首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 279 毫秒
1.
徐安花 《冰川冻土》2010,32(1):121-125
纵向裂缝是在多年冻土地区公路的主要病害之一,严重影响了所在路段的行车安全和正常运营.以前我国多年冻土区公路路基普遍不高,纵向裂缝病害较少且危害较小,公路设计和科研对其关注较少.目前,对纵向裂缝的形成机理与分布规律研究较少,对其发生、发展的机制、过程和影响因素缺乏深入的认识,工程和科研人员对其仍未形成统一的认识,给工程整治措施选择和处治方案制定造成很大困难.热状况是影响和控制多年冻土路基,特别是高温高含冰量冻土路基病害发生的关键因素;太阳辐射是影响多年冻土地区地表热状况的主要因素,公路路基抬高后,路基两侧接受太阳辐射的差异变大,冻土路基表面热状况和太阳辐射对路基病害的发生和发展影响变大.结合青藏公路多年冻土区路段纵向裂缝调查结果,分析了路基纵向裂缝在路基横断面上的分布规律,研究了不同走向路基表面太阳辐射的分布,探讨了多年冻土区公路路基纵向裂缝与路基走向的关系,以及太阳辐射对公路纵向裂缝形成的影响  相似文献   

2.
深上限-退化型多年冻土路基变形特征分析   总被引:1,自引:0,他引:1  
袁堃  章金钊  朱东鹏 《岩土力学》2013,34(12):3543-3548
为了研究深上限-退化型多年冻土路基变形特点,基于青藏公路多年冻土路基地温和沉降现场监测资料,通过分析西大滩、唐古拉山北坡以及唐古拉山南坡路段的土质、冻土含冰量、冻土地温以及路基沉降变形数据,对冻土上限变化过程与路基沉降特点进行了研究,同时对沱沱河和清水河地区冻土路基分层沉降观测结果进行了分析。结果表明,土质和含冰量对退化型冻土路基的沉降变形影响较大,深冻土层的融化对路基沉降变形影响较小,退化型冻土路基的沉降变形主要发生在退化后的冻土层中,退化冻土层在冻融循环过程中,需要较长时间才能完成固结。对于冻土含冰量为少冰、多冰的稳定路段,退化冻土路基年平均沉降速度约为3.9~5.6 mm/a,路基沉降量极小;对于含冰量较高且土质以粉黏性颗粒为主的不稳定路段,路基沉降速度具有持续性和无减缓性的特点,路基年平均沉降量达到0.03 m/a,路基变形表现为整体均匀沉降,横向差异沉降量较小。  相似文献   

3.
一般地区路基土体变形主要受土体压密过程控制,青藏铁路冻土路基变形则主要是受土体冷生过程影响和控制。通过对填土路基修筑后土体冷生过程以及工程实测数据分析,指出冻融过程不同阶段冻土路基变形与土体冷生过程有着密切关系。认为控制填土路基冷生过程稳定时间和填土路基地温场形态,是减少冷生过程和铁路长期运营过程中路基变形、保证冻土区路基工程长期稳定性的有效途径。此认识已经在青藏铁路冻土区路基工程建设实践中得到证明。  相似文献   

4.
青藏高原清水河多年冻土区铁路路基沉降变形特征研究   总被引:3,自引:1,他引:3  
通过埋设在青藏铁路路基中两个断面内的6条沉降观测管3 a来的地基沉降变形资料,研究了高原多年冻土区铁路路基的沉降变形特征,分析了填筑铁路路基对下伏多年冻土融化变形的影响。研究表明,由于受到填筑路基时赋存在路基填料内的热量的影响,铁路路基下伏多年冻土上限在施工初期会有一个明显的下移沉降,铁路路基也随之有一个较大幅度的工后下沉变动,随着时间的推移,路基下降速率会逐渐下降,但在短时间内不会停止下来,而且由于太阳辐射和路基边坡形状的影响,路基向阳面与背阴面的变形有较大的差别,且在近南北向展布的路基上表现最为明显。  相似文献   

5.
纵向裂缝与不均匀变形是多年冻土地区路基病害的主要类型,成因复杂,久治不愈.综合国内外现有成果,对于路基不均匀变形,根据其成因,分别提出了土工合成材料处治不均匀变形技术与土工合成材料处治路基阳坡变形技术等处治措施.对于路基纵向裂缝,根据其不同分类与不同严重程度,分别提出了土工合成材料处治纵向裂缝技术、柔性枕梁处治技术、边坡分层加筋处治技术等处治措施;根据多年冻土地区路基特点与环境条件,从土工合成材料的强度特性、构造特性、耐久性及抗施工损伤性能等方面,提出了土工合成材料选择时的原则.结合青藏公路纵向裂缝处治工程,研究了土工合成材料处治病害施工技术,解决了该地区使用土工合成材料时的工程关键技术.  相似文献   

6.
青藏铁路多年冻土区路基变形特征及其来源   总被引:3,自引:0,他引:3  
基于青藏铁路多年冻土区34个路基监测断面2005-2011年的变形与地温资料,分析路基的变形特征及其来源。监测结果表明:①监测期累计变形量大于100 mm的断面均为普通路基,其变形主要来自路基下部因冻土上限下降而引起的高含冰量冻土的融沉变形以及融土的压密变形,其次为路基下部多年冻土因地温升高而产生的高温冻土的压缩变形。②监测期累计变形量小于100 mm的普通路基与块石结构路基断面,其变形主要来自路基下部多年冻土的压缩变形。③总体而言,块石结构路基变形量明显小于普通路基,从而验证了主动冷却措施的长期有效性。其研究结果可为冻土区路基稳定性判断及病害预警提供数据支持。  相似文献   

7.
青藏铁路路基下融化夹层特征及其对路基沉降变形的影响   总被引:1,自引:0,他引:1  
基于青藏铁路多年冻土区路基地温与变形现场监测资料, 研究了青藏铁路路基下融化夹层特征及其对路基沉降变形的影响. 结果表明:在已有监测场地中, 青藏铁路沿线天然场地融化夹层发育较少, 而路基下融化夹层发育较多. 低温冻土区路基下融化夹层能够逐渐完全回冻使其消失, 高温冻土区大部分路基下融化夹层有进一步发展的趋势. 当融化夹层下部为高含冰量冻土时, 融化夹层与路基沉降变形关系密切, 路基易产生较大的沉降变形; 当融化夹层下部为低含冰量冻土时, 路基沉降变形较小.  相似文献   

8.
青藏铁路冻土与融区过渡段路基变形特性试验研究   总被引:1,自引:1,他引:0  
冻胀和融沉是影响寒区路基稳定性的两大问题.对于多年冻土到融区过渡段路基,除考虑冻胀和融沉外,还应考虑多年冻土区和融区路基沉降变形差和冻胀变形差问题.根据青藏铁路沱沱河试验段路基在竣工后3a内的现场试验数据,分析了有代表性路基的地温变化、路基基底变形以及整个试验段的冻胀、沉降变形差问题,计算出了多年冻土与融区过渡段路基的合理长度.结果表明:多年冻土与融区过渡地带沉降总变形量相差较大,但从年沉降速率来看,路基不会产生突降,且随着沉降速率逐渐减小,路基趋于稳定;试验段内冻胀量差异不大,不会影响线路平顺度.对于本试验段此类工程地质条件,可以采用允许多年冻土融化原则的工程措施.  相似文献   

9.
黄俊杰  苏谦  钟彪  白皓  王武斌 《岩土力学》2013,34(3):703-710
从力学相似性的角度进行多年冻土斜坡路基失稳变形离心模型试验,分析最大融深状态下冻土斜坡路基土层性质、高度以及地基坡度对其稳定性的影响规律,研究冻土斜坡路基失稳变形特性、失稳机制及模式,将片石路基与普通路基进行对比分析。试验结果表明,冻土斜坡路基土层力学性质、路基高度和地基坡度对其稳定具有显著影响,路基的变形在冻融交界面发生骤变,变形主要集中在冻融交界面之上的土层;在本试验条件下,多年冻土斜坡路基合理高度约为5 m;当斜坡路基高度为5 m时,地基坡度大于1: 6,路基横向变形迅速增大;冻土斜坡路基的沉降和横向变形表现出较大的不均匀性,冻土斜坡路基变形失稳的根本原因是冻融交界附近软弱带的抗剪强度不足,阳坡冻融交界面之上的土层沿软弱带滑移破坏;路基破坏可分为浅层开裂破坏、深层开裂破坏和整体滑移破坏3种;冻土斜坡片石路基的水平位移和沉降明显小于普通路基,片石路基具有较好的整体稳定性。  相似文献   

10.
秦沈客运专线A14试验段软土路基加固技术研究   总被引:5,自引:1,他引:4  
汪建刚  王星华  王曰国 《岩土力学》2004,25(8):1283-1287
介绍了秦沈客运专线A14试验段软土路基工程设计施工情况。通过对各种地基处理路段沉降观测,探讨了软土路基沉降特征,推测出其最终沉降量和沉降速率,并分析了软基处理措施与沉降的关系。结果表明:软土路基沉降受加荷影响很大;采用碎石和粉喷桩处理后地基沉降量比其它处理方法要小;在松软土地层,控制填土不是主要问题。  相似文献   

11.
青藏铁路不同路基工程结构对路基裂缝的影响研究   总被引:8,自引:4,他引:4  
针对青藏铁路某试验段加筋路堤和站场路基等不同路基工程 ,本文介绍了冻土路基的温度和变形的试验结果 ,分析了加筋路堤和站场路基不同路基工程的地温变化和变形特征 ,并论述了加筋路堤和加宽路基等不同工程结构对路基裂缝的影响  相似文献   

12.
青藏铁路普通路基下部冻土变化分析   总被引:5,自引:2,他引:3  
吴青柏  刘永智  于晖 《冰川冻土》2007,29(6):960-968
高温高含冰量冻土地区,青藏铁路采取了冷却路基、降低多年冻土温度的工程措施.然而青藏铁路仍有大量路段未采用任何工程措施,因此修筑普通路基后冻土变化也是普遍关心的问题.根据青藏铁路普通路基下部土体温度监测的近期结果,分析了季节冻土区、已退化多年冻土区和多年冻土区路基下部冻土变化特征.结果表明,不同区域修筑普通路基,其下部土体温度、最大季节冻结深度、多年冻土上限等存在较大的差异.在季节冻土和已退化多年冻土区,右路肩下部(阴坡)已形成冻土隔年层;在多年冻土强烈退化区,其路基下部形成融化夹层;在高温多年冻土区,其路基下部上限存在抬升和下降,上限附近土体温度有升高的趋势.在低温多年冻土区,其路基下部上限全部抬升,上限附近土体存在"冷量"积累,有利于路基下部多年冻土热稳定性.因此,低温多年冻土区修筑普通路基后,冻土变化基本是向着有利于路基稳定性的方向发展,在其它地段修筑普通路基,冻土变化是向着不利于路基稳定性的方向发展的.特别是阴阳坡太阳辐射差异,导致了土体热状态和多年冻土上限形态产生较大的差异,这种差异将会对路基稳定性产生一定的影响.  相似文献   

13.
路基施工对青藏高原多年冻土的影响   总被引:2,自引:2,他引:0  
青藏高原上施工会扰动其下多年冻土的存在状态. 近些年来, 高原上相继修建的大量的线性工程, 这些大型工程的建设必将进行多年冻土区的开挖和夯填, 从而会引起下伏多年冻土的结构发生很大变化. 研究了路基施工对青藏高原多年冻土的影响, 并以青藏铁路、青藏公路沿线典型实例进行分析. 结果表明: 开挖施工扰动最大, 可引起斜坡失稳滑塌、地表积水和热融湖塘等;填土路堤会引起其下伏多年冻土升温, 路基两侧形成的小气候往往起着提高地面温度的作用;挡水、排水设施施工也会导致多年冻土上限下降, 地表沉陷. 可见, 填土路基、开挖、地表工程扰动都会导致多年冻土发生变化, 这些冻土变化对路基稳定必将构成威胁.  相似文献   

14.
土工格栅在青藏铁路多年冻土区路基工程中的应用   总被引:3,自引:0,他引:3  
王引生 《冰川冻土》2003,25(3):355-358
以青藏铁路多年冻土区清水河冻土加筋路堤试验段为例,对土工格栅在铁路路基工程中的应用原理及设计思路进行了叙述.通过对路基裂缝进行调查、分析和比较,土工格栅对加强路基整体稳的作用是肯定的.在多年冻土区路堤中,使用土工格栅加筋层对防止路堤纵向裂缝的产生、抑制横向寒冻裂缝具有明显的作用.  相似文献   

15.
多年冻土地区路基纵向裂缝形成机理研究   总被引:1,自引:1,他引:0  
多年冻土地区路基纵向裂缝呈现裂缝数量多、规模大、久治不愈的特点.在野外调查纵向裂缝变形特点和多年冻土上限变化规律分析的基础上,发现导致多年冻土地区纵向裂缝产生的原因是路基边坡坡脚下存在不稳定的融化区域,并提出机理分析模型.通过弹塑性有限元分析,研究了路基中的位移、应变变化规律,提出了纵向裂缝形成过程的3个阶段:初始变形阶段、强度破坏阶段和变形失稳阶段;相应于这3个阶段,路基及地基中呈现了三个性状不同的区域:发育区、抑制区和诱发区.为纵向裂缝防治对策的提出提供了依据.  相似文献   

16.
青藏铁路冻土路基变形监测与分析   总被引:5,自引:0,他引:5  
马巍  刘端  吴青柏 《岩土力学》2008,29(3):571-579
基于现场监测资料,对作为青藏铁路中的主要保护冻土的几种路基形式(如:通风管路基、块石路基、块石护坡路基、保温材料路基和普通素土路基)进行了变形和温度分析,发现所有路基的变形均以沉降变形为主,且其变形与其下伏冻土的地温场变化密切相关。经过2~3个冻融周期后,通风管路基、块石路基、块石护坡路基和保温材料路基的变形已趋于稳定,而无任何措施的普通路基目前变形仍未稳定。另外,各种路基左右路肩均存在变形差。基于以上分析可得到一个启示:在高温、高含冰量冻土地区,由于路基下多年冻土温度升高产生的高温冻土压缩变形而引起的路基沉降变形具有相当大的量级,很有可能成为冻土路基发生破坏的一个重要原因,工程实践中应给予足够的重视。  相似文献   

17.
石梁宏  李双洋  尹楠 《冰川冻土》2021,43(1):195-203
多年冻土是含有冰的特殊土体,在自然环境变化及工程扰动下易发生冻胀融沉变形,严重威胁着青藏高原工程建筑物的安全稳定,特别对青藏铁路的畅通运营提出了严峻挑战。以青藏铁路五道梁地区路基断面为研究对象,采用颗粒离散单元法,通过建立热-力离散元计算模型,对路基的温度场和变形进行了计算和预测。结果表明:离散单元法克服了有限元方法无法模拟颗粒间导热与接触粘结作用的瓶颈,能够从微观层面阐释宏观变化,较为真实地反映冻土的导热和力学变形;离散单元法数值计算分析发现,随着运营时间的增加,路基存在冻土退化问题,而且路基中颗粒间热交换复杂,在0 ℃等温线区域和路基坡脚处,颗粒间相互作用更为突出。热-力耦合离散元为冻土工程研究提供了新思路,可更好地为寒区工程服务。  相似文献   

18.
214国道不同路面形式下碎石护坡工程效果实测分析   总被引:1,自引:1,他引:0  
房建宏 《冰川冻土》2011,33(6):1316-1322
沥青路面和水泥路面是214国道江河源段采用的两种基本路面形式,由于该路段地处高温不连续多年冻土区,碎石护坡等多种工程措施被尝试用来稳定冻土路基.对两种路面形式下碎石护坡路段的地温监测资料进行综合分析发现,碎石护坡能显著降低路基边坡坡面的年平均温度,减小路基边坡坡面温度的年较差,并对坡脚、路肩和路基中心具有从大到小的冷却...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号