首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
The depositional stratigraphy of within‐channel deposits in sandy braided rivers is dominated by a variety of barforms (both singular ‘unit’ bars and complex ‘compound’ bars), as well as the infill of individual channels (herein termed ‘channel fills’). The deposits of bars and channel fills define the key components of facies models for braided rivers and their within‐channel heterogeneity, knowledge of which is important for reservoir characterization. However, few studies have sought to address the question of whether the deposits of bars and channel fills can be readily differentiated from each other. This paper presents the first quantitative study to achieve this aim, using aerial images of an evolving modern sandy braided river and geophysical imaging of its subsurface deposits. Aerial photographs taken between 2000 and 2004 document the abandonment and fill of a 1·3 km long, 80 m wide anabranch channel in the sandy braided South Saskatchewan River, Canada. Upstream river regulation traps the majority of very fine sediment and there is little clay (< 1%) in the bed sediments. Channel abandonment was initiated by a series of unit bars that stalled and progressively blocked the anabranch entrance, together with dune deposition and stacking at the anabranch entrance and exit. Complete channel abandonment and subsequent fill of up to 3 m of sediment took approximately two years. Thirteen kilometres of ground‐penetrating radar surveys, coupled with 18 cores, were obtained over the channel fill and an adjacent 750 m long, 400 m wide, compound bar, enabling a quantitative analysis of the channel and bar deposits. Results show that, in terms of grain‐size trends, facies proportions and scale of deposits, there are only subtle differences between the channel fill and bar deposits which, therefore, renders them indistinguishable. Thus, it may be inappropriate to assign different geometric and sedimentological attributes to channel fill and bar facies in object‐based models of sandy braided river alluvial architecture.  相似文献   

2.
Ground penetrating radar (GPR) surveys of unit and compound braid bars in the sandy South Saskatchewan River, Canada, are used to test the influential facies model for sandy braided alluvium presented by Cant & Walker (1978) . Four main radar facies are identified: (1) high‐angle (up to angle‐of‐repose) inclined reflections, interpreted as having formed at the margins of migrating bars; (2) discontinuous undular and/or trough‐shaped reflections, interpreted as cross‐strata associated with the migration of sinuous‐crested dunes; (3) low‐angle (< 6°) reflections, interpreted as formed by low‐amplitude dunes or unit bars as they migrate onto bar surfaces; and (4) reflections of variable dip bounded by a concave reflection, interpreted as being formed by the filling of channel scours, cross‐bar channels or depressions on the bar surface. The predominant vertical arrangement of facies is discontinuous trough‐shaped reflections at the channel base overlain by discontinuous undular reflections, overlain by low‐angle reflections that dominate the deposits near the bar surface. High‐angle inclined reflections are only found near the surface of unit bars, and are of relatively small‐scale (< 0·5 m), but can be found at a greater range of depths within compound bars. The GPR data show that a high spatial variability exists in the distribution of facies between different compound bars, with facies variability within a single bar being as pronounced as that between bars. Compound bars evolve as an amalgamation of unit bars and other compound bars, and comprise a facies distribution that is representative of the main bar types in the South Saskatchewan River. The GPR data are compared with the original model of Cant & Walker (1978) and reveal a much greater variability in the scale, proportion and distribution of facies than that presented by Cant & Walker (1978) . Most notably, high‐angle inclined strata are over‐represented in the model of Cant and Walker, with many bars being dominated by the deposits of low‐ and high‐amplitude dunes. It is suggested that further GPR studies from a range of braided river types are required to properly quantify the full range of deposits. Only by moving away from traditional, highly generalized facies models can a greater understanding of braided river deposits and their controls be established.  相似文献   

3.
Evolution and deposits of a gravelly braid bar, Sagavanirktok River, Alaska   总被引:2,自引:0,他引:2  
The evolution, migration and deposits of a gravelly braid bar in the Sagavanirktok River, northern Alaska, are described in unprecedented detail using annual aerial photographs, ground‐penetrating radar (GPR) profiles, trenches and cores. Compound braid bars in the Sagavanirktok River form by chute cut‐off of point bars and by growth of mid‐channel unit bars. Subsequent growth is primarily by accretion of unit bars onto their lateral and downstream margins. The upstream ends of braid bars may be sites of erosion or unit bar deposition. Compound braid bar deposits vary in thickness laterally and are thickest in medial sections and near cut banks. Compound bar deposits are typically composed of three to seven sets of simple large‐scale inclined strata, each simple set formed by a unit bar. The simple large‐scale strata contain medium‐scale cross‐strata (from dune migration) and planar strata (from migration of bedload sheets). The upstream and medial parts of compound braid bar deposits show very little vertical variation in grain size, but downstream and lateral margins tend to fine upwards. The deposits are mostly poorly sorted sands and gravels, although sands tend to be deposited at the top of the braid bar, and open‐framework gravels preferentially occur near the top and base of the braid bar. The patterns of braid bar growth and migration, and the nature of the deposits, described from the Sagavanirktok River are generally similar to other sandy and gravelly braided rivers, and consistent with the theoretical braid bar model of Bridge (1993).  相似文献   

4.
Spit systems are seldom recognized in the pre‐Quaternary sedimentary record compared to their common occurrence along present‐day coasts and in Quaternary successions. This lack of recognition may partly be due to the lack of widely accepted depositional models describing the facies characteristics of spit systems and their subaqueous platforms in particular. The Skagen spit system is a large active system that began to form 7150 yr bp and from 5500 bp to Recent times it has prograded 4 m year?1 and accumulated 3·5 × 109 m3 of sand. The spit system provides a unique opportunity for establishing a well‐constrained depositional model because uplift and erosion have made large windows into the preserved facies, while active spit‐forming processes can be examined at the young prograding end of the same system. The depositional model presented here thus builds on excellent outcrops, surface morphology, a well‐defined palaeogeography and detailed C14 age control supplemented with observations from continuous well cores and profiles obtained by ground‐penetrating radar and transient electromagnetic surveys. The factors that have governed the development of the spit system, such as relative sea‐level change, wave and current climate, tidal range, sediment transport and depositional rates are also well‐understood. The sedimentary facies of the spit system are grouped into four principal units consisting from below of thick storm sand beds, dune and bar‐trough deposits, beach deposits and peat beds. These four units form a coarsening and shallowing upward sand‐dominated succession, up to 32 m thick, which overlies offshore silt with a transition zone and is topped by a diastem overlain by young aeolian dune sand. The sedimentary structures and depositional processes are described in detail and integrated into a depositional model, which is compared to other spit systems and linear shoreface models.  相似文献   

5.
Alluvial fans serve as useful archives that record the history of depositional and erosional processes in mountainous regions and thus can reveal the environmental controls that influenced their development. Economically, they play an important role as groundwater reservoirs as well as host rocks for hydrocarbons in deeply buried systems. The interpretation of these archives and the evaluation of their reservoir architecture, however, are problematic because marked heterogeneity in the distribution of sedimentary facies makes correlation difficult. This problem is compounded because the accumulated sedimentary deposits of modern unconsolidated fan systems tend to be poorly exposed and few such systems have been the focus of investigation using high‐resolution subsurface analytical techniques. To overcome this limitation of standard outcrop–analogue studies, a geophysical survey of an alpine alluvial fan was performed using ground‐penetrating radar to devise a scaled three‐dimensional subsurface model. Radar facies were classified and calibrated to lithofacies within a fan system that provided outcropping walls and these were used to derive a three‐dimensional model of the sedimentary architecture and identify evolutionary fan stages. The Illgraben fan in the Swiss Alps was selected as a case study and a network of ca 60 km sections of ground‐penetrating radar was surveyed. Seven radar facies types could be distinguished, which were grouped into debris‐flow deposits and stream‐flow deposits. Assemblages of these radar facies types show three depositional units, which are separated by continuous, fan‐wide reflectors; they were interpreted as palaeo‐surfaces corresponding to episodes of sediment starvation that affected the entire fan. An overall upward decline in the proportion of debris‐flow deposits from ca 50% to 15% and a corresponding increase in stream‐flow deposits were identified. The uppermost depositional unit is bounded at its base by a significant incision surface up to 700 m wide, which was subsequently filled up mostly by stream‐flow deposits. The pronounced palaeo‐surfaces and depositional trends suggest that allocyclic controls governed the evolution of the Illgraben fan, making this fan a valuable archive from which to reconstruct past sediment fluxes and environmental change in the Alps. The results of the integrated outcrop–geophysical approach encourage similar future studies on fans to retrieve their depositional history as well as their potential reservoir properties.  相似文献   

6.
Sedimentological outcrop analysis and sub‐surface ground‐penetrating radar (GPR) surveys are combined to characterize the three‐dimensional sedimentary architecture of Quaternary coarse‐grained fluvial deposits in the Neckar Valley (SW Germany). Two units characterized by different architectural styles are distinguished within the upper part of the gravel body, separated by an erosional unconformity: (i) a lower unit dominated by trough‐shaped depositional elements with erosional, concave‐up bounding surfaces that are filled by cross‐bedded sets of mainly openwork and filled framework gravel; and (ii) an upper unit characterized by gently inclined sheets of massive and openwork gravels with thin, sandy interlayers that show lateral accretion on a lower erosional unconformity. The former is interpreted as confluence scour pool elements formed in a multi‐channel, possibly braided river system, the latter as extensive point bar deposits formed by the lateral migration of a meandering river channel. The lateral accretion elements are locally cut by chute channels mainly filled by gravels rich in fines, and by fine‐grained abandoned channel fills. The lateral accretion elements are associated with gravel dune deposits characterized by steeply inclined cross‐beds of alternating open and filled framework gravel. Floodplain fines with a cutbank and point bar morphology cover the gravel deposits. The GPR images, revealing the three‐dimensional geometries of the depositional elements and their stacking patterns, confirm a change in sedimentary style between the two stratigraphic units. The change occurred at the onset of the Holocene, as indicated by 14C‐dating of wood fragments, and is related to a re‐organization of the fluvial system that probably was driven by climatic changes. The integration of sedimentological and GPR results highlights the heterogeneity of the fluvial deposits, a factor that is important for modelling groundwater flow in valley‐fill aquifers.  相似文献   

7.
Lake margin sedimentary systems have been the subject of only limited study. The cyclic Middle Devonian lacustrine succession of Northern Scotland contains repeated developments of shore zone sandstones and thus provides an ideal location for the study of these units. The cycles comprise deep lake, shallow lake, playa and shore zone facies. Detailed field observations are presented alongside ground penetrating radar data which has aided large‐scale and three‐dimensional characterization of the shore zone sand bodies. Loading and discrete channel forms are recognized in thin‐bedded sandstones within the lower portion of the lake shore zone successions. Up‐section, the sandstone beds appear to become amalgamated, forming subtle low angle accretionary bar complexes. Where imaged on the radar profiles, the repeated development of shoreward migrating features succeeded by more shallow angled lakeward accreting surfaces is recognized; these are ascribed to washover and swash–backwash processes, respectively. The orientation of these features is similar to palaeocurrent measurements from oscillation ripples, suggesting an alignment of the shore zone bars perpendicular to the prevailing wind direction. Further loaded sandstone beds and sand‐filled shallow channel features overlie the bar forms. The context of the shore zone facies allows the controls on its formation to be examined. The shore zone sandstones overlie playa facies which contain abundant desiccation horizons, reflecting the most arid phase in the climatically controlled lacustrine cycle. As climatic conditions ameliorated, the rejuvenation of fluvial systems resulted in the transport of sand out into the basin. Initial deposition was limited to intermittent events where sediment was laid down on a water‐saturated substrate. High resolution fluctuations in lake level resulted in periodic short‐lived reworking events along the lake margins which produced amalgamated sands, forming low relief bars. Shore zone reworking is likely to have occurred over a wide  area as the lake margin migrated back and forth, and gradually transgressed.  相似文献   

8.
The alluvial architecture of fine‐grained (silt‐bed) meandering rivers remains poorly understood in comparison to the extensive study given to sand‐bed and gravel‐bed channels. This paucity of knowledge stems, in part, from the difficulty of studying such modern rivers and deriving analogue information from which to inform facies models for ancient sediments. This paper employs a new technique, the parametric echosounder, to quantify the subsurface structure of the Río Bermejo, Argentina, which is a predominantly silt‐bed river with a large suspended sediment load. These results show that the parametric echosounder can provide high‐resolution (decimetre) subsurface imaging from fine‐grained rivers that is equivalent to the more commonly used ground‐penetrating radar that has been shown to work well in coarser‐grained rivers. Analysis of the data reveals that the alluvial architecture of the Río Bermejo is characterized by large‐scale inclined heterolithic stratification generated by point‐bar evolution, and associated large‐scale scour surfaces that result from channel migration. The small‐scale and medium‐scale structure of the sedimentary architecture is generated by vertical accretion deposits, bed sets associated with small bars, dunes and climbing ripples and the cut and fill from small cross‐bar channels. This style of alluvial architecture is very different from other modern fine‐grained rivers reported in the literature that emphasize the presence of oblique accretion. The Río Bermejo differs from these other rivers because it is much more active, with very high rates of bank erosion and channel migration. Modern examples of this type of highly active fine‐grained river have been reported rarely in the literature, although ancient examples are more prevalent and show similarities with the alluvial architecture of the Río Bermejo, which thus represents a useful analogue for their identification and interpretation. Although the full spectrum of the sedimentology of fine‐grained rivers has yet to be revealed, meandering rivers dominated by lateral or oblique accretion probably represent end members of such channels, with the specific style of sedimentation being controlled by grain size and sediment load characteristics.  相似文献   

9.
Unit bars are relatively large bedforms that develop in rivers over a wide range of climatic regimes. Unit bars formed within the highly-variable discharge Burdekin River in Queensland, Australia, were examined over three field campaigns between 2015 and 2017. These bars had complex internal structures, dominated by co-sets of cross-stratified and planar-stratified sets. The cross-stratified sets tended to down-climb. The development of complex internal structures was primarily a result of three processes: (i) superimposed bedforms reworking the unit bar avalanche face; (ii) variable discharge triggering reactivation surfaces; and (iii) changes in bar growth direction induced by stage change. Internal structures varied along the length and across the width of unit bars. For the former, down-climbing cross-stratified sets tended to pass into single planar cross-stratified deposits at the downstream end of emergent bars; such variation related to changes in fluvial conditions whilst bars were active. A hierarchy of six categories of fluvial unsteadiness is proposed, with these discussed in relation to their effects on unit bar (and dune) internal structure. Across-deposit variation was caused by changes in superimposed bedform and bar character along bar crests; such changes related to the three-dimensionality of the channel and bar geometry when bars were active. Variation in internal structure is likely to be more pronounced in unit bar deposits than in smaller bedform (for example, dune) deposits formed in the same river. This is because smaller bedforms are more easily washed out or modified by changing discharge conditions and their smaller dimensions restrict the variation in flow conditions that occur over their width. In regimes where unit bar deposits are well-preserved, their architectural variability is a potential aid to their identification. This complex architecture also allows greater resolution in interpreting the conditions before and during bar initiation and development.  相似文献   

10.
Climbing dune‐scale cross‐statification is described from Late Ordovician paraglacial successions of the Murzuq Basin (SW Libya). This depositional facies is comprised of medium‐grained to coarse‐grained sandstones that typically involve 0·3 to 1 m high, 3 to 5 m in wavelength, asymmetrical laminations. Most often stoss‐depositional structures have been generated, with preservation of the topographies of formative bedforms. Climbing‐dune cross‐stratification related to the migration of lower‐flow regime dune trains is thus identified. Related architecture and facies sequences are described from two case studies: (i) erosion‐based sandstone sheets; and (ii) a deeply incised channel. The former characterized the distal outwash plain and the fluvial/subaqueous transition of related deltaic wedges, while the latter formed in an ice‐proximal segment of the outwash plain. In erosion‐based sand sheets, climbing‐dune cross‐stratification results from unconfined mouth‐bar deposition related to expanding, sediment‐laden flows entering a water body. Within incised channels, climbing‐dune cross‐stratification formed over eddy‐related side bars reflecting deposition under recirculating flow conditions generated at channel bends. Associated facies sequences record glacier outburst floods that occurred during early stages of deglaciation and were temporally and spatially linked with subglacial drainage events involving tunnel valleys. The primary control on the formation of climbing‐dune cross‐stratification is a combination between high‐magnitude flows and sediment supply limitations, which lead to the generation of sediment‐charged stream flows characterized by a significant, relatively coarse‐grained, sand‐sized suspension‐load concentration, with a virtual absence of very coarse to gravelly bedload. The high rate of coarse‐grained sand fallout in sediment‐laden flows following flow expansion throughout mouth bars or in eddy‐related side bars resulted in high rates of transfer of sands from suspension to the bed, net deposition on bedform stoss‐sides and generation of widespread climbing‐dune cross‐stratification. The later structure has no equivalent in the glacial record, either in the ancient or in the Quaternary literature, but analogues are recognized in some flood‐dominated depositional systems of foreland basins.  相似文献   

11.
Counter point bar deposits in the meandering Peace River, North‐central Alberta, Wood Buffalo National Park, are distinct from point bar deposits in terms of morphology, lithofacies and reservoir potential for fluids. Previously referred to as the distal‐most parts of point bars, point bar tails and concave bank‐bench deposits, counter point bar deposits have concave morphological scroll patterns rather than convex as with point bars. The Peace is a large river (bankfull discharge 11 700 m3 sec?1, width 375 to 700 m, depth 15 m, gradient 0·00004 or 4 cm km?1) in which counter point bar deposits are dominated by silt (80% to 90%), which contrasts with sand‐dominant (90% to 100%) point bar deposits. Beginning at the meander inflection (transition from convex to concave), counter point bar deposit stratigraphy thickens as a wedge‐like architecture in the distal direction until the deposit is nearly as thick as the point bar deposits. The low permeability silt‐dominant lithofacies in counter point bar deposits will limit reservoir extent and movement of fluids in both modern and ancient subsurface fluvial deposits. In the exploration and extraction of bitumen and heavy oil in subsurface fluvial rocks, identification and mapping of reservoir potential of point bar deposits and counter point bar deposits is now possible in the fluvial‐dominated tidal estuarine Lower Cretaceous Middle McMurray Formation, North‐east Alberta. Recent geophysical advances have facilitated imaging of some ancient buried point bar deposits and counter point bar deposits which, on the basis of morphological shape of sedimentary bodies observed from seismic amplitude, can be interpreted and mapped as depositional elements or blocks that contain associated sandstone or siltstone dominant lithofacies, respectively. As counter point bar deposits exhibit poor permeability and thus limit reservoir potential for water, natural gas, light crude, heavy oil and bitumen, counter point bar deposits should be avoided in resource developments. Geophysical imaging, interpretation and mapping of point bar deposit and counter point bar deposit elements provide new opportunities to improve recovery of bitumen and heavy oil and reduce development costs in subsurface cyclic steam stimulation and steam‐assisted gravity drainage projects by not drilling into counter point bar deposits.  相似文献   

12.
Ground‐penetrating radar surveys across the southern end of the Boco Plain, western Tasmania, revealed a complex sequence of Quaternary glacial and non‐glacial sediments. The subsurface imaging supported previous suggestions of a complex Boco Plain palaeotopography that incorporates a range of depositional environments and multiple constructional events. The ground‐penetrating radar technique enabled imaging of the sediments to 20 m depth, and permitted identification of different sedimentary facies and constructional events due to the significant contrast in dielectric constant within and between the sediments and bedrock. The bedrock and sediment stratigraphy are in broad agreement with drillcore records from the southern end of the Boco Plain and indicate the utility of the method in the initial stages in the investigation of Pleistocene sedimentary sequences of this type.  相似文献   

13.
A review of the braided-river depositional environment   总被引:8,自引:0,他引:8  
Andrew D. Miall 《Earth》1977,13(1):1-62
  相似文献   

14.
The morphodynamics of a river flood on a fan delta and its resultant stratigraphic and sedimentary signatures have been studied by means of a flume experiment under controlled boundary conditions. The experiment revealed that deposition was dominant in flood periods when the channels were highly loaded with sediments. In contrast, erosion was dominant in periods of low flow. Mouth bars were formed when a subaqueous channel began to backfill. The development of a mouth bar began with progradation in the down‐dip direction and proceeded by aggradation, then retrogradation and finally transverse growth. A channel bifurcated in multiple stages by sequentially forming mouth bars or by simultaneously forming arrays of mouth bars. During the bifurcation, the diffluent point moved upstream, which resulted in channel migration and the development of a delta lobe. Flood events triggered fan‐delta front slide‐slump deposits.  相似文献   

15.
The interpretation of fluvial styles from the rock record is based for a significant part on the identification of different types of fluvial bars, characterized by the geometric relationship between structures indicative of palaeocurrent and surfaces interpreted as indicative of bar form and bar accretion direction. These surfaces of bar accretion are the boundaries of flood‐related bar increment elements, which are typically less abundant in outcrops than what would be desirable, particularly in large river deposits in which each flood mobilizes large volumes of sediment, causing flood‐increment boundary surfaces to be widely spaced. Cross‐strata set boundaries, on the other hand, are abundant and indirectly reflect the process of unit bar accretion, inclined due to the combined effect of the unit bar surface inclination and the individual bedform climbing angle, in turn controlled by changes in flow structure caused by local bar‐scale morphology. This work presents a new method to deduce the geometry of unit bar surfaces from measured pairs of cross‐strata and cross‐strata set boundaries. The method can be used in the absence of abundant flood‐increment bounding surfaces; the study of real cases shows that, for both downstream and laterally accreting bars, the reconstructed planes are very similar to measured bar increment surfaces.  相似文献   

16.
Modern fluvial meander plains exhibit complex planform transformations in response to meander‐bend expansion, downstream migration and rotation. These transformations exert a fundamental control on lithology and reservoir properties, yet their stratigraphic record has been poorly evaluated in ancient examples due to the lack of extensive three‐dimensional exposures. Here, a unique exhumed meander plain exposed to the north of Scarborough (Yorkshire, UK) is analysed in terms of architecture and morphodynamics, with the aim of developing a comprehensive model of facies distribution. The studied outcrop comprises tidal platforms and adjacent cliffs, where the depositional architecture of un‐tilted deposits was assessed on planform and vertical sections, respectively. In its broader perspective, this study demonstrates the potential of architectural mapping of extensive planform exposures for the reconstruction of ancient fluvial morphodynamics. The studied exhumed meander plain is part of the Scalby Formation of the Ravenscar Group, and originally drained small coastal incised valleys within the Jurassic Cleveland Basin. The meander plain is subdivided into two storeys that contain in‐channel and overbank architectural elements. In‐channel elements comprise expansional and downstream‐migrating point bars, point‐bar tails and channel fills. Overbank elements comprise crevasse complexes, levées, floodplain fines and lake fills. The evolution of the point bars played a significant role in dictating preserved facies distributions, with high flood‐stage nucleation and accretion of meander scrolls later reworked during waning flood‐stages. At a larger scale, meander belt morphodynamics were also a function of valley confinement and contrasts in substrate erodibility. Progressive valley infilling decreased the valley confinement, promoting the upward transition from prevalently downstream migrating to expansional meander belts, a transition associated with enhanced preservation of overbank elements. Strikingly similar relations between valley confinement, meander‐bend transformations and overbank preservation are observed in small modern meandering streams such as the Beaver River of the Canadian prairies and the Powder River of Montana (USA).  相似文献   

17.
The Fanta Stream site is an archaeological and paleontological locality in Addis Ababa, Ethiopia. The site contains a rich assemblage of fossil mammals and Acheulean artifacts of approximately 600 ka located in a rare high‐altitude context. A ground‐penetrating radar (GPR) survey was conducted in order to provide three‐dimensional imaging of the subsurface, which the authors use to interpret the geometry and distribution of fossil‐containing stratigraphic units. Utilizing the stream's natural cut bank exposure, we calibrate GPR data to known geologic units through radar facies analysis. Shallow, high‐amplitude coherent reflection geometries are attributed to volcanic tuff deposits, as these units exhibit subparallel continuous reflections consistent with planar stratified sedimentary deposition. Deeper, discontinuous reflection packages are interpreted as conglomeritic, fossil‐containing deposits. The results of the GPR survey outline the location of the Fanta Stream's paleodepositional features as well as suggest the extent of fossiliferous stratigraphic units for use in future excavations.  相似文献   

18.
Modern and ancient tidal straits are the least well understood of all tide‐dominated depositional systems. To provide an increased understanding of these systems, a facies‐based depositional model is assessed by comparing multibeam surveys of three present‐day tidally dominated seaways with a number of superbly exposed Neogene‐to‐Quaternary strait‐fill successions of Calabria (south Italy). The model points out the existence of four depositional zones, laterally adjacent from the narrowest strait centre to its terminations, distributed along symmetrical or asymmetrical seaways. These zones, whose signature is recorded in four facies associations in the Calabrian tidal straits, are as follows: (i) the strait‐centre zone, associated with the tidal current maxima and where sediments are scarce or absent; (ii) the dune‐bedded zone, where sediments form dune complexes due to tidal flow expansion; (iii) the strait‐end zone, where currents decelerate accumulating thinly bedded, fine‐grained deposits; and (iv) the strait‐margin zone, where sediment massflows descend tectonically active, steep margins towards the strait axis. In ancient, tectonically confined, narrow seaways, these facies generate a distinctive deepening‐upward vertical succession, where tidal currents are the dominant process in the sediment distribution.  相似文献   

19.
20.
《Sedimentology》2018,65(5):1631-1666
Detailed logging and analysis of the facies architecture of the upper Tithonian to middle Berriasian Aguilar del Alfambra Formation (Galve sub‐basin, north‐east Spain) have made it possible to characterize a wide variety of clastic, mixed clastic–carbonate and carbonate facies, which were deposited in coastal mudflats to shallow subtidal areas of an open‐coast tidal flat. The sedimentary model proposed improves what is known about mixed coastal systems, both concerning facies and sedimentary processes. This sedimentary system was located in an embayed, non‐protected area of a wide C‐shaped coast that was seasonally dominated by wave storms. Clastic and mixed clastic–carbonate muds accumulated in poorly drained to well‐drained, marine‐influenced coastal mudflat areas, with local fluvial sandstones (tide‐influenced fluvial channels and sheet‐flood deposits) and conglomerate tsunami deposits. Carbonate‐dominated tidal flat areas were the loci of deposition of fenestral‐laminated carbonate muds and grainy (peloidal) sediments with hummocky cross‐stratification. Laterally, the tidal flat was clastic‐dominated and characterized by heterolithic sediments with hummocky cross‐stratification and local tidal sandy bars. Peloidal and heterolithic sediments with hummocky cross‐stratification are the key facies for interpreting the wave (storm) dominance in the tidal flat. Subsidence and high rates of sedimentation controlled the rapid burial of the storm features and thus preserved them from reworking by fair‐weather waves and tides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号