首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
对甲马铜多金属矿床流体包裹体研究表明与成矿有关的流体包裹体主要有富液相、富气相和含子矿物多相包裹体三类,包裹体的均一温度范围变化大,从240℃到>500℃.矿床形成早期干夕卡岩阶段,矿物形成温度大于500℃,湿夕卡岩阶段均一温度区间集中在270℃~360℃之间,该时期为硫化物矿物形成的主要沉淀阶段.矿床的矿物组合、包裹体类型及包裹体激光拉曼探针分析表明成矿流体以高盐度、富含Na、K、Ca、Si、Cl-、SO42-、CO32-等成分为特点,流体来源以岩浆作用为主.甲马矿床属与岩浆作用有关的典型夕卡岩型多金属矿床.根据甲马矿床与附近驱龙斑岩铜矿流体包裹体和同位素特征对比分析,提出二者应属于同一成矿系列.  相似文献   

2.
许强伟  王玭  钟军  王成明  郑义  方京 《地学前缘》2018,25(5):151-166
内蒙古克什克腾旗长岭子铅锌矿床是大兴安岭南段新发现的一个矿床,矿体赋存于下二叠统大石寨组海相火山岩建造中,矿体受夕卡岩控制。根据手标本中脉体穿插关系和岩石薄片中观察的矿物共生组合特征,文中将长岭子铅锌矿的成矿过程划分为4个阶段:干夕卡岩阶段、湿夕卡岩磁铁矿阶段、石英硫化物阶段和石英碳酸盐阶段,分别以石榴子石±透辉石±硅灰石、石英+绿帘石+电气石+磁铁矿、石英+黄铁矿±磁黄铁矿±黄铜矿±方铅矿±闪锌矿和石英±方解石的矿物组合为标志。长岭子矿床主要发育水溶液包裹体(W型)和含子矿物多相包裹体(S型),前者可进一步划分为富液相(WL型)和富气相(WV型)两个亚类。干夕卡岩阶段辉石中主要发育S型和WL型包裹体,湿夕卡岩磁铁矿阶段绿帘石和石英中主要发育WL型、WV型和S型包裹体,石英硫化物阶段石英中可见所有类型的包裹体,石英碳酸盐阶段的石英±方解石脉中仅见WL型包裹体。干夕卡岩阶段辉石中流体包裹体的均一温度和盐度分别为387~524 ℃和10.7%~52%(NaCleqv.);湿夕卡岩磁铁矿阶段包裹体均一温度为312~533 ℃,盐度为11.3%~60%(NaCleqv.);石英硫化物阶段包裹体均一温度介于182~329 ℃,盐度介于4.7%~38%(NaCleqv.);石英碳酸盐阶段包裹体均一温度为124~199 ℃,盐度介于3.1%~22.4%(NaCleqv.)。上述矿床地质和成矿流体特征表明长岭子铅锌矿为夕卡岩型矿床。成矿流体经历了自夕卡岩阶段高温、高盐度岩浆热液向石英碳酸盐阶段低温、低盐度大气降水热液的转变。石英硫化物阶段发育沸腾包裹体组合,表明成矿流体发生了沸腾作用,这可能是成矿物质沉淀的主要机制。  相似文献   

3.
箭猪坡矿床是广西丹池成矿带南段五圩矿田中最大的Pb-Zn-Sb多金属矿床。矿床主要由早阶段特富大脉状闪锌矿-脆硫锑铅矿矿化和晚阶段脆硫锑铅矿-闪锌矿-碳酸盐-石英脉状矿化组成。本文分析了箭猪坡矿床两种不同矿化类型石英、闪锌矿中的流体包裹体特征、均一温度及盐度,探讨特富矿体形成的控制因素。两种矿化类型包裹体主要由含CO_2包裹体和水溶液包裹体组成。早阶段特富大脉状矿化流体包裹体均一温度为120~290℃,集中在220~290℃之间,盐度为3.6%~13.6%。晚阶段脉状矿化流体包裹体均一温度为150~350℃,集中在240~310℃之间,盐度为1.4%~12.0%。富CO_2成矿流体主要来自变质、有机质中低温热降解、有机质还原、岩浆出溶及夕卡岩化。箭猪坡矿化产于泥盆系破碎带中,晚于华南地区变质作用;矿床成矿温度(220~310℃)远大于有机物热降解释放大量CO_2的温度(约150℃);矿床深部发育Sn矿化,表明成矿流体具还原性,不太可能含有大量而区内非夕卡岩化岩浆热液矿床成矿热液只含有少量CO_2。因此,初步认为箭猪坡矿床富CO_2流体主要与深部夕卡岩化作用有关,成矿流体主要来源于岩浆热液。成矿流体含少量甲烷、沥青质等有机质,表明成矿过程有盆地卤水混入。早阶段特富矿体成矿流体在温度–盐度图上显示中高温中高盐度和低温低盐度流体混合特征,而晚阶段脉状矿化成矿流体温度–盐度分布较为分散,暗示晚阶段脉状矿化成矿过程主要经历了冷却降温,流体混合较弱。这表明成矿流体大规模混合是形成特富矿体的关键控制因素。依据富CO_2流体可能主要来源于深部夕卡岩化作用,初步推测五圩矿田深部有寻找夕卡岩型矿床良好前景。  相似文献   

4.
鲁西沂南金场夕卡岩型金铜矿床矿化时代与成矿流体研究   总被引:3,自引:1,他引:2  
胡芳芳  王永  范宏瑞  郑小礼  焦鹏 《岩石学报》2010,26(5):1503-1511
沂南金场金铜矿床是鲁西地区夕卡岩型矿床的典型代表,矿床产于燕山期中酸性杂岩体与新太古界-寒武系地层的内外接触带附近,受岩浆岩、地层岩性以及构造的复合控制。由石榴子石和透辉石构成了早夕卡岩阶段矿物组合,而绿帘石+磁铁矿+镜铁矿±透闪石±阳起石±石英构成了晚夕卡岩-磁铁矿阶段矿物组合。利用早夕卡岩期黑云母以及晚夕卡岩期与碳酸盐伴生的黑云母样品进行单颗粒云母超低本底Rb-Sr等时线测试,分别获得了133±6Ma和128±2Ma年龄数据,它们与金场岩体的形成时间十分一致,说明该矿床与侵入体有密切的成因联系。流体包裹体研究表明,沂南金场金铜矿床各成矿阶段矿石中的流体包裹体主要有四种类型:含子矿物三相包裹体、富气包裹体、H2O-CO2包裹体和气液两相包裹体。从早夕卡岩阶段石榴石捕获的含子矿物包裹体中获得了很高的均一温度(530~570℃)和盐度(39.9%~60.4%)值,而晚夕卡岩阶段透辉石中含子矿物包裹体也显示较高的均一温度(451~580℃)和盐度(39.3%~60.7%)值。石英-硫化物阶段石英中包裹体均一温度分为两个区间,分别为320~450℃和108~291℃。石榴石内含子矿物包裹体,其子矿物可能为赤铁矿或磁铁矿,结合该矿床的矿石矿物组成特征,沂南金场为岩浆热液流体形成的氧化型夕卡岩金铜矿床。  相似文献   

5.
鸡笼山夕卡岩金(铜)矿床分带及流体演化   总被引:1,自引:0,他引:1  
张轶男  赵一鸣  毕承思 《矿床地质》1998,17(Z2):365-368
鸡笼山金铜矿床产于燕山期钙碱性花岗闪长斑岩与下三叠统大冶组灰岩接触带。夕卡岩分带从内向外依次为花岗闪长斑岩→蚀变花岗闪长斑岩→透辉石-石榴石夕卡岩→石榴石夕卡岩→硅灰石或石榴石-硅灰石夕卡岩一大理岩。矿化分带序列为Cu(M。)→Cu(Au)→Au(Cu)→Au-Pb-Zn。与早期夕卡岩阶段有关的流体包麦体表现为高温高盐度。温度范围400~680℃ ,平均456℃ 。大约有18%所测石榴石中的流体包裹体含石盐子晶,盐度为20.6%~51%NaCl,平均43.2%NaCl。石英、方解石中的包裹体代表成矿期的流体,温度范围126~386℃ ,平均286℃,盐度为8.7%~21.2%,平均15%。成矿深度为2 km,静水压力20 MPa。  相似文献   

6.
准噶尔北部希勒库都克斑岩钼铜矿床地质与成矿流体   总被引:9,自引:7,他引:2  
希勒库都克斑岩铜钼矿床铜钼矿化与安山玢岩脉、英安玢岩脉有关,蚀变有钾长石化、绢云母化、绿帘石化等,向外发育绿泥石化、深部发育夕卡岩型蚀变。浅部以钼矿化为主,向深部铜钼矿化并存。与典型的斑岩型矿床相比,其石英中流体包裹体少而小,气体包裹体少,含CO2包裹体及含子矿物包裹体发育,子矿物以NaCl为主,基本不出现KCl子矿物。钼富集处出现了富CO2流体的沸腾,铜富集处出现了成群分布的含大子矿物包裹体,沸腾消失。钼的成矿主要与富CO2成矿流体沸腾及斑岩型蚀变和夕卡岩蚀变有关,钼主要源于地壳,成矿温度为280~530℃,集中在300~400℃左右。铜主要与直接从深源基性岩浆出溶的高盐度流体及夕卡岩型蚀变有关,铜主要源于上地幔,主要成矿温度低于350℃。晚期流体的成矿温度为180~300℃左右。希勒库都克矿床成矿流体特征反映了壳源与幔源流体混合、岩浆热液与天水混合的特征。  相似文献   

7.
安庆夕卡岩型铁铜矿床流体包裹体研究   总被引:4,自引:1,他引:3  
对安庆夕卡岩型铁铜矿床中各成矿阶段的夕卡岩矿物、石英和方解石中流体包裹体的岩相学、显微测温及显微激光拉曼光谱分析等的研究结果表明,成矿流体可能为源自深部的岩浆热液,具高温、高盐度和富CF4等还原性挥发分的特征.流体包裹体的均一温度和盐度在夕卡岩期表现为高温(400~570℃)和高盐度(40%~46%NaCl)特征,代表了夕卡岩形成及铁矿化时的流体活动情况;在石英硫化物期表现出中低温(124~396℃),盐度变化较大(6%~38%NaCl)的特征,代表了铜矿化时的流体活动情况.从成矿早期到晚期,流体包裹体的均一温度和盐度都不断降低,且在铜的主成矿阶段曾发生过流体沸腾作用和混合作用.岩浆水在流体成矿过程中占主导地位.  相似文献   

8.
青海省铜峪沟铜矿床位于东昆仑东西向构造岩浆带与鄂拉山北西向构造岩浆带的复合部位。依据矿物共生组合、交代与穿插关系可将铜峪沟铜矿成矿过程分为3个阶段:矽卡岩阶段、石英—多金属硫化物阶段及石英—方解石阶段。对不同阶段包裹体进行了包裹体岩相学、显微测温学和包裹体成分分析。研究结果表明,流体包裹体主要为液相包裹体(L型)、气相包裹体(G型)及含子矿物包裹体(S型)。其中矽卡岩阶段以含子矿物包裹体(均一温度为322℃~600℃,盐度为32.92%~73.97%Na Cleqv)和液相包裹体(均一温度为231℃~600℃,盐度为10.74%~21.68%Na Cleqv)为主。石英—多金属硫化物阶段以液相包裹体(均一温度为176℃~381℃,盐度为2.74%~21.96%Na Cleqv)和气相包裹体(均一温度为127℃~419℃,盐度为4.49%~8.81%Na Cleqv)为主。石英—方解石阶段仅发育液相包裹体(均一温度为143℃~201℃,盐度为5.25%~9.21%Na Cleqv)。计算得到流体压力、密度变化范围分别为0.37~132.2 MPa、0.53~1.17 g/cm3。成矿流体具有从高温高盐度向低温低盐度的演化特征。矽卡岩阶段发生了流体的混合作用,石英—多金属硫化物阶段发生了流体的减压沸腾作用导致了大量金属硫化物沉淀,成矿晚阶段流体可能来源于大气降水。分析认为,铜峪沟铜矿为岩浆热液层矽卡岩矿床。  相似文献   

9.
宽坪银矿床是位于华北地块南缘崤山地区的蚀变岩型矿床。本文对宽坪矿床开展流体包裹体、稳定同位素研究,结果显示:宽坪银矿床成矿阶段分为Ⅰ期、Ⅱ期和Ⅲ期,Ⅰ期LV型包裹体均一温度为151℃~330℃,平均为252℃,盐度为8.5%~16.4%,平均盐度为12.63%,流体具有中等盐度和低密度的特性,推测Ⅰ期成矿热液应为岩浆热液-变质热液的混合;Ⅱ期LV型包裹体均一温度为145℃~316℃,平均为216℃,盐度为0.19%~18%,平均为6.13%,较Ⅰ期温度平均下降36℃,盐度平均下降6.5%,推测Ⅱ期成矿热液应为变质热液-岩浆热液-雨水的混合;Ⅲ期成矿流体包裹体均一温度为136℃~265℃,平均为192℃,盐度范围为0.18%~16%,平均为7.73%,Ⅲ期成矿温度较Ⅱ期平均下降24℃,支持大气水的混入,但流体盐度较Ⅱ期略升,可能跟岩浆流体减弱、变质流体成矿作用增大有关,推测Ⅲ期成矿热液应为变质热液-雨水的混合。综合分析认为:(1)宽坪银矿床成矿期成矿温度为中低温;(2)成矿流体主要来自岩浆热液,后期有变质热液与雨水的混入,成矿物质主要来自岩浆带上来的深源物质。  相似文献   

10.
托克赛中型铅锌矿位于西天山成矿带赛里木微地块。矿床成矿过程划分为喷流沉积、变质改造和岩浆热液3个时期。喷流沉积期具典型SEDEX矿床特征,"岩控性"与"层控性"明显,成矿流体以海水为主;变质改造期发育富液相包裹体,包裹体均一温度210℃~271℃,w(NaCleq)为12.7%~13.6%,成矿流体主要来源于变质热液;岩浆热液期发育富气相、富液相和含子矿物包裹体,包裹体均一温度190℃~341℃、w(NaCleq)为4.8%~40.8%,成矿流体主要为岩浆水与大气水的混合。矿床的矿源层形成于古元古代的海底喷流沉积环境,后期经历了变质改造和岩浆热液叠加成矿作用。  相似文献   

11.
准噶尔北缘老山口铁铜金矿床成矿流体及成矿机制   总被引:3,自引:0,他引:3  
老山口铁铜金矿床位于准噶尔北缘,铁铜金矿化主要呈块状、团块状、脉状、角砾状、细脉浸染状产于闪长(玢)岩和玄武质火山岩的接触带中。矽卡岩阶段石榴子石以发育熔融包裹体和流体包裹体为特征,退化蚀变阶段绿帘石主要发育液相包裹体,石英-硫化物-碳酸盐阶段的方解石主要发育液相包裹体、含子矿物包裹体和含CO2三相包裹体。早期矽卡岩阶段流体包裹体均一温度变化于205~550℃及大于550℃,主要集中在220~470℃和大于550℃,盐度w(NaCleq)介于7.02%~17.96%,峰值为7.5%和16%,密度为0.60~1.00 g/cm3。退化蚀变阶段,均一温度变化于212~510℃,峰值为220℃,盐度w(NaCleq)介于6.16%~21.04%,密度为0.60~0.95 g/cm3。石英-硫化物-碳酸盐阶段,均一温度变化于150~380℃,在160℃和220℃出现峰值,盐度w(NaCleq)介于13.4%~18.47%,密度为0.75~1.10 g/cm3。石榴子石和方解石的δ18OSMOW值为5.2‰~17.8‰,δ18O水值为-2.4‰~3.5‰,δDSMOW值变化于-144.0‰~-84.0‰,表明成矿流体主要为混合的岩浆水和大气降水。方解石的δ13CPDB值变化于-6.8‰~-3.5‰,δ18OSMOW值为11.6‰~17.8‰,暗示成矿流体中碳主要来自闪长质岩浆,少量来自碳酸盐岩。黄铁矿δ34S值集中在0~3‰,结合稀土元素特征,表明硫主要来自于与矿体空间关系密切的闪长质岩浆。结合野外地质特征,认为铁矿成矿作用与矽卡岩的退化变质作用有关。  相似文献   

12.
新疆阿尔泰巴特巴克布拉克铁矿床成矿作用研究   总被引:2,自引:0,他引:2       下载免费PDF全文
巴特巴克布拉克铁矿床赋存于上志留-下泥盆统康布铁堡组变质火山-沉积岩系中, 近矿围岩为石榴子石矽卡岩、角闪斜长变粒岩和浅粒岩。矿体总体顺层分布, 呈似层状、透镜状及不规则状, 空间上与矽卡岩密切相关。流体包裹体研究表明, 矽卡岩阶段形成的石榴子石中发育纯气体包裹体、气体包裹体、液体包裹体、含子矿物包裹体及熔融包裹体; 退化蚀变阶段发育液体包裹体和少量气体包裹体; 石英-硫化物阶段主要发育液体包裹体、含液体CO2的三相包裹体及少量纯气体包裹体、气体包裹体和含子矿物包裹体。矽卡岩阶段均一温度变化为217 ℃~499 ℃, 在255 ℃出现峰值, 盐度(NaCleq)变化为8.68%~22.65%; 退化蚀变阶段均一温度变化为181 ℃~432 ℃, 在225 ℃出现峰值, 盐度变化为12.85%~22.65%; 石英-硫化物阶段均一温度变化为140 ℃~482 ℃, 在155 ℃出现峰值, 盐度变化为0.18%~42.40%。石榴子石、石英和方解石的 δ18 OSMOW 变化为1.8‰~7.1‰, δ18ΟΗ2Ο为 -4.79‰~4.57‰, δDSMOW 为 -128‰~-84‰, 表明矽卡岩阶段成矿流体主要为岩浆水, 混合少量大气降水; 石英-硫化物阶段大气降水所占比例明显增加。方解石δ13 CV-PDB 变化为 -3.2‰~-2.0‰, 表明流体中的碳来自深部或地幔。  相似文献   

13.
新疆阿尔泰南缘乌吐布拉克铁矿成矿机制研究   总被引:4,自引:2,他引:2  
乌吐布拉克中型铁矿床赋存于上志留统-下泥盆统康布铁堡组变质火山-沉积岩系中,矿体呈似层状、透镜状,矿体及其周围发育大量矽卡岩矿物组合。早期矽卡岩阶段包裹体均一温度为256~534℃,盐度为11.90%~>73.96%NaCleqv,密度为0.56~0.96g/cm3,表明成矿流体为高-中温、高-中盐度、高-中密度的NaCl-H2O体系;退化蚀变阶段包裹体均一温度为188~313℃,盐度为12.30%~>39.76%NaCleqv,密度为0.83~1.05g/cm3,表明成矿流体为中温、中-低盐度、高-中密度的NaCl-H2O体系。石英-硫化物-碳酸盐阶段包裹体均一温度为162~320℃,盐度为2.90%~15.57%NaCleqv,密度为0.70~1.02g/cm3,成矿流体为NaCl-H2O-CO2±CH4或N2型流体。石榴子石氢氧同位素表明早期矽卡岩阶段成矿流体主要来源于岩浆水,石英及方解石的氢氧同位素暗示石英-硫化物-碳酸盐阶段存在低温、低盐度的大气降水的加入。方解石的碳、氧同位素表明流体中碳主要来自深部岩浆。硫化物硫同位素表明硫来源于岩浆硫。成矿机制可能为早三叠世岩浆热液交代上志留-下泥盆统康布铁堡组火山岩形成矽卡岩矿物,在矽卡岩退化蚀变过程中形成铁矿体。  相似文献   

14.
青海同仁双朋西金铜矿矿床地质特征及矿床成因   总被引:3,自引:0,他引:3  
在翔实的野外工作基础上,对青海省同仁县双朋西金铜矿床矿石与围岩的微量元素、稀土元素、流体包裹体和同位素地球化学特征展开了系统研究。研究结果表明,金矿石和花岗闪长岩的稀土元素配分模式具有相似性,均为轻稀土元素富集型,具负铕异常,基本上无铈异常,暗示它们之间存在成因联系;成矿流体为中高温、低盐度、中等密度、中等压力流体,且以含碳质为特征;铅、硫同位素结果均反映出成矿物质主要来源于深源。据此认为区内矿化是与中高温岩浆热液作用有关的矽卡岩型金铜矿化,属于印支-燕山期同一构造-岩浆作用的产物。  相似文献   

15.
云南南秧田钨矿床流体包裹体特征及其意义   总被引:3,自引:0,他引:3  
对南秧田矽卡岩型钨矿床的石英和石榴石流体包裹体的岩相学特征研究表明,与成矿有关的包裹体主要有3类:富液相、富气相和含子晶的多相包裹体。石英包裹体均一温度范围为232~337℃,盐度w(NaCl)=0.53%~9.98%;石榴石包裹体的均一温度范围为228~306℃,盐度w(NaCl)=6.45%~14.04%。激光拉曼探针分析表明,南秧田白钨矿的成矿流体中气相成分以H2O为主,含少量CO2、CH4、H2S和N2等气体,液相成分以H2O为主,属NaCl-H2O流体体系。成矿溶液的密度为0.72~0.87g/cm3,表明形成这种矽卡岩型矿床的成矿流体均属于中温、低盐度、低密度的流体。成矿压力为18~32MPa,成矿深度约为0.6~1.2km。石英包裹体水的δD为-72.16‰~-65.10‰,δ18O为7.98‰~8.45‰,钨矿床中硫化物δ34S为6.6‰。成矿流体主要来自燕山晚期的岩浆热液作用。  相似文献   

16.
《Resource Geology》2018,68(3):258-274
The Dabaoshan deposit in Northern Guangdong Province, South China, is a Cu–Mo–W–Pb–Zn polymetallic deposit, located in the southern part of the Qin–Hang porphyry–skarn Cu–Mo ore belt. The deposit mainly comprises porphyry Mo and stratiform skarn Cu ore deposits. The genesis of the Cu ore deposit has been ascribed to a typical skarn ore deposit formed by the metasomatism of Devonian carbonate rock layers or to a volcanic rock‐hosted massive sulfide deposit formed by marine exhalation. In this paper, we report on the homogenization temperatures and salinities of fluid inclusions and C, H, O, S, and Pb isotopic compositions of fluids and minerals in this deposit. Homogenization temperatures and salinities of fluid inclusions in garnet, diopside, quartz, and calcite provide information on the skarnification, mineralization, and postmineralization stages. The data show that ore‐forming fluids experienced a continuous transition from high temperatures and salinities to low temperatures and salinities over the entire period of mineralization. C, H, and O isotopic compositions indicate that ore‐forming fluids were derived mainly from magmatic water. O isotopic compositions indicate that ore‐forming fluids mingled with atmospheric water during the last stage of mineralization. Sulfur in the ore came mainly from deep magmatic sources. Pb isotopic compositions in the orebody show that almost all the lead in the ore was derived from magma with a crustal source. Combined geological, geophysical, and geochemical data were achieved before we proposed that the Dabaoshan porphyry–skarn Cu–Mo–W–Pb–Zn deposit, as one member of the Qin–Hang porphyry–skarn Cu–Mo ore belt, formed during the Jurassic subduction of the paleo‐Pacific plate beneath the Eurasian continent at quite low angle. NE‐ and EW‐trending structures controlled the emplacement of magmatic rocks in the South China region. In the mining area, the Xiangguanping Fault and its branches were the main conduits for magmatic crystallization and mineralization. The many subfaults, folds, and interlayer fracture zones on both sides of the main fault provided the requisite space for the ore and, together, were the controlling structures of the orebody.  相似文献   

17.
西藏拉屋铜多金属矿床产于冈底斯构造岩浆成矿带的申扎—旁多铜-银-铅-锌-金成矿亚带内。分别对干矽卡岩阶段(Ⅰ)的石榴石、早期硫化物阶段(Ⅲ)的石英和晚期硫化物阶段(Ⅳ)的方解石中的流体包裹体进行岩相学观察和显微测温研究,研究表明成矿各阶段热液矿物中的流体包裹体主要为气液水两相包裹体,其次为纯液相水包裹体,偶见气液两相甲烷包裹体,石英中也有大量的含NaCl子矿物多相包裹体,其均一温度变化于95~476℃之间,盐度介于1.57%~37.33%,密度变化于0.68~1.23 g/cm3,总体属中-高温、中-高盐度、中等密度的体系;据此计算的成矿压力范围为24.63~133.61 MPa,成矿深度介于2.46~9.64 km,表明该矿床形成于中深成矿环境。不同成矿阶段流体包裹体研究数据表明,该矿床的成矿作用是一个温度、盐度和压力总体显著降低(减小)、密度略渐增大的过程。氢、氧同位素研究表明,成矿流体在主成矿阶段主要为初始混合岩浆水,随着成矿作用进行,大气降水大量加入,到晚期阶段成矿流体逐渐演化成大气降水。成矿流体在Ⅲ阶段(主成矿阶段)发生了沸腾作用,导致成矿元素沉淀形成矿体。因此认为沸腾作用可能是该矿床金属沉淀的主要机制。  相似文献   

18.
The Phu Lon skarn Cu–Au deposit is located in the northern Loei Fold Belt (LFB), Thailand. It is hosted by Devonian volcano-sedimentary sequences intercalated with limestone and marble units, intruded by diorite and quartz monzonite porphyries. Phu Lon is a calcic skarn with both endoskarn and exoskarn facies. In both skarn facies, andradite and diopside comprise the main prograde skarn minerals, whereas epidote, chlorite, tremolite, actinolite and calcite are the principal retrograde skarn minerals.Four types of fluid inclusions in garnet were distinguished: (1) liquid-rich inclusions; (2) daughter mineral-bearing inclusions; (3) salt-saturated inclusions; and (4) vapor-rich inclusions. Epidote contains only one type of fluid inclusion: liquid-rich inclusions. Fluid inclusions associated with garnet (prograde skarn stage) display high homogenization temperatures and moderate salinities (421.6–468.5 °C; 17.4–23.1 wt% NaCl equiv.). By contrast, fluid inclusions associated with epidote (retrograde skarn stage) record lower homogenization temperatures and salinities (350.9–399.8 °C; 0.5–8 wt% NaCl equiv.). These data suggest a possible mixing of saline magmatic fluids with external, dilute fluid sources (e.g., meteoric fluids), as the system cooled. Some fluid inclusions in garnet contain hematite daughters, suggesting an oxidizing magmatic environment. Sulfur isotope determinations on sulfide minerals from both the prograde and retrograde stages show a uniform and narrow range of δ34S values (?2.6 to ?1.1 δ34S), suggesting that the ore-forming fluid contained sulfur of orthomagmatic origin. Overall, the Phu Lon deposit is interpreted as an oxidized Cu–Au skarn based on the mineralogy and fluid inclusion characteristics.  相似文献   

19.
广东凡口铅锌矿赋存于晚古生代碳酸盐地层中,矿体严格受NNE向断裂及其次级构造控制.矿物流体包裹体均一温度范围115~300℃,平均温度为189℃.矿物爆裂温度155~330℃,众数值220~280℃.矿物δ34S值总体上有δ34SPy>δ34SSp>δ34SGm的趋势;依据硫同位素矿物对样品获得的硫同位素平衡分馏温度介...  相似文献   

20.
The Dongpo tungsten ore deposit, the largest scheelite skarn deposit in China, is located at the contact of a 172-m. y. biotite granite with a Devonian marble. The mineralization associated with the granite includes W, Bi-Mo, Cu-Sn and Pb-Zn ores. Several W mineralization stages are shown by the occurrence of ore in massive skarn deposits and in later cross-cutting veins. The high garnet/pyroxene ratio, the hedenbergite and diopside-rich pyroxene and the andradite-rich garnet show the deposit belongs to the oxidized skarn type. Detailed fluid inclusion studies of granite, greisen, skarn and vein samples reveal three types of fluid inclusion: (1) liquid-rich, (2) gas-rich and (3) inclusions with several daughter minerals. Type (3) is by far the most common in both skarn and vein samples. The dominant daughter mineral in fluid inclusions is rhembic, highly birefringent, and does not dissolve on heating even at 530°C. We assume that this mineral is calcite. The liquid phase in most of the fluid inclusions has low to moderate salinities: 0–15 wt. %; in a few has higher salinities (30–40 wt. % NaCl equivalent). The homogenization temperatures of inclusions in the skarn stage range from 350°C to 530°C, later tungsten mineralization-stage inclusions homogenize between 200°C and 300°C, as do inclusions in veins. Fluid inclusions in granite and greisen resemble those of the late tungsten mineralization stage, with low salinity and homogenization temperatures of 200°–360°C. The tungsten-forming fluids are probably a mixture that came from biotite granite and the surrounding country rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号