Indian Gondwana. We infer that during the Late Paleozoic, the northern margin of the Indian Gondwana continued to be influenced by the Early Palaeozoic tectonic set-up, when Indian Gondwana was under an erosional regime, and the Tethys Himalaya area, and Lhasa and Southern Qiangtang–Baoshan blocks were deposited on a passive continental margin.  相似文献   

19.
在印度-欧亚陆陆碰撞造山过程中,位于青藏高原东南部、喜玛拉雅东构造结东侧的西南三江地区在新生代经历了强烈变形,形成了复杂的构造样式。构造样式的时空变化可以有效限定印度-欧亚陆陆碰撞过程,而近年发表的大量数据为揭示三江构造带新生代构造样式时空变化提供了可能。通过综合前人研究数据,结合本文的新观察,提出三江构造带不同构造部位的变形特点显示规律性变化:处于碰撞前缘位置的腾冲、保山地块在印度地块向北迁移过程中最早(50~45Ma)与印度大陆发生碰撞,在挤压作用下形成褶皱+逆断层组合,以及块体边界压扭性剪切变形;随着印度地块持续向北运动,该变形样式逐渐向东、北部扩展,并使兰坪-思茅地块、扬子地块西缘剑川盆地沉积环境发生改变,地块两侧发生剪切变形;其中兰坪-思茅地块东侧(30Ma)剪切带的启动时间晚于西侧(34Ma)。地块两侧剪切带均大致经历了纯剪(挤压)-简单剪切(走滑)-纯剪(伸展)变形历史;剪切带各阶段变形的启动时间均具有南早北晚之特点。发生塑性变形的下地壳物质的剥露过程同样表现出时空不均匀性,结合古地磁研究成果,这种现象可能与地块内部的不均匀旋转有关。各剪切带最北端不但变形启动时间最晚,而且基本没有记录走滑变形。这种变形样式的时空变化表明,印度与欧亚大陆的碰撞变形效应在三江构造带内主要表现为陆块内部的弥散状挤压变形与块体刚性旋转形成的剪切带,块体向南逃逸规模较小。  相似文献   

20.
蔡火灿  王伟涛  段磊  张博譞  刘康  黄荣  张培震 《地质学报》2022,96(10):3345-3359
青藏高原东北缘是高原由西南向东北方向扩展的前缘位置,其新生代构造变形对揭示青藏高原隆升、扩展的过程与动力学机制具有重要的意义。柴达木盆地是青藏高原东北缘最大的新生代沉积盆地,发育巨厚的新生代地层,这些地层所记录的古地磁极旋转信息是定量约束柴达木盆地新生代以来构造变形发生的时间、方式与幅度的载体。本文以柴达木盆地北缘新生代地层出露良好、具有精确地层年代控制的路乐河剖面为研究对象,开展了古地磁极旋转研究,统计分析路乐河剖面24. 6~5. 2 Ma之间1477个可靠古地磁样品的特征剩磁方向(ChRM),发现柴达木盆地北缘路乐河地区在24. 6~16. 4 Ma发生小幅度(不显著)的逆时针旋转,旋转角度约为8. 4°±6. 1°;16. 4~13. 9 Ma路乐河地区发生显著的顺时针旋转,旋转角度可达36. 1°±6. 0°;13. 9~5. 2 Ma 该地区未发生明显的构造旋转;5. 2 Ma以后路乐河地区逆时针旋转了~6°。结合柴达木盆地北缘区域构造变形的分析,我们提出柴达木盆地北缘路乐河地区在16. 4~13. 9 Ma 之间发生强烈的顺时针旋转构造变形(~36°)可能代表了盆地北缘中中新世遭受强烈的地壳差异缩短变形,从而成为高原最新形成的部分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号