首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
Jurassic basanite necks occurring at the junction of two major fault zones in Scania contain ultramafic (peridotites, pyroxenites) and mafic xenoliths, which together indicate a diversity of upper mantle and lower crustal assemblages beneath this region. The peridotites can be subdivided into lherzolites, dunites and harzburgites. Most lherzolites are porphyroclastic, containing orthopyroxene and olivine porphyroclasts. They consist of Mg-rich silicates (Mg# = Mg/(Mg + Fetot) × 100; 88–94) and vermicular spinel. Calculated equilibration temperatures are lower in porphyroclastic lherzolites (975–1,007°C) than in equigranular lherzolite (1,079°C), indicating an origin from different parts of the upper mantle. According to the spinel composition the lherzolites represent residues of 8–13% fractional melting. They are similar in texture, mineralogy and major element composition to mantle xenoliths from Cenozoic Central European volcanic fields. Dunitic and harzburgitic peridotites are equigranular and only slightly deformed. Silicate minerals have lower to similar Mg# (83–92) as lherzolites and lack primary spinel. Resorbed patches in dunite and harzburgite xenoliths might be the remnants of metasomatic processes that changed the upper mantle composition. Pyroxenites are coarse, undeformed and have silicate minerals with partly lower Mg# than peridotites (70–91). Pyroxenitic oxides are pleonaste spinels. According to two-pyroxene thermometry pyroxenites show a large range of equilibration temperatures (919–1,280°C). In contrast, mafic xenoliths, which are mostly layered gabbronorites with pyroxene- and plagioclase-rich layers, have a narrow range of equilibration temperatures (828–890°C). These temperature ranges, together with geochemical evidence, indicate that pyroxenites and gabbroic xenoliths represent mafic intrusions within the Fennoscandian crust.  相似文献   

2.
Mantle xenoliths and xenocrysts were retrieved from three of the 88–86 Ma Buffalo Hills kimberlites (K6, K11, K14) for a reconnaissance study of the subcontinental lithospheric mantle (SCLM) beneath the Buffalo Head Terrane (Alberta, Canada). The xenoliths include spinel lherzolites, one garnet spinel lherzolite, garnet harzburgites, one sheared garnet lherzolite and pyroxenites. Pyroxenitic and wehrlitic garnet xenocrysts are derived primarily from the shallow mantle and lherzolitic garnet xenocrysts from the deep mantle. Harzburgite with Ca-saturated garnets is concentrated in a layer between 135–165 km depth. Garnet xenocrysts define a model conductive paleogeotherm corresponding to a heat flow of 38–39 mW/m2. The sheared garnet lherzolite lies on an inflection of this geotherm and may constrain the depth of the lithosphere–asthenosphere boundary (LAB) beneath this region to ca 180 km depth.

A loss of >20% partial melt is recorded by spinel lherzolites and up to 60% by the garnet harzburgites, which may be related to lithosphere formation. The mantle was subsequently modified during at least two metasomatic events. An older metasomatic event is evident in incompatible-element enrichments in homogeneous equilibrated garnet and clinopyroxene. Silicate melt metasomatism predominated in the deep lithosphere and led to enrichments in the HFSE with minor enrichments in LREE. Metasomatism by small-volume volatile-rich melts, such as carbonatite, appears to have been more important in the shallow lithosphere and led to enrichments in LREE with minor enrichments in HFSE. An intermediate metasomatic style, possibly a signature of volatile-rich silicate melts, is also recognised. These metasomatic styles may be related through modification of a single melt during progressive interaction with the mantle. This metasomatism is suggested to have occurred during Paleoproterozoic rifting of the Buffalo Head Terrane from the neighbouring Rae Province and may be responsible for the evolution of some samples toward unradiogenic Nd and Hf isotopic compositions.

Disturbed Re–Os isotope systematics, evident in implausible model ages, were obtained in situ for sulfides in several spinel lherzolites and suggest that many sulfides are secondary (metasomatic) or mixtures of primary and secondary sulfides. Sulfide in one peridotite has unradiogenic 187Os/188Os and gives a model age of 1.89±0.38 Ga. This age coincides with the inferred emplacement of mafic sheets in the crust and suggests that the melts parental to the intrusions interacted with the lithospheric mantle.

A younger metasomatic event is indicated by the occurrence of sulfide-rich melt patches, unequilibrated mineral compositions and overgrowths on spinel that are Ti-, Cr- and Fe-rich but Zn-poor. Subsequent cooling is recorded by fine exsolution lamellae in the pyroxenes and by arrested mineral reactions.

If the lithosphere beneath the Buffalo Head Terrane was formed in the Archaean, any unambiguous signatures of this ancient origin may have been obliterated during these multiple events.  相似文献   


3.
This study characterizes the nature of fluid interaction andmelting processes in the lithospheric mantle beneath the Yingfenglingand Tianyang volcanoes, Leizhou Peninsula, South China, usingin situ trace-element analyses of clinopyroxene, amphibole andgarnet from a suite of mantle-derived xenoliths. Clinopyroxenesfrom discrete spinel lherzolites exhibit large compositionalvariations ranging from extremely light rare earth element (LREE)-depletedto LREE-enriched. Trace-element modelling for depleted samplesindicates that the Leizhou lherzolites are the residues of amantle peridotite source after extraction of 1–11% meltgenerated by incremental melting in the spinel lherzolite fieldwith the degree of melting increasing upwards from about 60km to 30 km. This process is consistent with gradational meltingat different depths in an upwelling asthenospheric column thatsubsequently cooled to form the current lithospheric mantlein this region. The calculated melt production rate of thiscolumn could generate mafic crust 5–6 km thick, whichwould account for most of the present-day lower crust. The formationof the lithospheric column is inferred to be related to Mesozoiclithosphere thinning. Al-augite pyroxenites occur in compositexenoliths; these are geochemically similar to HIMU-type oceanisland basalt. These pyroxenites postdate the lithospheric columnformation and belong to two episodes of magmatism. Early magmatism(forming metapyroxenites) is inferred to have occurred duringthe opening of the South China Sea Basin (32–15 Ma), whereasthe most recent magmatic episode (producing pyroxenites withigneous microstructures) occurred shortly before the eruptionof the host magmas (6–0·3 Ma). Trace-element traversesfrom the contacts of the Al-augite pyroxenite with the spinelperidotite wall-rock in composite xenoliths record gradientsin the strength and nature of metasomatic effects away fromthe contact, showing that equilibrium was not attained. Significantenrichment in highly incompatible elements close to the contacts,with only slight enrichment in Sr, LREE and Nb away from thecontact, is inferred to reflect the different diffusion ratesof specific trace elements. The observed geochemical gradientsin metasomatic zones show that Sr, La, Ce and Nb have the highestdiffusion rates, other REE are intermediate, and Zr, Hf andTi have the lowest diffusion rates. Lower diffusion rates observedfor Nb, Zr, Hf and Ti compared with REE may cause high fieldstrength element (HFSE) negative anomalies in metasomatizedperidotites. Therefore, metasomatized lherzolites with HFSEnegative anomalies do not necessarily require a carbonatiticmetasomatizing agent. KEY WORDS: China; lithosphere; mantle xenoliths; clinopyroxene trace elements; mantle partial melting; mantle metasomatism; trace-element diffusion rates  相似文献   

4.
Coarse-grained, granular spinel lherzolites xenoliths from the Premier kimberlite show evidence of melt extraction and metasomatic enrichment, documenting a complex history for the shallow mantle beneath the Bushveld complex. Compositions of orthopyroxene, clinopyroxene and spinel indicate equilibration within the spinel–peridotite facies of the upper mantle, at depths from 80 to 100 km and temperatures from 720 to 850 °C. Bulk compositions have lower Mg-number [atomic 100 Mg/(Mg + Fe*)] than previously studied spinel peridotites from Premier, and have higher Mg/Si than low-temperature coarse grained garnet lherzolites, suggesting shallower melting conditions or metasomatic enrichment. Clinopyroxene in one sample is highly LREE-depleted indicating very minor modification of a residue of 20% melt extraction, whereas the calculated REE pattern for a melt in equilibrium with a mildly LREE-depleted sample is similar to MORB or late Archean basalt, possibly related to the Bushveld Complex. Bulk and mineral compositions suggest minimal refertilization by silicate melts in four out of six samples, but REE patterns indicate introduction of a LIL-enriched component that may be related to kimberlite.  相似文献   

5.
Ultramafic xenoliths were found in recent alkali basalts from São Tomé Island. These include spinel peridotites (lherzolites, harzburgites and dunites) and pyroxenites (orthopyroxenites and clinopyroxenites). Textures and mineral compositions indicate that pyroxenites originated from crystal/liquid separation processes operating on magmas similar to those giving rise to their present host rocks whereas spinel peridotite xenoliths had an accidental origin; Fo (>89) and Ni (>0.36 wt.%) contents in olivines, Mg# (91–95) of orthopyroxenes and low Ti in clinopyroxene (primary crystals: TiO2<0.06 wt.%) and in spinel (TiO2<0.1 wt.%) are within the range reported for abyssal peridotites, indicating São Tomé spinel peridotites represent refractory residues of melting. Nevertheless, the lack of correlation between mineral chemistry and modal composition suggests that spinel peridotite xenoliths are not simple residues and were affected by infiltration of fluid/melts within the mantle. The wide temperature range obtained for spinel peridotites (700 to >1150 °C) is compatible with a long period of pre-entrainment cooling supporting Fitton's [Tectonophysics 94 (1983) 473] hypothesis that proposes oceanic lithosphere uprising in the Cameroon Volcanic Line prior to the initiation of the current thermal regime, related to São Tomé magmatism. The association of upper mantle (peridotite) xenoliths with igneous cumulates (pyroxenites) suggests that the spinel peridotite suite originated in the uppermost mantle above the São Tomé magma storage zone(s), probably in a region of high strain rate, near the boundary between the mantle and the overlying oceanic crust.  相似文献   

6.
The petrology and geochemistry of peridotite xenoliths in the Cenozoic basalts from Fanshi, the central North China Craton (NCC), provide constraints on the evolution of sub-continental lithospheric mantle. These peridotite xenoliths are mainly spinel-facies lherzolites with minor harzburgites. The lherzolites are characterized by low forsterite contents in olivines (Fo < 91) and light rare earth element (LREE) enrichments in clinopyroxenes. In contrast, the harzburgites are typified by high-Fo olivines (> 91), high-Cr# spinels and clinopyroxenes with low abundances of heavy REE (HREE). These features are similar to those from old refractory lithospheric mantle around the world, and thus interpreted to be relics of old lithospheric mantle. The old lithospheric mantle has been chemically modified by the influx of melts, as evidenced by the Sr–Nd isotopic compositions of clinopyroxenes and relatively lower Fo contents than typical Archean lithospheric mantle (Fo > 92.5). The Sr–Nd isotopic compositions of harzburgites are close to EM1-type mantle, and of the lherzolites are similar to bulk silicate earth. The latter could be the result of recent modification of old harzburgites by asthenospheric melt, which is strengthened by fertile compositions of minerals in the lherzolites. Therefore, the isotopic and chemical heterogeneities of the Fanshi peridotite xenoliths reflect the refertilization of ancient refractory lithospheric mantle by massive addition of asthenospheric melts. This may be an important mechanism for the lithospheric evolution beneath the Central NCC.  相似文献   

7.
Several types of xenoliths occur in a Permian basanite sill in Fidra, eastern central Scotland. One group consists of spinel lherzolites, which have geochemical and isotopic characteristics similar to those of lithospheric upper mantle from elsewhere in western Europe, with both LREE-depleted and LREE-enriched compositions. A separate group comprises pyroxenites and wehrlites, some of which contain plagioclase; these have compositions and textures that indicate that they are cumulates from mafic magmas. In terms of Sr and Nd isotope compositions, the pyroxenites closely resemble the host basanite and most likely formed by high-pressure fractionation of Permo-Carboniferous alkaline magmas at lower crustal depths. They also have mantle-like δ18O values. A third group is composed of granulite xenoliths that vary between plagioclase-rich and clinopyroxene-rich compositions, some of which probably form a continuum with the pyroxenites and wehrlites. They are all LREE-enriched and most have positive Eu anomalies; thus, they are also mostly cumulates from mafic magmas. Many of the granulites also have Sr and Nd radiogenic isotope ratios similar to those of the host basanite, indicating that they have formed from a similar magma. However, several of the granulites show more enriched isotopic compositions, including higher δ18O values, trending towards an older crustal component. Thus, the pyroxenites and granulites are largely cogenetic and are mainly the product of a mafic underplating event that occurred during the widespread magmatism in central Scotland during Permo-Carboniferous times.  相似文献   

8.
The Shiribeshi Seamount off northwestern Hokkaido, the Sea of Japan, is a rear-arc volcano in the Northeast Japan arc. This seamount is composed of calc-alkaline and high-K basaltic to andesitic lavas containing magnesian olivine phenocrysts and mantle peridotite xenoliths. Petrographic and geochemical characteristics of the andesite lavas indicate evidence for the reaction with the mantle peridotite xenoliths and magma mixing between mafic and felsic magmas. Geochemical modelling shows that the felsic end-member was possibly derived from melting of an amphibolitic mafic crust. Chemical compositions of the olivine phenocrysts and their chromian spinel inclusions indicate that the Shiribeshi Seamount basalts in this study was derived from a primary magma in equilibrium with relatively fertile mantle peridotites, which possibly represents the mafic end-member of the magma mixing. Trace-element and REE data indicate that the basalts were produced by low degree of partial melting of garnet-bearing lherzolitic source. Preliminary results from the mantle peridotite xenoliths indicate that they were probably originated from the mantle beneath the Sea of Japan rather than beneath the Northeast Japan arc.  相似文献   

9.
In order to provide mantle and crustal constraints during the evolution of the Colombian Andes, Sr and Nd isotopic studies were performed in xenoliths from the Mercaderes region, Northern Volcanic Zone, Colombia. Xenoliths are found in the Granatifera Tuff, a deposit of Cenozoic age, in which mantle- and crustal-derived xenoliths are present in bombs and fragments of andesites and lamprophyres compositions. Garnet-bearing xenoliths are the most abundant mantle-derived rocks, but websterites (garnet-free xenoliths) and spinel-bearing peridotites are also present in minor amounts. Amphibolites, pyroxenites, granulites, and gneisses represent the lower crustal xenolith assemblage. Isotopic signatures for the mantle xenoliths, together with field, petrographic, mineral, and whole-rock chemistry and pressure–temperature estimates, suggest three main sources for these mantle xenoliths: garnet-free websterite xenoliths derived from a source region with low P and T (16 kbar, 1065 °C) and MORB isotopic signature, 87Sr/86Sr ratio of 0.7030, and 143Nd/144Nd ratio of 0.5129. Garnet-bearing peridotite and websterite xenoliths derived from two different sources in the mantle: i) a source with intermediate P and T (29–35 kbar, 1250–1295 °C) conditions, similar to that of sub-oceanic geotherm, with an OIB isotopic signature (87Sr/86Sr ratio of 0.7043 and 143Nd/144Nd ratio of 0.5129); and ii) another source with P and T conditions similar to those of a sub-continental geotherm (>38 kbar, 1140–1175 °C) and OIB isotopic characteristics (87Sr/86Sr ratio=0.7041 and 143Nd/144Nd ratio=0.5135).  相似文献   

10.
Mantle xenoliths from the Olot volcanic district (NE Spain) comprise a bi-modal suite consisting of protogranular spinel lherzolites (cpx 12–14%) sometimes with pargasitic amphibole, and highly refractory spinel harzburgites (cpx ≤ 1%) with coarse-grained granular textures. The lherzolites range from slightly depleted to moderately LREE-enriched with flat HREE patterns between 1.5 and 2.7 × chondrite (Ch). In contrast, the harzburgites are extremely depleted in HREE (down to 0.2 × Ch) and strongly LREE-enriched (LaN/YbN = 12.3–17.2). LA-ICP-MS analyses of clinopyroxene and amphibole of the lherzolites highlight variable degrees of LREE depletion (HREE up to 13 × Ch, LaN/YbN down to 0.01), with the exception of a single sample in which both clinopyroxene and amphibole are LREE-enriched (LaN/YbN up to 19). In the harzburgites, clinopyroxenes display totally different REE distributions, characterized by extreme HREE depletion (down to 0.4 × Ch) and upward convex positively fractionated middle-light REE patterns (NdN/YbN up to 20.7 × Ch; LaN/YbN up to 12 × Ch). Sr–Nd–Hf isotopic data for both whole-rocks and cpx separates, coherently indicate depleted mantle (DM) compositions for the lherzolites (εSr = − 15 to − 26, εNd = + 9 to + 17, εHf = + 18 to + 68) and enriched mantle (EM) compositions for the harzburgites (εSr = − 10 to + 36, εNd = − 1 to − 6, εHf = + 3 to + 8). Modelling of the clinopyroxene REE data and isotopic systematics suggest that some lherzolites were affected by pre-Paleozoic (0.6–1 By) low-degree partial melting processes, while others probably reflect some extent of refertilization of the mantle protolith by metasomatizing melts similar to the Triassic rift-related tholeiites reported from several Pyrenean localities. The harzburgites represent extreme refractory residua, resulting from a complex depletion history due to multistage melt extraction as often observed in the cratonic mantle. The distinctive REE patterns and isotopic systematics of their clinopyroxenes suggest that the harzburgites were formed by the interaction of an ultra-depleted peridotite matrix with highly alkaline basic melts similar in composition to the Permo-Triassic alkaline lamprophyres which are widespread within the Iberian plate. Lherzolites possibly represent younger lithosphere (accreted asthenosphere?) up-lifted and juxtaposed to the older subcontinental lithospheric mantle (harzburgites) during the post-Variscan rifting of the Iberian margin. These two genetically different, but adjoining, mantle domains intimately mingled along the northern Iberian margin during the subsequent plate convergence processes, leading to the close association of harzburgites and lherzolites observed in the Olot mantle xenoliths and in some Pyrenean peridotite massifs.  相似文献   

11.
The Monglo adakite contains mafic and ultramafic xenoliths, which probably originated from the mantle section of an Early Cretaceous supra-subduction zone ophiolitic complex located within the Luzon arc crust. Spinel-bearing dunites are dominant among this xenolith collection and display evidence for three episodes of subduction-related melt percolation. The first one is evidenced by an undeformed clinopyroxene characterized by convex-upwards REE pattern. This clinopyroxene crystallized from a calc-alkaline basaltic magma, likely formed in the Cretaceous supra-subduction setting of the ophiolite. Then, two metasomatic events, evidenced by orthopyroxene-rich and amphibole-rich secondary parageneses, respectively, affected most of the spinel dunites. The opx-rich paragenesis is related to the circulation within the dunitic upper mantle of hydrous slab-derived melts similar to those affecting the mantle peridotite xenoliths from Papua New Guinea and Kamchatka. Finally the amphibole-rich veins are related to the interaction between the studied dunite xenoliths and the host adakite or an adakitic melt similar to it.  相似文献   

12.
Ultramafic and mafic xenoliths of magmatic origin, sampled in the Beaunit vent (northern French Massif Central), derive from the Permian (257 Ma) Beaunit layered complex (BLC) that was emplaced at the crust-mantle transition zone (∼1 GPa). These plutonic xenoliths are linked to a single fractional crystallisation process in four steps: peridotitic cumulates; websteritic cumulates; Al-rich mafic cumulates (plagioclase, pyroxenes, garnet, amphibole and spinel) and finally low-Al mafic cumulates. This sequence of cumulates can be related to the compositional evolution of hydrous Mg basaltic magma that evolved to high-Al basalt and finally to andesitic basalt. Sr and Nd isotopic compositions confirm the co-genetic character of the various magmatic xenoliths and argue for an enriched upper mantle source comparable to present mantle wedges above subduction zones. LILE, LREE and Pb enrichment are a common feature of all xenoliths and argue for an enriched sub-alkaline transitional parental magma. The existence of a Permian magma chamber at 30 km depth suggests that the low-velocity zone observed locally beneath the Moho probably does not represent an anomalous mantle but rather a sequence of mafic/ultramafic cumulates with densities close to those of mantle rocks.  相似文献   

13.
Mantle derived xenoliths in India are known to occur in the Proterozoic ultrapotassic rocks like kimberlites from Dharwar and Bastar craton and Mesozoic alkali igneous rocks like lamrophyres, nephelinites and basanites. The xenoliths in kimberlites are represented by garnet harzburgites, lherzolites, wehrlite, olivine clinopyroxenites and kyaniteeclogite varieties. The PT conditions estimated for xenoliths from the Dharwar craton suggest that the lithosphere was at least 185 km thick during the Mid-Proterozoic period. The ultrabasic and eclogite xenoliths have been derived from depths of 100–180 km and 75–150 km respectively. The Kalyandurg and Brahmanpalle clusters have sampled the typical Archaean subcontinental lithospheric mantle (SCLM) with a low geotherm (35 mW/m2) and harzburgitic to lherzolitic rocks with median Xmg olivine > 0.93. The base of the depleted lithosphere at 185–195 km depth is marked by a 10–15 km layer of strongly metasomatised peridotites (Xmg olivine > ∼0.88). The Anampalle and Wajrakarur clusters 60 km to the NW show a distinctly different SCLM; it has a higher geotherm (37.5 to 40 mW/m2) and contains few subcalcic harzburgites, and has a median Xmg olivine = 0.925. In contrast, the kimberlites of the Uravakonda and WK-7 clusters sampled quite fertile (median Xmg olivine ∼0.915) SCLM with an elevated geotherm (> 40 mW/m2). The lamrophyres, basanites and melanephelinites associated with the Deccan Volcanic Province entrain both ultramafic and mafic xenoliths. The ultramafic group is represented by (i) spinel lherzolites, harzburgites, and (ii) pyroxenites. Single pyroxene granulite and two pyroxene granulites constitutes the mafic group. Temperature estimates for the West Coast xenoliths indicate equilibration temperatures of 500–900°C while the pressure estimates vary between 6–11 kbar corresponding to depths of 20–35 km. This elevated geotherm implies that the region is characterized by abnormally high heat flow, which is also supported by the presence of linear array of hot springs along the West Coast. Spinel peridotite xenoliths entrained in the basanites and melanephelinites from the Kutch show low equilibrium temperatures (884–972°C). The estimated pressures obtained on the basis of the absence of both plagioclase and garnet in the xenoliths and by referring the temperatures to the West Coast geotherm is ∼ 15 kbar (40–45 km depth). The minimum heat flow of 60 to 70 mW/m2 has been computed for the Kutch xenolith (Bhujia hill), which is closely comparable to the oceanic geotherm. Xenolith studies from the West Coast and Kutch indicate that the SCLM beneath is strongly metasomatised although the style of metasomatism is different from that below the Dharwar Craton.  相似文献   

14.
Samples of the deep crust and upper mantle in the Northern Andes occur as abundant xenoliths in the Granatífera Tuff, a late Cenozoic vent in the Mercaderes area of SW Colombia. The lower crustal assemblage includes granulites, hornblendites, pyribolites, pyroxenites and gneisses; mafic rocks predominate, but felsic material is also common. PT conditions for the pyribolite assemblages (i.e. Hbl+Fs/Scp+Grt+Cpx+Qtz±Bt), which are the best constrained, are 720–850 °C and 10–14 kbar, consistent with a deep-to-lower crustal origin. A notable feature of this xenolith suite is that it is dominated by hornblende. However, mineral reactions within the suite show that there is a transition from amphibolite to granulite facies, and there is a probable restite–melt relationship represented within the suite. However, the latter appears to be dominated by hornblende and garnet.The mafic rocks mostly lack the high Cr and Ni that would be expected of cumulates. Neither do they possess the positive Sr and Eu anomalies that would be consistent with resite or cumulate models for the lower crust. They bear greatest similarity to oceanic basalts (s.l.). The Rb contents of the xenoliths, whether mafic or silicic, are very low, and the more silicic members of the suite tend to have small positive Sr and Eu anomalies, which are transitional to adakitic compositions. The Sr isotopic compositions of the xenoliths lie between 0.704 and 0.705; however, the Nd isotopic compositions are much more variable, indicating considerable long-term heterogeneity. Few of the xenoliths can be compositionally recognised as metasedimentary; however, a sedimentary component is evident in the Pb isotopic compositions. Within these constraints, our favoured model is a deep crust formed by basaltic components (subduction–accretion?), and minor sediment, which is subject to an increase in thermal gradient to produce the granulites, any melting being dominated by hornblende-out reactions involving garnet. However, there is no evidence of any pervasive crustal melting, leading to the conclusion that the voluminous Andean magmatism arises from the mantle wedge.  相似文献   

15.
Mafic and ultramafic xenoliths in a basaltic cone at The Anakies in south-eastern Australia are geochemically equivalent to continental basaltic magmas and cumulates. The xenolith microstructures range from recognizably meta-igneous for intrusive rocks to granoblastic for garnet pyroxenites. Contact relationships between different rock types within some xenoliths suggest a complex petrogenesis of multiple intrusive, metamorphic and metasomatic events at the crust/mantle boundary during the evolution of south-eastern Australia. Unaltered spinel lher-zolite, typical of the uppermost eastern Australian mantle, is interleaved with or veined by the metamorphosed intrusive rocks of basaltic composition. Geothermobarometry calculations by a variety of methods show a concordance of equilibration temperatures ranging from 880°C to 980°C and pressures of 12 to 18 kbar (1200-1800 mPa). These physical conditions span the gabbro to granulite to eclogite transition boundaries. The water-vapour pressure during equilibration is estimated to be about 0.5% of the load pressure, using amphibole breakdown data. Large fluid inclusions of pure CO2 are abundant in the mineral phases in the xenoliths, and it is suggested that flux of CO2 from the mantle has been an important heat source and fluid medium during metamorphism of the mafic and ultramafic protoliths at the lower crust/upper mantle boundary. The calculated pressures and temperatures suggest that the south-eastern Australian crust has sustained a high geothermal gradient. In addition, the nature of the mineral assemblages and the contact relationships of granulitic rock with spinel lherzolite, characteristic of mantle material, suggest that the Moho is not a discrete feature in this region, but is represented by a transition zone approximately 20 km thick. These inferences are in agreement with geophysical data (including seismic, heat-flow and electrical resistivity data) determined for south-eastern Australia. Underplating at the crust/mantle boundary by continental basaltic magmas may be an important alternative or additional mechanism to the conventional andesite model for crustal accretion.  相似文献   

16.
郑建平  平先权  夏冰  余淳梅 《岩石学报》2013,29(7):2456-2464
人们普遍认为华北区别于华南的主要特征在于缺少广泛的新元古代岩浆活动,但原因是什么还不清楚。本文汇总了华北四个地区深源岩石包体中有这样同位素年龄的结果,并就它们所反映的华北当时在Rodinia超大陆裂解中心的位置和可能的岩石圈厚度进行了讨论。这些深源岩石包体分别是辽宁复县古生代金伯利岩中的基性麻粒岩、河北涉县碳酸岩化金伯利岩中石榴石辉石岩、河南信阳中生代火山岩中的橄榄岩及河北汉诺坝新生代玄武岩中橄榄岩。所记录的新元古代年龄信息包括:复县基性麻粒岩锆石0.61Ga的下交点年龄,涉县石榴石辉石岩全岩-单矿物的0.76GaSm-Nd内部等时年龄、信阳橄榄岩锆石的新元古代(>0.64Ga)年龄以及汉诺坝橄榄岩硫化物0.9~0.6Ga的Re-Os年龄。与华南广泛发育新元古代岩浆活动不同,华北有限的新元古代年龄信息(包括地表出现的)可能反映着它们当时在Rodinia超大陆的位置有所不同,即华南更靠近于超大陆裂解的中心、而华北可能远离该中心(如边缘)。位置的差别也预示着当时华南岩石圈的可能比较薄、而华北具巨厚的岩石圈。因此,我们认为弱的热事件和巨厚的岩石圈可能是造成华北新元古代热活动不明显的原因。  相似文献   

17.
A.G. Dessai  A. Markwick  H. Downes 《Lithos》2004,78(3):263-290
Granulite and pyroxenite xenoliths in lamprophyre dykes intruded during the waning stage of Deccan Trap volcanism are derived from the lower crust beneath the Dharwar craton of Western India. The xenolith suite consists of plagioclase-poor mafic granulites (55% of the total volume of xenoliths), plagioclase-rich felsic granulites (25%), and ultramafic pyroxenites and websterites (20%) with subordinate wehrlites. Rare spinel peridotite xenoliths are also present, representing mantle lithosphere. The high Mg #, low SiO2/Al2O3 and low Nb/La (<1) ratios suggest that the protoliths of the mafic granulites broadly represent cumulates of sub-alkaline magmas. All of the granulites are peraluminous and light rare-earth element-enriched. The felsic granulites may have resulted from anatexis of the mafic lower crustal rocks; thus, the mafic granulites are enriched in Sr whereas the felsic ones are depleted. Composite xenoliths consisting of mafic granulites traversed by veins of pyroxenite indicate intrusion of the granulitic lower crust by younger pyroxenites. Petrography and geochemistry of the latter (e.g. presence of phlogopite) indicate the metasomatised nature of the deep crust in this region.Thermobarometric estimates from phase equilibria indicate equilibration conditions between 650 and 1200 °C, 0.7-1.2 GPa suggestive of lower crustal environments. These estimates provide a spatial context for the sampled lithologies thereby placing constraints on the interpretation of geophysical data. Integration of xenolith-derived P-T results with Deep Seismic Soundings (DSS) data suggests that the pyroxenites and websterites are transitional between the lower crust and the upper mantle. A three-layer model for the crust in western India, derived from the xenoliths, is consistent with DSS data. The mafic nature of this hybrid lower crust contrasts with the felsic lower crustal composition of the south Indian granulite terrain.  相似文献   

18.
The abundances and isotopic compositions of Helium and Argon have been analyzed in a suite of fresh spinel peridotite xenoliths in Cenozoic basalts from the eastern North China Craton (NCC) by step-wise heating experiments, to investigate the nature of noble gas reservoirs in the subcontinental lithospheric mantle beneath this region. The xenoliths include one harzburgite collected from Hebi in the interior of the NCC, two lherzolites from Hannuoba at the northern margin of the craton, and three lherzolites from Shanwang and Nushan on the eastern margin. 3He/4He ratios in most of the xenoliths are similar to those of mid-ocean ridge basalts (MORB) or slightly lower (2–10.5 Ra, where Ra is the 3He/4He ratio of the atmosphere), suggesting mixing of MORB-like and radiogenic components. One olivine separate from Nushan has a helium value of 25.3 Ra, probably suggesting cosmogenic 3He addition. The 40Ar/36Ar ratios vary from atmospheric value (296) to 1625, significantly lower than the MORB value. Available data of the peridotite xenoliths indicate the He and Ar isotopic systematics of the mantle reservoirs beneath the NCC can be interpreted as mixtures of at least three end-members including MORB-like, radiogenic and atmospheric components. We suggest that the MORB-like noble gases were derived from the underlying asthenosphere during mantle upwelling, whereas the radiogenic and recycled components probably were incorporated into the lithospheric mantle during circum-craton subduction of oceanic crust. Available data suggest that the MORB-like fluids are better preserved in the interior of the NCC, whereas the radiogenic ones are more prevalent at the margins. The Paleo-Asian ocean subduction system probably was responsible for the enriched and recycled noble gas signatures on the northern margin of the craton, while the Pacific subduction system could account for the observed He–Ar isotopic signatures beneath the eastern part. Therefore, integration of helium and argon isotopes reflects heterogeneous metasomatism in the lithospheric mantle and demonstrates the critical importance of lithospheric mantle modification related to both circum-craton subduction of oceanic crust and asthenospheric upwelling beneath the eastern NCC.  相似文献   

19.
Clinopyroxene-rich, poorly metasomatised spinel lherzolites are rare worldwide but predominate among xenoliths in five Quaternary basaltic eruption centres in Tariat, central Mongolia. High-precision analyses of the most fertile Tariat lherzolites are used to evaluate estimates of primitive mantle compositions; they indicate Mg#PM = 0.890 while lower Mg# in the mantle are likely related to metasomatic enrichments in iron. Within a 10 × 20 km area, and between ~45 and ≥60 km depth, the sampled xenoliths suggest that the Tariat mantle does not show km-scale chemical heterogeneities and mainly consists of residues after low-degree melt extraction at 1–3 GPa. However, accessory (<1%) amphibole and phlogopite are unevenly distributed beneath the eruption centres. Ca abundances in olivine are controlled by temperature whereas Al and Cr abundances also depend on Cr/Al in coexisting spinel. Comparisons of conventional and high-precision analyses obtained for 30 xenoliths show that high-quality data, in particular for whole-rocks and olivines, are essential to constrain the origin of mantle peridotites. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Upper mantle xenoliths from Wikieup, AZ, provide abundant evidence for magmatic modification of the uppermost mantle beneath the Transition Zone between the Colorado Plateau and the southern Basin and Range province. Upper mantle lithologies in this xenolith suite are represented by spinel peridotite, wehrlite, plagioclase peridotite, and Al-augite group pyroxenites. Isotopic data for these xenoliths yield relatively uniform values and suggest a common petrogenesis. Al-augite-bearing gabbro and pyroxenite xenoliths from this locality are interpreted to have formed by crystal fractionation processes from parent alkali basalts similar to the Wikieup host basalt. Mineral and whole rock compositions show consistent trends of increasing incompatible element contents (Fe, Al, Ca, Na, K, LIL, and LREE), and decreasing compatible element contents (Mg, Cr, Ni) from spinel peridotite to wehrlite to plagioclase peridotite to the host basalt composition. These compositional trends are interpreted as resulting from varying degrees of magma-mantle wall rock interaction as ascending mafic magmas infiltrated upper mantle peridotite. Small degrees of melt infiltration resulted in slightly modified spinel peridotite compositions while moderate degrees metasomatized spinel peridotite to wehrlite, and the highest degrees metasomatized it to plagioclase peridotite. Whole rock compositions and clinopyroxene, plagioclase, and whole rock isotopic data suggest that the infiltrating magmas were the same as those from which the gabbros and pyroxenites crystallized, and that they were alkalic in composition, similar to the Wikieup host alkali olivine basalts. Relatively uniform 143Nd/144Nd for the mineral separates and whole rocks in spite of the significantly wide range in their 147Sm/144Nd (0.71–0.23 in clinopyroxene) suggests that the Wikieup xenoliths including gabbro, pyroxenite, peridotite, wehrlite, and plagioclase peridotite, are all relatively young rocks formed or metasomatized by a relatively recent magmatic episode. Received: 21 May 1996 / Accepted: 23 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号