首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
拉萨地体的起源和古生代构造演化   总被引:19,自引:0,他引:19  
早期由于资料有限,对拉萨地体古生代时期的裂解、漂移、俯冲和碰撞历史的认知程度还很低。本文利用目前已有
地质和地球化学资料,分析了拉萨地体的中生代岩石圈结构,探讨了拉萨地体的起源和古生代演化历史。大量长英质岩石
的锆石Hf 同位素和全岩Nd 同位素表明,南部和北部拉萨地体以新生地壳为主,部分地区可能存在前寒武纪结晶基底,而
中部拉萨地体是具有古元古代甚至太古代结晶基底的条带状微陆块。大量古生代沉积岩的碎屑锆石U-Pb 年龄数据表明,拉
萨地体约1170 Ma 的碎屑锆石年龄指标,明显不同于以约950 Ma 为碎屑锆石年龄指标的安多、羌塘和特提斯喜马拉雅。拉
萨地体起源于澳大利亚大陆北缘是目前资料情况下的最合理解释。中部拉萨地体约492 Ma 的双峰式火山岩形成于活动大陆
边缘背景,代表了古地理上位于澳大利亚大陆北缘的岩浆弧的一部分,可能与原特提斯洋岩石圈板片的断离有关。拉萨地
体南缘和南羌塘的泥盆纪末期-石炭纪早期片麻状花岗岩类为存在明显幔源物质输入的S 型花岗岩,可能形成于最终演化
为松多特提斯洋的弧后盆地背景。中二叠世末期发生的拉萨地体与澳大利亚大陆北缘的碰撞造山事件可能触发了班公湖-
怒江特提斯洋岩石圈的南向俯冲,并随后对拉萨地体的中生代构造岩浆演化发挥关键性作用。  相似文献   

2.
印度-亚洲大陆碰撞之后的新特提斯洋板片的断离过程及其产生的岩浆作用一直是青藏高原南部地质研究中受到广泛关注但存在极大争议的问题.分析了青藏高原南部拉萨地块上新特提斯洋板片断离存在的问题,总结了目前用于限制板片断离过程的岩石学方法.对拉萨地块南部典型地区早新生代镁铁质岩石开展了详细的地质年代学、主微量元素和Sr-Nd-Hf同位素地球化学分析,厘定了~57 Ma和~50 Ma与新特提斯洋板片断离过程密切相关的两套岩石.~57 Ma的镁铁质岩石显示出高的Zr/Y和Ti/Y比值,不同于拉萨地块南部广泛分布的岛弧岩浆地球化学特征,表明它们形成于板内伸展背景下,很可能代表了新特提斯板片断离的开始.~50 Ma的镁铁质岩石为富闪深成岩,反映了印度-亚洲大陆碰撞后南拉萨地块岩石圈中的富水环境,暗示大洋板片断离后仍然持续释放流体至上覆岩石圈地幔中.结合拉萨地块上已有的镁铁质岩石的年代学和地球化学数据,重建了新特提斯洋在印度-亚洲大陆碰撞之后从初始撕裂至板片完全断离的全过程,即新特提斯板片在~57 Ma开始发生初始撕裂,随后以高角度俯冲并与印度大陆岩石圈脱离,导致中拉萨和南拉萨地块同时出现广泛的镁铁质岩浆作用,在~50 Ma大洋板片完全断离.拉萨地块内部岩石圈地幔地球化学组成存在极大的不均一性,中拉萨地块和南拉萨地块东部的局部地区存在古老的岩石圈物质组成,而南拉萨地块中部主要为亏损的岩石圈.拉萨地块内局部古老富集岩石圈可能受到新特提斯洋板片断离后深部地幔物质上涌的影响转变为新生的亏损岩石圈,这一过程很可能促进了拉萨地块的中酸性岩浆大爆发作用和大陆地壳生长.   相似文献   

3.
Bangong-Nujiang Suture Zone (BNSZ) in central Tibet plays an important role in evaluating the formation and uplift mechanism of Tibetan Plateau. However, its Mesozoic tectonic evolution is ambiguous and intensely debated. In this study, Early Cretacesous adakites and sodium-rich arc rocks are identified in Western Qiangtang (WQ) and Northern Lhasa (NL) sub-terranes. Forty-four adakite samples from both WQ and NL have akin geochemical features, and are derived from partial melting of subducted oceanic crust with amphibole residual. Nineteen sodium-rich samples originated from a mixed source region between crustal sediment and enriched lithospheric mantle. These two parallel arc belts separated by the Bangong-Nujiang Suture Zone (BNSZ) represent the divergent double subduction of the Bangong-Nujiang Tethyan Ocean (BNTO). Combined with the previous studies, our new data suggest three significant magmatic flare-ups at ∼240–140 Ma, 135–105 Ma and 92–60 Ma in the WQ and BNSZ, and two at 135–105 Ma and 92–60 Ma in the NL. These asymmetrical magmatic activities indicate that the southern subduction may have commenced at about 135 Ma and experienced slab breakoff at the latest Early Cretaceous, and the northern subduction could trace back to L-Triassic (228 Ma) and experienced episodic low-angle subduction, slab rollback (190-140 Ma) and oceanic ridge subduction (135-100 Ma). The 100–92 Ma magmatic gap, 92–60 Ma magmatic flare-up and L-Cretaceous angular unconformities indicate that the double-sided subduction of the BNTO resulted in soft collision with oceanic lithosphere detachment.  相似文献   

4.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

5.
班公湖-怒江洋的形成演化是认识班公湖-怒江成矿带成矿地质背景的关键,近几年中国地质调查局在青藏高原部署了大量1∶50000区域地质调查工作,取得了很多重要发现。对班公湖-怒江结合带两侧关键性海陆沉积地层对比研究,认为南羌塘地块与拉萨地块晚古生代-晚三叠世地层沉积特征及岩石组合基本一致,二者在班公湖-怒江中生代洋盆形成以前是一个整体,为冈瓦纳大陆北缘被动陆缘环境。班公湖-怒江洋在早中侏罗世裂解形成,至中侏罗世趋于稳定且范围最大;向北俯冲消减作用始于中晚侏罗世,晚侏罗世-早白垩世演化为残留海,早白垩世中晚期出现短暂的裂解,致使海水重新灌入;晚白垩世班公湖-怒江洋盆进入闭合后的隆升造山阶段,发生了残留盆地迁移,形成了磨拉石建造。班公湖-怒江洋类似古加勒比海(现今墨西哥湾地区)的形成机制,并与大西洋、太平洋的形成过程关系密切。对于班公湖-怒江洋的闭合和冈底斯弧的形成,本文提出了另一种可能解释,即,新特提斯洋向北俯冲下,岩浆弧逐步南迁,在弧后形成了一系列伸展性质的弧后盆地,两者组成微陆块由北向南逐渐增生形成了现今的拉萨地体,持续向北俯冲也导致了班公湖-怒江洋最终闭合。  相似文献   

6.
Bangong-Nujiang collisional zone(BNCZ)is an older one in Qinghai-Tibet Plateau and resulted in the famous Bangong-Nujiang metallogenic belt,which plays an important role in evaluating the formation and uplift mechanism of plateau.The northern and central Lhasa Terrane composed the southern part of the BNCZ.Since ore deposits can be used as markers of geodynamic evolution,the authors carried 1∶50000 stream sedimental geochemical exploration in the Xiongmei area in the Northern Lhasa Terrane to manifest the mineralization,and based on this mineralization with geochemical and chronological characteristics of related magmatic rocks to constrain their geodynamics and connection with the evolution of the Lhasa Terrane.The authors find Early Cretaceous magma mainly resulted in Cu,Mo mineralization,Late Cretaceous magma mainly resulted in Cu,Mo,and W mineralization in the studying area.The results suggest a southward subduction,slab rolling back and break-off,and thickened lithosphere delamination successively occurred within the Northern Lhasa Terrane.  相似文献   

7.
Ophiolites are widespread along the Bangong-Nujiang suture zone, northern Tibet. However, it is still debated on the formation ages and tectonic evolution process of these ophiolites. The Zhongcang ophiolite is a typical ophiolite in the western part of the Bangong-Nujiang suture zone. It is composed of serpentinized peridotite, cumulate and isotropic gabbros, massive and pillow basalts, basaltic volcanic breccia, and minor red chert. Zircon SHRIMP Ue Pb dating for the isotropic gabbro yielded weighted mean age of 163.4 ± 1.8 Ma. Positive zircon ε Hf(t) values(+15.0 to +20.2) and mantle-like σ~(18)O values(5.29 ±0.21)% indicate that the isotropic gabbros were derived from a long-term depleted mantle source. The isotropic gabbros have normal mid-ocean ridge basalt(N-MORB) like immobile element patterns with high Mg O, low TiO_2 and moderate rare earth element(REE) abundances, and negative Nb,Ti, Zr and Hf anomalies. Basalts show typical oceanic island basalt(OIB) geochemical features, and they are similar to those of OIB-type rocks of the Early Cretaceous Zhongcang oceanic plateau within the Bangong-Nujiang Ocean. Together with these data, we suggest that the Zhongcang ophiolite was probably formed by the subduction of the Bangong-Nujiang Ocean during the Middle Jurassic. The subduction of the Bangong-Nujiang Tethyan Ocean could begin in the Earlye Middle Jurassic and continue to the Early Cretaceous, and finally continental collision between the Lhasa and Qiangtang terranes at the west Bangong-Nujiang suture zone probably has taken place later than the Early Cretaceous(ca. 110 Ma).  相似文献   

8.
The Bangong-Nujiang suture zone (BNSZ) separates the Lhasa terrane from the Qiangtang terrane and contains remnants of the Bangong-Nujiang oceanic lithosphere (ophiolites). Despite decades of research, when and how the Bangong-Nujiang ophiolites were emplaced remains enigmatic. In the Gerze area (western segment of the BNSZ), the geochemistry and provenance discrimination of chromian spinels (Cr-spinels) from the pre-collisional subduction complex (Mugagangri Group) and syn-collisional peripheral foreland basin succession (Wuga Formation) can help us solve this fundamental problem in the BNSZ evolution. This study compares the geochemistry of Cr-spinels from the Mugagangri Group and Wuga Formation with those from the Bangong-Nujiang ophiolites. Cr-spinels in the Bangong-Nujiang ophiolites have either low TiO2 (0.01–0.15%) and low Al2O3 (11.74–26.76%), indicating an SSZ peridotite origin, or high Al2O3 (45.28–49.15%), indicating a MORB peridotite origin. Cr-spinels from the ultramafic fragments within the Mugagangri Group have extremely low TiO2 (<0.06%) and geochemically overlap with those from the Dong Co ophiolite, suggesting that these ultramafic fragments were sourced from the Dong Co ophiolite above the subduction zone rather than off-scrapped remnants from the subducting oceanic lithosphere. Compositional fingerprints of detrital Cr-spinels from the Wuga Formation indicate provenance either derived from the Bangong-Nujiang ophiolites or recycled from the Mugagangri Group in the north, with minor input possibly from the Lhasa terrane in the south, consistent with the depositional pattern of a peripheral foreland basin. Provenance data reveals that the Bangong-Nujiang ophiolites in the Gerze area had been emplaced and exposed to erosion during northward oceanic subduction prior to the Lhasa-Qiangtang collision. Contrasting the Tethyan-type Yarlung-Zangbo ophiolites in southern Tibet, the Bangong-Nujiang ophiolites in central Tibet are Cordilleran-type in terms of emplacement mechanism, which were uplifted above sea-level by progressive growth of the subduction complex structurally beneath ophiolite. The emplacement of the Cordilleran-type ophiolites in the western segment of the BNSZ is divided into two stages: (1) intra-oceanic subduction initiation at ~177–179 Ma based mainly on zircon U-Pb dating of plagiogranite from the SSZ-type Laguo Co ophiolite; (2) accretionary emplacement of the ophiolites at ~151–168 Ma constrained by the depositional age of the Mugagangri subduction complex. Final closure of the Bangong-Nujiang Tethyan Ocean may convert the ophiolite emplacement mechanism from “accretionary” to “collisional” at ~150–152 Ma, evidenced by the first development of a peripheral foreland basin.  相似文献   

9.
The Upper Triassic Langjiexue Group, exposed south of the Yarlung-Zangbo suture zone in south Tibet, shows sedimentary features different from typical Tethyan Himalayan successions, and its origin is controversial. In this article we combine field observations with paleocurrent, petrologic, geochronological and isotopic data to determine the provenance of Langjiexue sandstones. These middle to distal deep-sea-fan turbidites are crosscut by Lower Cretaceous diabase sills and dikes generated during rifting of India from Gondwana, indicating that the Langjiexue Group was originally deposited along or adjacent to the northern passive continental margin of India. Flute casts at the base of turbidite beds indicate mostly WNW-ward paleocurrents, pointing to provenance from a source located east of the depositional area. Common volcanic fragments and plagioclase grains together with a cluster of 400–200-Ma-aged magmatic zircons with uniform εHf(t) values from − 5 to + 10 are incompatible with any nearby sources, including the Qiantang Block, the Lhasa Block or the India subcontinent, and indicate instead supply from a long-lived magmatic-arc terrane. Considering what is known about Late Triassic paleogeography, a plausible source for Langjiexue sediments is represented by the Gondwanide Orogen, generated during subduction of the pan-Pacific oceanic lithosphere beneath southeastern Gondwana. This scenario is supported by the age range and Hf isotopic signatures of Late Paleozoic–Early Mesozoic zircons contained in Langjiexue turbidites as in coeval turbidites exposed in western Myanmar. New data are needed to confirm/falsify the existence of a thousand-km-long sediment-routing system similar to the modern Amazon, which – sourced in a cordillera-type orogen rising along the southeastern margin of Gondwana – crossed an entire continent to feed turbiditic fans now exposed from western Myanmar to the northern Tethys Himalaya.  相似文献   

10.
安多地区位于青藏高原腹地,为拉萨地体、羌塘地体及安多微陆块的结合部位,是研究拉萨地体、羌塘地体起源以及特提斯造山过程的关键位置。我们对采自安多地区的前中生代基底岩石及侏罗系沉积岩样品进行了岩石学、锆石U-Pb年代学及Hf同位素研究。研究结果表明:安多花岗片麻岩中锆石同时记录了510~505Ma岩浆年龄以及187Ma变质年龄;187Ma的变质锆石与510~505Ma的岩浆锆石具有相似的Hf同位素模式年龄(1.7~1.5Ga),表明寒武纪花岗岩主要来源于古老地壳重熔。碎屑锆石年代学分析结果揭示了安多微陆块石英岩具有498~484Ma、800~1000Ma和1800~1950Ma的年龄峰值,与南羌塘地体及特提斯喜马拉雅碎屑锆石年龄分布特征相似,表明其在早古生代时位于冈瓦纳大陆北部印度陆块边缘。南羌塘坳陷东南部中侏罗世砂岩及钙质砂岩碎屑锆石年代学分析结果显示其具有182~171Ma、450~600Ma、800~1000Ma、1800~1950Ma及2400~2600Ma的年龄峰值,这种年龄分布特征与安多微陆块及南羌塘地体相似,而与拉萨地体不同,说明南羌塘坳陷东南部下-中侏罗统物源主要来自安多微陆块及南羌塘地体,在早-中侏罗世时安多微陆块与南羌塘地体已经发生了碰撞造山。  相似文献   

11.
青藏高原南部拉萨地体的变质作用与动力学   总被引:3,自引:0,他引:3  
董昕  张泽明  向华  贺振宇 《地球学报》2013,34(3):257-262
拉萨地体位于欧亚板块的最南缘,它在新生代与印度大陆的碰撞形成了青藏高原和喜马拉雅造山带。因此,拉萨地体是揭示青藏高原形成与演化历史的关键之一。拉萨地体中的中、高级变质岩以前被认为是拉萨地体的前寒武纪变质基底。但新近的研究表明,拉萨地体经历了多期和不同类型的变质作用,包括在洋壳俯冲构造体制下发生的新元古代和晚古生代高压变质作用,在陆-陆碰撞环境下发生的早古生代和早中生代中压型变质作用,在洋中脊俯冲过程中发生的晚白垩纪高温/中压变质作用,以及在大陆俯冲带上盘加厚大陆地壳深部发生的两期新生代中压型变质作用。这些变质作用和伴生的岩浆作用表明,拉萨地体经历了从新元古代至新生代的复杂演化过程。(1)北拉萨地体的结晶基底包括新元古代的洋壳岩石,它们很可能是在Rodinia超大陆裂解过程中形成的莫桑比克洋的残余。(2)随着莫桑比克洋的俯冲和东、西冈瓦纳大陆的汇聚,拉萨地体洋壳基底经历了晚新元古代的(~650Ma)的高压变质作用和早古代的(~485Ma)中压型变质作用。这很可能表明北拉萨地体起源于东非造山带的北端。(3)在古特提斯洋向冈瓦纳大陆北缘的俯冲过程中,拉萨地体和羌塘地体经历了中古生代的(~360Ma)岩浆作用。(4)古特提斯洋盆的闭合和南、北拉萨地体的碰撞,导致了晚二叠纪(~260Ma)高压变质带和三叠纪(~220Ma)中压变质带的形成。(5)在新特提斯洋中脊向北的俯冲过程中,拉萨地体经历了晚白垩纪(~90Ma)安第斯型造山作用,形成了高温/中压型变质带和高温的紫苏花岗岩。(6)在早新生代(55~45Ma),印度与欧亚板块的碰撞,导致拉萨地体地壳加厚,形成了中压角闪岩相变质作用和同碰撞岩浆作用。(7)在晚始新世(40~30Ma),随着大陆的继续汇聚,南拉萨地体经历了另一期角闪岩相至麻粒岩相变质作用和深熔作用。拉萨地体的构造演化过程是研究汇聚板块边缘变质作用与动力学的最佳实例。  相似文献   

12.
刘飞  杨经绥  连东洋  李观龙 《岩石学报》2020,36(10):2913-2945
西藏雅鲁藏布江缝合带(YZSZ)和班公湖-怒江缝合带(BNSZ)蛇绿岩代表了新特提斯洋壳和岩石圈地幔残余,是我国铬铁矿和蛇绿岩型金刚石的重要原产地,目前这两条蛇绿岩带的成因和相互关系还存在着争论。本文总结了YZSZ、BNSZ、狮泉河-纳木错蛇绿混杂岩带(SNMZ)和松多缝合带蛇绿岩的时空分布、组成和构造背景,归纳了拉萨地块晚古生以来的岩浆岩分布,获得以下主要认识:(1)Panjal地幔柱活动可能促使怒江洋和雅江西洋在早二叠世空谷期(283~272Ma)打开;(2)雅江东洋由于松多洋的南向俯冲在晚三叠世打开,与雅江西洋以萨嘎-措勤为界,并形成冈底斯东部245~200Ma岩浆热事件;(3)~140Ma班怒洋闭合以及南羌塘与北拉萨地块碰撞,导致雅江洋扩张速率加快而引发了北向拉萨地块的平板俯冲,进而导致班怒洋的再次裂解形成133~104Ma"红海型"小洋盆;(4)YZSZ缝合带西段南带蛇绿岩为北带的逆冲推覆体;(5)BNSZ和SNMZ蛇绿岩隶属于一个洋盆,后者代表了班怒洋成熟洋盆扩张脊的残余。  相似文献   

13.
在班公湖-怒江结合带西段北侧的拉热拉新岩体东、西两侧,新发现了一些早白垩世岩体、相伴的陆缘火山岩组合和矿(化)点,侵入岩和火山岩的岩石化学特征均显示其成因与中特提斯洋向北俯冲消减密切相关。本文将班- 怒带北侧的火山- 侵入岩带厘定为五峰尖拉热拉新晚侏罗世—早白垩世陆缘火山岩浆弧带,同时讨论了陆缘火山- 岩浆弧带的厘定在分析中特提斯构造演化方面的研究意义。  相似文献   

14.
The Neoproterozoic-Early Cambrian evolution of peri-Gondwanan terranes (e.g. Avalonia, Carolinia, Cadomia) along the northern (Amazonia, West Africa) margin of Gondwana provides insights into the amalgamation of West Gondwana. The main phase of tectonothermal activity occurred between ca. 640–540 Ma and produced voluminous arc-related igneous and sedimentary successions related to subduction beneath the northern Gondwana margin. Subduction was not terminated by continental collision so that these terranes continued to face an open ocean into the Cambrian. Prior to the main phase of tectonothermal activity, Sm-Nd isotopic studies suggest that the basement of Avalonia, Carolinia and part of Cadomia was juvenile lithosphere generated between 0.8 and 1.1 Ga within the peri-Rodinian (Mirovoi) ocean. Vestiges of primitive 760–670 Ma arcs developed upon this lithosphere are preserved. Juvenile lithosphere generated between 0.8 and 1.1 Ga also underlies arcs formed in the Brazilide Ocean between the converging Congo/São Francisco and West Africa/Amazonia cratons (e.g. the Tocantins province of Brazil). Together, these juvenile arc assemblages with similar isotopic characteristics may reflect subduction in the Mirovoi and Brazilide oceans as a compensation for the ongoing breakup of Rodinia and the generation of the Paleopacific. Unlike the peri-Gondwanan terranes, however, arc magmatism in the Brazilide Ocean was terminated by continent-continent collisions and the resulting orogens became located within the interior of an amalgamated West Gondwana. Accretion of juvenile peri-Gondwanan terranes to the northern Gondwanan margin occurred in a piecemeal fashion between 650 and 600 Ma, after which subduction stepped outboard to produce the relatively mature and voluminous main arc phase along the periphery of West Gondwana. This accretionary event may be a far-field response to the breakup of Rodinia. The geodynamic relationship between the closure of the Brazilide Ocean, the collision between the Congo/São Francisco and Amazonia/West Africa cratons, and the tectonic evolution of the peri-Gondwanan terranes may be broadly analogous to the Mesozoic-Cenozoic closure of the Tethys Ocean, the collision between India and Asia beginning at ca. 50 Ma, and the tectonic evolution of the western Pacific Ocean.  相似文献   

15.
The Paleo‐Tethys Ocean was a Paleozoic ocean located between the Gondwana and Laurasia supercontinents. It was usually consider to opening in the early Paleozoic with the rifting of the Hun superterrane from Gondwana following the subduction of the Rheic Ocean/proto‐Tethys Ocean. However, the opening time and detailed evolutionary history of the Paleo‐Tethys Ocean are still unclear. The Paleozoic ophiolites have recently been documented in the middle of the Qiangtang terrane, northern Tibetan Plateau, and they mainly occur in the Gangma Co area. These ophiolites are composed of serpentinite, pyroxenite, isotropic and cumulate gabbros, basalt, hornblendite and plagiogranite. Whole‐rock geochemical data suggest that all mafic rocks were formed in an oceanic‐ridge setting. Furthermore, positive whole‐rock εNd(t) and zircon εHf(t) values suggest that these rocks were derived from a long‐term depleted mantle source. The data allow us to conform that these rocks represent an ophiolite suite. Zircon U‐Pb dating of gabbros and plagiogranites yielded weighted mean ages of 437‐501 Ma. The occurrence of the ophiolite suite suggests that a Paleozoic Ocean basin (Paleo‐Tethys) existed in middle of the Qiangtang terrane. We hypothesize that the ophiolite in the middle of the Qiangtang terrane represents the western extension of the Sanjiang Paleo‐Tethys ophiolite in the east margin of the Tibetan Plateau, and they mark the main Paleo‐Tethys Ocean. This is the oldest ophiolite from the Paleo‐Tethyan suture zones and the Paleo‐Tethys Ocean basin probably opened in the Middle Cambrian, and continued to grow throughout the Paleozoic. The ocean was finally closed in the Middle to Late Triassic as inferred from the metamorphic ages of eclogite and blueschist that occur nearby. The Paleo‐Tethys Ocean was probably formed by the breakup of the northern margin of Gondwana, with southward subduction of the proto‐Tethys oceanic lithosphere along the northern margin of the supercontinent.  相似文献   

16.
Present-day Asia comprises a heterogeneous collage of continental blocks, derived from the Indian–west Australian margin of eastern Gondwana, and subduction related volcanic arcs assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones containing ophiolites, accretionary complexes and remnants of ocean island arcs. The Phanerozoic evolution of the region is the result of more than 400 million years of continental dispersion from Gondwana and plate tectonic convergence, collision and accretion. This involved successive dispersion of continental blocks, the northwards translation of these, and their amalgamation and accretion to form present-day Asia. Separation and northwards migration of the various continental terranes/blocks from Gondwana occurred in three phases linked with the successive opening and closure of three intervening Tethyan oceans, the Palaeo-Tethys (Devonian–Triassic), Meso-Tethys (late Early Permian–Late Cretaceous) and Ceno-Tethys (Late Triassic–Late Cretaceous). The first group of continental blocks dispersed from Gondwana in the Devonian, opening the Palaeo-Tethys behind them, and included the North China, Tarim, South China and Indochina blocks (including West Sumatra and West Burma). Remnants of the main Palaeo-Tethys ocean are now preserved within the Longmu Co-Shuanghu, Changning–Menglian, Chiang Mai/Inthanon and Bentong–Raub Suture Zones. During northwards subduction of the Palaeo-Tethys, the Sukhothai Arc was constructed on the margin of South China–Indochina and separated from those terranes by a short-lived back-arc basin now represented by the Jinghong, Nan–Uttaradit and Sra Kaeo Sutures. Concurrently, a second continental sliver or collage of blocks (Cimmerian continent) rifted and separated from northern Gondwana and the Meso-Tethys opened in the late Early Permian between these separating blocks and Gondwana. The eastern Cimmerian continent, including the South Qiangtang block and Sibumasu Terrane (including the Baoshan and Tengchong blocks of Yunnan) collided with the Sukhothai Arc and South China/Indochina in the Triassic, closing the Palaeo-Tethys. A third collage of continental blocks, including the Lhasa block, South West Borneo and East Java–West Sulawesi (now identified as the missing “Banda” and “Argoland” blocks) separated from NW Australia in the Late Triassic–Late Jurassic by opening of the Ceno-Tethys and accreted to SE Sundaland by subduction of the Meso-Tethys in the Cretaceous.  相似文献   

17.
西藏申扎早白垩世花岗岩类:板片断离的证据   总被引:15,自引:10,他引:5  
拉萨地块中北部地区在~113Ma发生的带状岩浆大爆发事件被认为是南向俯冲的班公湖-怒江洋壳岩石圈板片断离的结果,但缺乏更多的地球化学数据。本文报道的拉萨地块中部申扎地区花岗岩类地球化学数据为这一模型提供了可靠的地球化学证据。申扎花岗岩类包括寄主花岗闪长岩(113Ma),辉长质包体和闪长质包体(111Ma)。申扎早白垩世花岗岩中的寄主岩石与镁铁质包体均属于偏铝质中-高钾钙碱性系列,所有样品均富集大离子亲石元素(如Rb、Ba、U和Th)、亏损高场强元素(如Nb、Ta、Ti和Zr)。花岗闪长质寄主岩和闪长质包体具有高的(87Sr/86Sr)i值(0.7121~0.7133),负的εNd(t)值(-10.2~-9.1)及古老的Nd同位素模式年龄(1.90~1.55Ga);辉长质包体具偏低的(87Sr/86Sr)i值(0.7067和0.7108),较高的全岩εNd(t)(-2.1和-4.1)值,Nd同位素模式年龄为1.33Ga和1.32Ga。申扎花岗岩类中的辉长质包体具有板内玄武岩亲缘性,这一特征与班公湖-怒江洋壳岩石圈南向俯冲板片在~113Ma左右发生的板片断离有关。申扎花岗岩类是在板片断离背景下,主要由来源于古老拉萨基底物质重熔的熔体与上涌的软流圈地幔物质发生岩浆混合产生的。  相似文献   

18.
Lower Cretaceous strata in the Baingoin basin of the northern Lhasa terrane record initial collision between the Lhasa and Qiangtang blocks, followed by the early uplift of central Tibet. North-south traverses across the Baingoin basin highlight major differences between the Duba Formation in the north and the quasi-coeval Duoni Formation in the south. The Duba Formation documents upward transition from shallow shelf and deltaic environments to coarse-grained siliciclastic fluvial sedimentation. Abundance of detrital zircons yielding Jurassic-Cretaceous ages with εHf(t) values mainly between −2 and +10, occurrence of chert, Cr-spinel, and pyroxene grains, together with southward paleocurrent directions indicate that the Duba Formation was sourced from the southern Qiangtang terrane and Bangong-Nujiang suture zone to the north. The Duoni Formation in the south was deposited in shelfal to fan-delta and fluvial environments. Abundant volcanic clasts, detrital zircons yielding Cretaceous ages with mainly negative εHf(t) values, and northward paleocurrents indicate an active volcanic source located in the central Lhasa terrane to the south, with minor input from the northern Lhasa terrane. Only the northern part of the Baingoin basin was directly controlled by the Lhasa-Qiangtang collision and may thus be considered a peripheral foreland basin, whereas the southern part was mainly influenced by tectonic processes related to the northward subduction of Neotethyan lithosphere, and may thus be comparable to a retroarc foreland basin. But these sedimentary features and the 139–79 Ma Baingoin plutonic intrusion do not fit well with classical foreland-basin models. Zircon chronostratigraphy constrains the final consumption of Bangong-Nujiang oceanic lithosphere and initial collision between the Lhasa and Qiangtang microcontinents to have taken place by 122 Ma, which has major implications for paleotectonic reconstructions of the Tibetan Plateau.  相似文献   

19.
青藏高原中部狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带(简称SYMZ)位于班公湖-怒江缝合带与雅鲁藏布江缝合带之间,其构造属性存在很大争议,制约了对青藏高原多岛弧盆系构造演化的理解.根据新的地质调查资料、研究成果并结合分析数据,系统总结了该蛇绿混杂岩带的地质特征,讨论了其构造演化过程.一系列新资料及新认识表明SYMZ是分割北拉萨地块和中拉萨地块的一条独立的蛇绿混杂岩带,是特提斯构造域多岛弧盆系的组成部分.在狮泉河、拉果错、阿索、永珠、凯蒙等地发育比较典型的蛇绿岩组合,高精度年代学数据指示洋盆主体发育于178~160 Ma,比班公湖-怒江洋盆主体发育时限(188~162 Ma)要晚10 Ma左右,阿索一带蛇绿岩残片记录洋盆一直持续到113 Ma.SYMZ侏罗纪基性岩具有MORB型(洋中脊玄武岩)和IAT型(岛弧拉斑玄武岩)火山岩的地球化学性质,属于洋内弧型和洋中脊型蛇绿混杂岩;早白垩世基性岩具MORB和火山弧玄武岩的双重特性,指示其很可能形成于SSZ的构造环境,不同于同时期班公湖-怒江特提斯受地幔柱热点影响的洋盆性质.同时,在拉果错、永珠、凯蒙等地区识别出侏罗纪前弧玻安岩及玻玄岩系列,一致指示SYMZ洋壳发生过洋内俯冲.在此基础上,结合区域地质资料,构建了SYMZ特提斯洋的时空格架及构造演化历史,认为经历了晚三叠世-早侏罗世洋盆裂解-扩张、中-晚侏罗世洋内俯冲、早白垩世俯冲消减和早白垩世末期洋盆消亡四个阶段,为特提斯洋的构造演化及大地构造过程再造提供了重要的地质学证据.   相似文献   

20.
中国大陆构造及动力学若干问题的认识   总被引:17,自引:2,他引:15  
中国(东亚)大陆受特提斯、古亚洲和太平洋构造体系的制约,具有复杂的地体构架和特殊的岩石圈结构。本文从地学前沿——大陆动力学的视野出发,围绕中国大陆构造及动力学四个方面的研究,总结已有的进展并提出新的思考:①中国大陆板块下的构造和整个地幔运动的构架:地震层析资料揭示西太平洋板片向西俯冲到东亚大陆之下,其倾角逐渐减小,最后近水平地插进400~600km深度的地幔过渡带中,成为箕状几何形态的超深俯冲板片。印度岩石圈板片超深俯冲至青藏高原之下~800km的深度,在喜马拉雅西构造结部位发生双向不对称深俯冲,印度岩石圈板片向东俯冲至东构造结东侧之下300~500km的深度。②中国大陆变质基底的再活化:中国大陆的大部分陆块未受显生宙以来构造、变质和岩浆事件的改造与激活,在冈瓦纳大陆北缘的印度陆块和阿拉伯陆块北缘还发育有形成于泛非期(530~470Ma)的造山带,其影响范围至高喜马拉雅、拉萨地体和三江地区。新生代的变质活化普遍出现在喜马拉雅、南迦巴瓦、拉萨地体和三江-缅甸地区,最新的变质年龄仅2~1Ma(南迦巴瓦)。③中国主要高压-超高压变质带的大地构造背景及深俯冲-折返机制:中国及邻区含榴辉岩的高压-超高压(HP/UHP)变质带有洋壳(深)俯冲和陆壳(深)俯冲之分。青藏高原中,大部分洋壳俯冲形成的高压/超高压变质带与原-古特提斯洋盆中诸多微陆块之间的小洋盆的汇聚碰撞有关,陆壳深俯冲作用有两种机制,它们分别是大陆块之间剪式碰撞和撕裂式岩石圈舌形板片的深俯冲。④中国大陆造山带的深部物质可经3类机制挤出,即深部地壳物质"牙膏式"挤出、侧向挤出和"挤压转换式"挤出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号