首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
铁细菌胞外多聚物对铁矿物的调控形成及其环境意义   总被引:1,自引:0,他引:1  
环境介质溶液中铁的水解作用和稳定化作用主要受铁细菌及其代谢有机物质的影响。铁细菌普遍存在于自然环境中,可利用低价铁源为自身生长所需能量。铁细菌胞外有机物的主要组分如多糖和蛋白质等可与铁结合,并通过氧化或沉淀作用使铁稳定、沉积而形成铁矿物;此外铁细菌胞外多聚物可催化铁的氧化或促进铁的聚集。这些生物成因铁矿物因具有良好的表面吸附与氧化还原等化学活性,及有效固定环境中的重金属、放射性核素和催化降解有机污染物的良好环境属性,在环境生物矿物材料和环境治理研究领域被日益重视。故本文基于铁细菌及其胞外多聚物对铁矿物矿化形成的重要调控作用,介绍了环境中存在的铁细菌及其生物矿化特征,重点阐述了铁细菌胞外多聚物(组分、结构及特性)及其在铁矿物矿化过程中的作用,同时对铁细菌胞外多聚物及生物成因铁矿物的环境意义进行了概述。  相似文献   

2.
在地表环境中,铁氧化物矿物可以作为微生物胞外呼吸的终端电子受体/供体、电子储存介质或种间电子传递介质促进环境微生物的新陈代谢。本文介绍了矿物-微生物直接界面电子转移方式中,铁氧化物矿物与组成微生物跨膜电子传输链的细胞色素蛋白之间的氧化-还原反应机制及其影响因素,从分子水平刻画了微生物利用矿物进行胞外呼吸的过程,有助于深入理解微生物驱动的矿物转化和元素地球化学循环。  相似文献   

3.
微生物—矿物间半导体介导电子传递机制研究进展   总被引:1,自引:0,他引:1  
矿物与微生物相互作用是地球表层系统中重要的生物地球化学过程,是联系不同圈层物质与能量交换的重要纽带,深刻地影响着一系列重要的地表过程,包括次生矿物的形成与演化、养分循环与污染物环境行为。在微生物—矿物的研究中,以往主要关注微生物的胞外电子传递和微生物介导的矿物溶解、沉淀、矿化等过程。由于矿物本身具有半导体性质,其在微生物胞外电子传递过程中扮演特殊的角色,这也为近期备受关注的微生物—矿物相互作用研究提供了一个崭新的视角。半导体矿物具有独特的能级结构和氧化还原性质,导致微生物—半导体矿物的相互作用机制差别很大。从热力学驱动和光能驱动2个方面分别阐述微生物—矿物间半导体导电机制的最新研究进展,并深入揭示其界面电子转移的机理。最后展望了微生物—半导体矿物相互作用的未来发展趋势。  相似文献   

4.
在地球上最为活跃的海洋透光层体系中,矿物-微生物交互作用的形式十分丰富。系统采集了黄海近海透光层水体样品,测试分析发现其中分布大量悬浮半导体矿物及微生物群落。通过电感耦合等离子质谱仪(ICP-MS)、环境扫描电子显微镜(ESEM)及配有的EDX能谱仪,从宏观到微区对悬浮颗粒矿物的化学元素组成进行了测试分析,发现其主要矿物组成元素为Si、O、Na、K、Ca、Al等,且含有较高含量的Mn、Fe、Ti等金属元素;通过X射线衍射光谱(XRD)、拉曼光谱(Raman)测试从整体到局部分析悬浮颗粒矿物的物相组成,发现其主要组成矿物为石英、钠长石、方解石、云母和绿泥石等,还有锐钛矿、金红石、板钛矿、针铁矿等铁、钛金属氧化物半导体矿物。通过16S rRNA高通量测序分析海水中主要微生物群落为Proteobacteria、Actinobacteria、Bacteroidetes、Planctomycetes、Woeseia、Fluviicola等,并通过构建双室反应体系对海水微生物与悬浮矿物间氧化还原作用及胞外电子传递过程进行了表征,结果显示增加海水悬浮矿物作为电子受体后,体系开路电压由330. 80 mV提升至426. 59 mV,提升比率达130%,最大输出功率由8. 376 9 mW/m^2提升至12. 096 8 mW/m^2,为原体系的1. 44倍。实验研究表明,海水透光层悬浮矿物能有效参与并促进微生物胞外电子传递过程,为后续深入研究基于电子能量传递利用的半导体矿物-微生物协同作用以及元素循环调控机制奠定初步基础。  相似文献   

5.
胶质芽孢杆菌胞外多糖在肥料矿物分解转化中的作用   总被引:3,自引:0,他引:3  
本文探讨了胶质芽孢杆菌胞外多糖在细菌分解转化矿物过程中的作用。将事先提取的胞外粗多糖按一定浓度梯度与矿粉混合,24 h后再次提取多糖称重,证实多糖与矿粉颗粒之间的吸附现象。计算结果表明,矿粉对多糖的吸附随多糖量的增加而呈较明显的增长,之后增幅逐渐趋于平缓。在无氮培养基中添加不同种类矿粉培养细菌,然后分别提取粗多糖和较纯多糖,发现矿物种类对胶质芽孢杆菌多糖的分泌有显著影响。添加含有细菌所需矿质养料的矿粉在培养液中,胞外多糖含量相对增高,说明细菌分泌胞外多糖受到矿物化学组成的影响,即细菌胞外多糖的产生与它们对矿物养料的需求和矿物的风化过程有密切联系。  相似文献   

6.
铁细菌胞外多聚物作用下聚集的铁可通过氧化或者沉淀作用使铁稳定或沉积,从而形成铁矿物。本文基于铁细菌胞外多聚物(extracellular polymeric substances,EPS)对铁矿物形成的调控作用,介绍了Cl-/SO_4~(2-)的Fe(Ⅲ)或Fe(Ⅱ)盐作用下,含可溶性EPS的氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)溶液中铁矿物的形成,观察了溶液pH值变化及形成铁矿物的矿相与结构,并采用XRD、FTIR和FESEM对其进行表征。结果发现反应溶液中OH-离子可与Fe3+形成微米级"针垫"聚集球状或纳米级小球形施威特曼石和微米级"菱形"块状黄钾铁矾铁矿物沉淀。反应溶液中的可溶性EPS可调控和促进铁矿物的形成,但对Fe2+的氧化未产生影响;外源Fe盐可促进施威特曼石向黄钾铁矾转化。随着Cl-/SO_4~(2-)摩尔比例的增加(即Cl-含量的不断增加),两矿相间的转化明显受到抑制,且铁矿物颗粒之间的集聚作用明显减弱;反之,SO_4~(2-)含量升高时,有利于铁矿物间的转化和聚集球状颗粒形貌结构的形成。  相似文献   

7.
为了研究天然赤铁矿对微生物胞外电子传递机制,以长沙和海口红壤为例,构建了双室反应体系对红壤微生物与天然赤铁矿间氧化还原作用及胞外电子传递过程进行表征。研究显示,增加赤铁矿作为电子受体后,长沙与海口红壤体系开路电压由425.28、414.64 m V提升至511.46、532.52 m V,最大输出功率由221.5、171.0 m W/m~3提升至431.4、260.2 m W/m~3。电化学循环伏安测试显示在0.43、0.55 V(相对于饱和甘汞电极;vs.SCE)处出现Fe(Ⅲ)还原峰及Fe(Ⅱ)氧化峰,指证新氧化还原反应的引入。电化学阻抗谱(EIS)拟合结果显示赤铁矿电极极化内阻R_p自44840Ω降至665Ω,从动力学层面表明电极反应导致的电势降低有利于电子转移。实验研究结果表明,红壤环境中以赤铁矿为代表的铁氧化物能够有效参与并促进微生物胞外电子传递。  相似文献   

8.
为了更深入地了解微生物与大气可吸入矿物细颗粒的作用机理,实验以方解石(PM2.5)为研究对象,采用反相高效液相色谱(RP-HPLC)对硅酸盐细菌、金黄色葡萄球菌和大肠杆菌胞外有机酸主要组分进行定性定量分析,考察了细菌胞外有机酸对方解石的溶蚀效应。实验结果表明,3种常见细菌的胞外有机酸主要组分有草酸、乳酸、柠檬酸和琥珀酸;不同有机酸对方解石的溶蚀效应不同,但均能不同程度地促进Ca离子的释放;草酸、乳酸和琥珀酸对方解石发生作用后,表现为颗粒失重,而柠檬酸对方解石发生作用后,导致其发生重结晶行为,能改变方解石的表面形貌,使残余固体呈纤维状;在草酸和柠檬酸作用下,残余固体表现出了对有机酸基团(如C=O、C—C或C—H)的吸附,特别是柠檬酸在1 600~500 cm-1区域。  相似文献   

9.
<正>细菌胞外聚合物(Extracellular polymeric sub-stances,EPS)是在细菌细胞周围形成的胶浆外壳状的新陈代谢产物(Bhaskar等,2006)。细菌胞外聚合物在细菌与矿物作用时具有提供初始Fe(Ⅲ)、吸附作用、提供反应空间、屏蔽有害离子的  相似文献   

10.
一株胶质芽胞杆菌对磷矿石风化作用的实验研究   总被引:1,自引:0,他引:1  
谌书  连宾  刘丛强 《矿物学报》2008,28(1):77-83
以一株质芽孢杆菌为例研究实验条件下微生物对磷矿石的风化作用.以直接作用和间接作用的方式研究培养基中胶质芽孢杆菌对磷矿粉的风化作用,即在装有100目磷矿石粉的液体培养基中接种,研究该菌对磷矿石粉的直接风化作用;同时,将装有100目磷矿石粉的透析袋放入液体培养基中再接入该菌,研究其对磷矿石粉的间接风化作用.按不同时间取培养液上清液,过滤,用电感耦合等离子体发射光谱(ICP-OES)测定滤液中Ca2 、Mg2 、Na 、Mn2 、Al3 、Fe3 和K 等浓度,比色法测定水溶性P(Pws)和水溶性Si (Siws) 的含量;滤膜上的固体物称重并消解后,同上方法测定Ca2 、Mg2 、Na 、Mn2 、Al3 、Fe3 和K 等浓度以及Pws和Siws含量.此外,细菌风化作用后的矿物残渣用电子探针作表面微观形态分析和XRD矿物物相分析.结果表明:胶质芽孢杆菌对磷矿石粉风化的直接作用强度大于间接作用;对不同矿物的风化强度不同,对粘土矿物的风化作用较明显.提出细菌对磷矿石的风化作用源自细菌生长导致的机械破坏作用、胞外分泌物的生化降解作用以及多种因素之间的协同作用.  相似文献   

11.
生物吸附法是含重金属废水处理技术一种新兴的、颇具应用前景的技术.与传统处理技术相比,它具有效率高和运行成本低等优点[1~3].生物吸附法去除重金属的机理主要有细胞外积累/沉淀、细胞表面吸附/沉淀和细胞内积累[4].研究表明,胞外聚合物(EPS)在去除水溶液中的重金属中起重要作用[5~9].虽然已有大量的文献报道了细菌、真菌等微生物吸附重金属,但有关微生物分泌的EPS吸附重金属的行为和机理研究还相对薄弱.本研究的目标是研究硫酸盐还原菌(SRB)分泌的EPS对Ni2+的吸附行为及其机理.  相似文献   

12.
微生物成矿     
微生物对生命元素如碳、氮、硫、氧和金属离子的代谢作用能显著的改变微生物周边的外部环境和其内部环境。在一系列的生物地球化学过程中,微生物参与了矿产的沉积(生物成矿)或参与了矿石和岩石的溶解(生物风化)。生物成矿作用有两个途径:一个叫生物诱导成矿,通过这个过程,微生物分泌出代谢产物导致了之后的矿物颗粒的沉积;另一个叫生物控制成矿,在这个过程中,微生物在控制矿物成核和生长上起到了显著作用。微生物成因的矿物总体来说颗粒都很小和/或有着独特的同位素特征。最普遍的生物成因矿物有碳酸盐、硫化物和铁的氧化物。细胞表面和其分泌的胞外聚合物的结构可以为离子的浓缩、聚合和矿化提供模板,并起到重要作用。地球材料的仿生合成帮助我们了解了在人工条件下的生物成矿机制。此外,在地质环境中生物成因的矿物还可以作为一种生物信号,用来重建地球和其他行星的起源和演化。  相似文献   

13.
用微量热技术研究了不同条件下Acidithiobacillus ferrooxidans ATCC23270(以下简写为A.ferrooxidans ATCC23270)与硫化矿吸附过程的热量变化以及不同细菌浓度、不同的初始pH值及不同的培养条件下细菌的代谢产热情况.研究发现,矿浆浓度0.03 g/mL,细萧浓度1.7×108个/mL的时候细菌与矿物的吸附放热最大.不同条件培养的细菌胞外多聚物的组成不同,与矿物吸附的反应热也不相同,黄铁矿培养细菌胞外多聚物含量最高,反应热也最高,说明细菌胞外多聚物在吸附过程中起重要作用.用微量热法能够很好地反映出细菌生长代谢过程中每个微观时刻的热量变化.对于A.ferrooxidans ATCC23270,最佳的代谢产热条件为:pH值为2.0和2.3,细菌浓度为3.0×108个/mL.不同培养条件下的细菌的生长代谢热不同,2039+FeSO4培养的代谢热最大、放热最快.  相似文献   

14.
研究云母和长石等原生硅酸盐矿物的风化速率和风化产物对于深入理解土壤发生过程、营养元素循环以及全球气候变化具有重要的理论意义。本文从自然风化、人工化学风化和生物风化3方面总结了原生硅酸盐矿物风化作用及其产物的特点,重点阐述了微生物参与下的生物风化作用和生物矿化作用及其意义。野外观察和室内实验研究结果表明,微生物可以加速矿物的分解,而且其细胞表面及其产生的胞外多聚糖可以作为次生矿物成核的模板。  相似文献   

15.
利用硅酸盐细菌研究了微生物对硅酸盐矿物的分解作用。选取层状硅酸盐矿物蒙脱石在30℃与一株编号为3025的硅酸盐细菌B.mucilaginosus进行交互作用,并利用电感耦合等离子体发射光谱仪(ICP-AES)分析溶液中Si、Al、Mg离子的出溶量,利用X射线衍射(XRD)和显微红外光谱(Micro-FTIR)分析微生物作用后矿物物相和微结构变化。发现经硅酸盐细菌作用后,蒙脱石化学成分及晶体结构发生了细微变化,为微生物活动促进粘土矿物分解作用研究提供了实验和理论依据。  相似文献   

16.
本文揭示了自然界中可能存在的一种新的矿物和微生物交互作用形式,即微生物通过生物电化学作用参与到半导体 矿物的日光催化作用过程中。模拟日光光源下“产电”微生物与天然半导体矿物金红石交互实验结果显示,金红石的光催 化作用促进了矿物端元的反应速率,提高了电子在微生物和矿物之间的转移效率,使微生物电子传递链末端电子能量得到 提升。二者协同作用可提高微生物或半导体矿物单独作用时对污染物如Cr(Ⅵ)的还原处理效果。该研究为环境污染治理提 供了一种矿物与微生物协同作用新理念。  相似文献   

17.
氧化锰矿物的生物成因及其性质的研究进展   总被引:5,自引:0,他引:5  
土壤中的氧化锰矿物是原生矿物风化和成土过程的产物,是最具反应活性的一类矿物,决定着环境中许多物质的形态、迁移和转化,在元素生物地球化学循环中起着重要的作用,其形成机制和环境效应备受关注。已有的研究表明,环境中氧化锰的形成与微生物作用紧密相关,微生物作用可使自然环境中的Mn(Ⅱ)氧化速率提高105倍。参与Mn(Ⅱ)氧化的微生物在环境中广泛存在,已知的典型锰氧化细菌分布在变形菌门、放线菌门或厚壁菌门,它们均通过胞外聚合物中的多铜氧化酶来催化氧化Mn(Ⅱ)。细菌氧化Mn(II)成Mn(Ⅳ)是酶催化的两个连续的快速单电子传递过程,Mn(Ⅲ)在溶液中以与酶结合的瞬时中间态出现。生物形成氧化锰的最初形态为层状锰矿物,与δ-MnO2或酸性水钠锰矿很类似,且结晶弱,粒径小,锰氧化度高,结构中的八面体空穴多,因而比化学形成的氧化锰具有更强的吸附、氧化等表面活性。环境中Mn(Ⅱ)微生物氧化及形成的Mn(Ⅲ)中间体与碳、氮、硫等生命元素的地球化学循环的关系令人关注。  相似文献   

18.
土壤微生物与矿物的吸附作用在矿物风化过程中具有重要的意义。为了优化细菌在矿物表面吸附量的测定方法,本文以胶质芽孢杆菌和蒙脱石、伊利石、高岭石为实验材料,对吸附在矿物表面的细菌数量的测定方法进行了研究。结果表明,利用茚三酮作为显色剂测定细菌蛋白质含量的方法可以获得可靠的细菌数量;以2000rpm转数离心10min可以有效地将矿物-细菌复合体与游离态细菌、矿物分开;3种矿物对胶质芽孢杆菌的吸附能力大小顺序为:蒙脱石伊利石高岭石;矿物的比表面积、沉淀速率和表面所带电荷数量以及细菌细胞活性是影响吸附量的主要因素;黏土矿物与细菌之间的吸附作用力主要来自阳离子桥。  相似文献   

19.
微生物降解蒙脱石层间吸附有机质的实验研究   总被引:1,自引:0,他引:1  
近年来,国内外学者意识到,有机质在蒙脱石结构层间的吸附是有机质保存的重要机理之一,然而,目前关于微生物能否降解蒙脱石层间吸附有机质以及降解的程度等尚没有任何实验数据的支撑。本文试图通过人工合成含有层间吸附有机质的蒙脱石,利用海洋和湖泊沉积物中常见的降解有机质的微生物对其进行降解实验,据此探讨有机质的蒙脱石层间吸附在沉积物埋藏过程中对有机质保存的贡献。有机质选择半胱氨酸和甲苯,前者是生物生长所需的一种重要氨基酸,后者大量存在于土壤和沉积物中,多种细菌可以在有碳氢化合物的环境下将其降解。实验菌种选择恶臭假单胞杆菌(Pseudomonas putida)和腐败希瓦氏菌(Shewanella putrefaciens CN32)2种细菌,它们均为海洋和湖泊沉积物中的主导微生物,前者有较强的有机质降解能力,后者为铁的还原菌,厌氧代谢过程中能将蒙脱石结构中的Fe(III)还原为Fe(II)。通过上述不同菌种对蒙脱石层间吸附不同性质有机质的降解实验,结果显示,微生物对蒙脱石层间吸附的有机质的降解方式主要有分泌有机酸直接降解和破坏层间结构释放有机物从而进行降解。代表菌种假单胞菌和希瓦氏菌对半胱氨酸绿脱石及甲苯绿脱石的作用表明,微生物通过分泌有机酸的形式对蒙脱石层间吸附的有机质降解作用很有限,该结构在恒定的有氧和无氧条件下对保存有机质有利;希瓦氏菌在严格无氧条件下通过还原Fe(III)进行代谢,实验表明,无氧条件下,希瓦氏菌可以一定程度破坏矿物结构,释放并消耗有机物,因此,铁还原微生物对蒙脱石层间吸附有机质的保存有一定的影响,但由于微生物对矿物晶体结构的破坏能力有限,故其对层间吸附有机质降解的能力也有限;不同有机物对生物降解过程也有影响,这些影响取决于有机质的特性及有机质与细菌之间的相互作用。绿脱石层间吸附的半胱氨酸对生物生长有利,从而可能促进生物还原Fe(III)作用。相反,甲苯却很明显的抑制了Fe(III)的还原。由此可见,有机质的蒙脱石层间吸附是有机质保存的重要方式之一。  相似文献   

20.
白云石的成因机制一直是地球科学领域备受争论的议题.传统研究多认为白云石为次生成因.新近提出的"微生物(有机)白云石模式"认为该矿物在微生物或有机物作用下可以从溶液中直接沉淀,从而为白云石的成因研究提供了新思路.总结了该模式近20年来取得的重要进展,并指出尚待弥补的环节.微生物的催化机理主要表现为其代谢作用可提高胞外微环境中白云石的饱和度,同时其携带负电荷的细胞外壁可作为白云石晶体的成核位点.微生物成因白云石呈球状、哑铃状和花椰菜形等外貌.高盐度有利于微生物介导低温白云石沉淀,而硫酸根扮演的角色则仍需进一步验证.最新的研究表明微生物胞外聚合物有助于Mg~(2+)摆脱水合作用的束缚,是微生物催化白云石形成的关键.非微生物源的羧基化合物也可通过与胞外聚合物类似的途径在白云石饱和溶液中促进低温白云石形成.微生物(有机)成因白云石为原白云石,而非有序白云石.目前对微生物(有机)成因白云石在成岩改造中的演化过程仍然缺乏认识,是"微生物(有机)白云石模式"的缺失环节,亟待完善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号