首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 909 毫秒
1.
Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated.Compared with the carbon isotopic composition of the source methane (δ13C1 = −39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff −δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed.The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous “semi-infinite” shale caprock over a period of 10 Ma.In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope fractionation effects. The examples demonstrate that methane losses by molecular diffusion are small in comparison with the contents of commercial size gas accumulations. The degree of isotopic fractionation is related inversely to the quantity of diffused gas so that strong fractionation effects are only observed for relatively small portions of gas.The experimental data can be readily used in numerical basin analysis to examine the effects of diffusion-related isotopic fractionation on the composition of natural gas reservoirs.  相似文献   

2.
The advection of extraneous fluid into permeable solid rock along a one-dimensional path is a fundamental scenario of geochemistry. Model solutions are presented for advection with “instantaneous” as well as with kinetically restricted equilibration. An initial step input of a stable-isotope δ-value leads to the propagation of a “geochemical” or isotope front. For pure advection and instantaneous isotope exchange between fluid and solid, fronts are sharp and their positions and velocities determined by the carrier porosity Ψ (e.g., oxygen porosity) of the aquifer. For limited exchange rates the dimensionless “Damköhler number” ND = (κ/q)L, where κ is an exchange rate constant, q the interstitial fluid velocity, and L the total theoretical infiltration distance, determines the isotope front shape, i.e. the degree of degradation of the original sharp fronts. The effects of temperature (Δ) variations and, for the first time, of variations in initial rock composition, are shown and a model calculation for a one-dimensional system with two isotopic elements of distinct Ψ (O and Sr) is given. Dispersion in the fluid is considered, and for an idealised geothermal system the combined effects of (1) dispersion in the fluid and (2) limited exchange rates, characterised by their respective Péclet and Damköhler numbers, are also calculated. Fluid/rock ratios need to be treated differently in one-dimensional and zero-dimensional models and in general it is preferable in flow models to replace them with information on porosity, infiltration distance and Damköhler numbers.  相似文献   

3.
Liquid phase diffusion experiments were carried out to determine whether diffusive isotopic fractionation of a major chemical element (Ca) varies with chemical composition in high-temperature molten silicates. The objective was to determine how differences in silicate liquid structure, such as the ratio of bridging to non-bridging oxygen atoms, as well as bulk transport properties such as viscosity, relate to isotope discrimination during diffusion. This information, in turn, may relate to the lifetimes and sizes of multi-atom structures in the liquid. Diffusion couples consisting of juxtaposed natural mafic and felsic liquids were held at T = 1450 °C and P = 1.0 GPa for durations of 12-24 h in a standard piston-cylinder assembly. Experiments were done using different mafic endmember compositions (two tholeiitic basalts and a ugandite) and a single rhyolite composition. Major-element diffusion profiles and Ca isotope profiles were measured on the recovered quenched glasses. The starting materials were isotopically indistinguishable, but 44Ca/40Ca variations of ca. 5‰ arose due to a mass dependence of the Ca diffusion coefficients. Results indicate that the mass dependence of Ca diffusion coefficients varies with the magnitude and direction of aluminum gradients and the viscosity of the liquid. Some Ca fractionations result mainly from Al gradients.A simplified multicomponent diffusion model was used to model the experimental results. The model allows for diffusion of Ca in response to gradients in the concentrations of both CaO as well as Al2O3, and the model results are consistent with the inferred existence of at least two distinct species of Ca. The magnitude of isotopic discrimination during diffusion also appears to be stronger on the rhyolite versus the basalt/ugandite side of diffusion couples. The results can largely be accounted for by an adaptation of the model of Dingwell (1990), whereby in high silica liquids, Ca diffuses largely by site hopping through a quasi-stationary aluminosilicate matrix, producing strong isotopic effects because the Ca diffusion is not strongly correlated with the movement of the framework atoms. In low-silica liquids, Ca diffusion is correlated with the movement of the other components and there is less mass discrimination. Combining our Ca results with Ca, Mg, and Li data from previous studies, we show that this model can explain most of the cation- and composition-dependence of diffusive isotopic fractionations observed thus far. A key parameter controlling isotopic discrimination is the ratio of the elemental (Ca, Mg, Li) diffusivity to the Eyring (or Si) diffusivity. However, all experiments done so far also exhibit isotopic features that are not yet fully explained; some of these may relate to small temperature gradients in the capsules, or to more complex coupling effects that are not captured in simplified diffusion models.  相似文献   

4.
高温下非传统稳定同位素分馏   总被引:5,自引:1,他引:4  
黄方 《岩石学报》2011,27(2):365-382
过去十几年来,非传统稳定同位素地球化学在高温地质过程的研究中取得了的重大进展。多接收诱导耦合等离子质谱(MC-ICP-MS)的应用引发了稳定同位素分析方法的重大突破,使得精确测定重元素的同位素比值成为可能。本文总结了以Li、Fe和Mg同位素为代表的非传统稳定同位素在岩石地球化学研究中的应用。Li同位素目前被广泛地用于地幔地球化学、俯冲带物质再循环和变质作用的研究中,可以用来示踪岩浆的源区性质和扩散等动力学过程。不同价态的Fe在矿物熔体相之间的分配可以产生Fe同位素分馏,可以发生在地幔交代、部分熔融、分离结晶等过程中。岩浆岩的Mg同位素则大致反映其源区的特征,地幔的Mg同位素组成比较均一,这为研究低温地球化学过程中Mg同位素的分馏提供一个均一的背景。此外,Cl,Si,Cu,Ca,U等等同位素体系也具有广阔的应用前景。对同位素分馏机制的实验研究和理论模拟为理解非传统稳定同位素数据提供了必要的指导。实验表明,高温下具有不同的迁移速度的轻、重同位素可以产生显著的动力学同位素分馏,这一分馏可以在化学扩散、蒸发和凝华等过程中发生;同位素在矿物和熔体以及流体相中化学环境的差异使得不同相之间可以发生平衡分馏。而最近的硅酸盐岩浆的热扩散和热迁移实验则揭示了一种"新"的岩浆分异和同位素分馏机制。沿着温度梯度,硅酸盐岩浆可以发生显著的元素和同位素分异,湿的安山岩可以通过这种方式演变成花岗质成分,因此这个过程可能对陆壳的产生和演化有重大影响。如果温度梯度在岩浆作用中能长期存在,热扩散就可以产生稳定同位素的分馏,这一机制有别于传统的平衡和动力学同位素分馏。 而多个稳定同位素体系的正相关关系是示踪热迁移过程的最有力证据。在热扩散过程中,流体承载的物质的浓度和它的索瑞系数有关。但是这个系数对体系的很多参数非常敏感,变化极大,因此对热扩散效应的研究产生极大的困难。对热扩散实验的镁、钙和铁同位素测量表明,同位素比值的变化与体系的化学组成以及总温度无关,只和温度变化的幅度有关,这意味着即使元素的索瑞系数变化多端,某一元素的同位素之间的索瑞系数的差别总为常数。这一发现有助于简化对热扩散和索瑞系数这一基础物理问题的研究 。  相似文献   

5.
稳定同位素分析是判定水溶液中溶质的组成、来源、迁移和转化过程与规律的重要工具,在自由扩散等物理化学作用下,对溶质的同位素分馏研究是稳定同位素技术应用的重要基础.本研究介绍了溶质的扩散过程与其同位素分馏效应之间的联系,论述了研究溶质扩散过程中引入的稳定同位素分馏现象的意义,描述了水溶液中溶质扩散的不同模拟实验方法及相关研...  相似文献   

6.
Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01 N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disc compacted to a porosity of 35 per cent by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5%. and in O18 by 0.8%. relative to the residual solution. No additional isotopic fractionation due to a salt filtering mechanism was observed at NaCl concentrations up to 0.01 N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role.The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins.  相似文献   

7.
《Geochimica et cosmochimica acta》1999,63(11-12):1653-1660
We present the analytical methods that have been developed for the first high-precision Fe isotope analyses that clearly identify naturally-occurring, mass-dependent isotope fractionation. A double-spike approach is used, which allows rigorous correction of instrumental mass fractionation. Based on 21 analyses of an ultra pure Fe standard, the external precision (1-SD) for measuring the isotopic composition of Fe is ±0.14 ‰/mass; for demonstrated reproducibility on samples, this precision exceeds by at least an order of magnitude that of previous attempts to empirically control instrumentally-produced mass fractionation (Dixon et al., 1993). Using the double-spike method, 15 terrestrial igneous rocks that range in composition from peridotite to rhyolite, 5 high-Ti lunar basalts, 5 Fe-Mn nodules, and a banded iron formation have been analyzed for their iron isotopic composition. The terrestrial and lunar igneous rocks have the same isotopic compositions as the ultra pure Fe standard, providing a reference Fe isotope composition for the Earth and Moon. In contrast, Fe-Mn nodules and a sample of a banded iron formation have iron isotope compositions that vary over a relatively wide range, from δ56Fe = +0.9 to −1.2 ‰; this range is 15 times the analytical errors of our technique. These natural isotopic fractionations are interpreted to reflect biological (“vital”) effects, and illustrate the great potential Fe isotope studies have for studying modern and ancient biological processes.  相似文献   

8.
Diffusive isotopic fractionation factors are important in order to understand natural processes and have practical application in radioactive waste storage and carbon dioxide sequestration. We determined the isotope fractionation factors and the effective diffusion coefficients of chloride and bromide ions during aqueous diffusion in polyacrylamide gel. Diffusion was determined as functions of temperature, time and concentration. The effect of temperature is relatively large on the diffusion coefficient (D) but only small on isotope fractionation. For chlorine, the ratio, D35Cl/D37Cl varied from 1.00128 ± 0.00017 (1σ) at 2 °C to 1.00192 ± 0.00015 at 80 °C. For bromine, D79Br/D81Br varied from 1.00098 ± 0.00009 at 2 °C to 1.0064 ± 0.00013 at 21 °C and 1.00078 ± 0.00018 (1σ) at 80 °C. There were no significant effects on the isotope fractionation due to concentration. The lack of sensitivity of the diffusive isotope fractionation to anything at the most common temperatures (0 to 30 °C) makes it particularly valuable for application to understanding processes in geological environments and an important natural tracer in order to understand fluid transport processes.  相似文献   

9.
Iron isotopic compositions measured in chondrules from various chondrites vary between δ57Fe/54Fe = +0.9‰ and −2.0‰, a larger range than for igneous rocks. Whether these compositions were inherited from chondrule precursors, resulted from the chondrule-forming process itself or were produced by later parent body alteration is as yet unclear. Since iron metal is a common phase in some chondrules, it is important to explore a possible link between the metal formation process and the observed iron isotope mass fractionation. In this experimental study we have heated a fayalite-rich composition under reducing conditions for heating times ranging from 2 min to 6 h. We performed chemical and iron isotope analyses of the product phases, iron metal and silicate glass. We demonstrated a lack of evaporation of Fe from the silicate melt in similar isothermal experiments performed under non-reducing conditions. Therefore, the measured isotopic mass fractionation in the glass, ranging between −0.32‰ and +3.0‰, is attributed to the reduction process. It is explained by the faster transport of lighter iron isotopes to the surface where reduction occurs, and is analogous to kinetic isotope fractionation observed in diffusion couples [Richter, F.M., Davis, A.M., Depaolo, D.J., Watson, E.B., 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim. Acta67, 3905-3923]. The metal phase contains 90-99.8% of the Fe in the system and lacks significant isotopic mass fractionation, with values remaining similar to that of the starting material throughout. The maximum iron isotope mass fractionation in the glass was achieved within 1 h and was followed by an isotopic exchange and re-equilibration with the metal phase (incomplete at ∼6 h). This study demonstrates that reduction of silicates at high temperatures can trigger iron isotopic fractionation comparable in its bulk range to that observed in chondrules. Furthermore, if metal in Type I chondrules was formed by reduction of Fe silicate, our observed isotopic fractionations constrain chondrule formation times to approximately 60 min, consistent with previous work.  相似文献   

10.
Non-dimensional solutions to the equations for the combined advective and diffusive one-dimensional transport of heat and solute in a layer are derived for fixed temperature/concentration on the boundaries and initial conditions of a linear gradient across the layer or a step function at the lower boundary. The solutions allow distinction of regimes in which advective or diffusive transport of either heat or solute predominate as a function of fluid flux, time and a length scale. The much lower diffusive coefficients for solute than heat results in a significant range of length scales and fluid flux rates characterised by advection of matter and diffusion of heat. The advective velocity of a component is a function of its fluid:rock partition coefficient. The most rapidly transported tracers which partition largely into the fluid phase, such as He, will travel orders of magnitude faster than heat or compatible solutes such as oxygen. Geochemical profiles in boundary layer regions where both advective and diffusive transport are significant are shown to be particularly informative as to properties of the rocks related to fluid flow such as porosity, permeability, time scales and fluid flux rates. The importance of advection can be directly estimated from the asymmetry of the geochemical profiles across individual layers.  相似文献   

11.
土壤发生性碳酸盐碳稳定性同位素模型及其应用   总被引:5,自引:0,他引:5  
干旱、半干旱地区土壤无机碳库比有机碳库大2~5倍,无机碳库及其周转在该地区土壤碳平衡中具有重要意义。土壤发生性碳酸盐是土壤发育过程的产物,与岩生性碳酸盐溶解/沉积平衡、土壤有机碳分解CO2的再转化密切相关。发生性碳酸盐碳稳定性同位素主要由土壤CO2的碳同位素组成决定,可以用描述不饱和层气体质量传递的扩散—生成模型模拟。在土壤碳酸盐体系(土壤CO2(g)、碳酸盐和土壤溶液)处于同位素平衡状态时,根据生物过程产生的分子扩散以及碳酸盐化学平衡反应的分馏模型,发生性碳酸盐δ13C值比有机质δ13C值大14‰~16‰。扩散—生成模型和/或分馏模型可以用于鉴定和定量化分散态发生性碳酸盐组分、区分土壤碳酸盐悬膜上发生性碳酸盐的比例,并可用于定量评价土地利用管理措施对碳酸盐溶解/沉积平衡的影响,这在全球碳循环研究中具有重要意义。  相似文献   

12.
The influence of NaCl, CaCl2, and dissolved minerals on the oxygen isotope fractionation in mineral-water systems at high pressure and high temperature was studied experimentally. The salt effects of NaCl (up to 37 molal) and 5-molal CaCl2 on the oxygen isotope fractionation between quartz and water and between calcite and water were measured at 5 and 15 kbar at temperatures from 300 to 750°C. CaCl2 has a larger influence than NaCl on the isotopic fractionation between quartz and water. Although NaCl systematically changes the isotopic fractionation between quartz and water, it has no influence on the isotopic fractionation between calcite and water. This difference in the apparent oxygen isotope salt effects of NaCl must relate to the use of different minerals as reference phases. The term oxygen isotope salt effect is expanded here to encompass the effects of dissolved minerals on the fractionations between minerals and aqueous fluids. The oxygen isotope salt effects of dissolved quartz, calcite, and phlogopite at 15 kbar and 750°C were measured in the three-phase systems quartz-calcite-water and phlogopite-calcite-water. Under these conditions, the oxygen isotope salt effects of the three dissolved minerals range from ∼0.7 to 2.1‰. In both three-phase hydrothermal systems, the equilibrium fractionation factors between the pairs of minerals are the same as those obtained by anhydrous direct exchange between each pair of minerals, proving that the use of carbonate as exchange medium provides correct isotopic fractionations for a mineral pair.When the oxygen isotope salt effects of two minerals are different, the use of water as an indirect exchange medium will give erroneous fractionations between the two minerals. The isotope salt effect of a dissolved mineral is also the main reason for the observation that the experimentally calibrated oxygen isotope fractionations between a mineral and water are systematically 1.5 to 2‰ more positive than the results of theoretical calculations. Dissolved minerals greatly affect the isotopic fractionation in mineral-water systems at high pressure and high temperature. If the presence of a solute changes the solubility of a mineral, the real oxygen isotope salt effect of the solute at high pressure and high temperature cannot be correctly derived by using the mineral as reference phase.  相似文献   

13.
Two-dimensional reactive transport modeling of the Maqarin Eastern Springs site, a natural analogue for the alteration of a fractured limestone by high-pH Portland cement waters, has been performed using the CrunchFlow code. These 2D calculations included transport by advection–dispersion–diffusion along a single fracture and diffusion in the wall rock. Solute transport was coupled to mineral dissolution and precipitation. A limited sensitivity analysis evaluated the effect of different values of primary mineral surface areas, flow velocity and sulfate concentration of the inflowing high-pH solution.Major secondary minerals include ettringite–thaumasite, C–S–H/C–A–S–H and calcite. C–S–H/C–A–S–H precipitation is controlled by the dissolution of primary silicates. Ettringite precipitation is controlled by diffusion of sulfate and aluminum from the wall rock to the fracture, with aluminum provided by the dissolution of albite. Calcite precipitation is controlled by diffusion of carbonate from the wall rock. Extents of porosity sealing along the fracture and in the fracture-wall rock interface depend on assumptions regarding flow velocity and composition of the high-pH solution. The multiple episodes of fracture sealing and reactivation evidenced in the fracture infills were not included in the simulations. Results can qualitatively reproduce the reported decrease in porosity in the fractures and in the wall rock next to the fractures. Instances of porosity increase next to fractures caused by carbonate dissolution were not reproduced by the calculations.  相似文献   

14.
Ion-exchange fractionation of copper and zinc isotopes   总被引:5,自引:0,他引:5  
Whether transition element isotopes can be fractionated at equilibrium in nature is still uncertain. Standard solutions of Cu and Zn were eluted on an anion-exchange resin, and the isotopic compositions of Cu (with respect to Zn) of the eluted fractions were measured by multiple-collector inductively coupled plasma mass spectrometry. It was found that for pure Cu solutions, the elution curves are consistent with a 63Cu/65Cu mass fractionation coefficient of 0.46‰ in 7 mol/L HCl and 0.67‰ in 3 mol/L HCl between the resin and the solution. Batch fractionation experiments confirm that equilibrium fractionation of Cu between resin and 7 mol/L HCl is ∼0.4‰ and therefore indicates that there is no need to invoke kinetic fractionation during the elution. Zn isotope fractionation is an order of magnitude smaller, with a 66Zn/68Zn fractionation factor of 0.02‰ in 12 mol/L HCl. Cu isotope fractionation results determined from a chalcopyrite solution in 7 mol/L HCl give a fractionation factor of 0.58‰, which indicates that Fe may interfere with Cu fractionation.Comparison of Cu and Zn results suggests that the extent of Cu isotopic fractionation may signal the presence of so far unidentified polynuclear complexes in solution. In contrast, we see no compelling reason to ascribe isotope fractionation to the coexistence of different oxidation states. We further suggest that published evidence for iron isotopic fractionation in nature and in laboratory experiments may indicate the distortion of low-spin Fe tetrahedral complexes.The isotope geochemistry of transition elements may shed new light on their coordination chemistry. Their isotopic fractionation in the natural environment may be interpreted using models of thermodynamic fractionation.  相似文献   

15.
从同位素分馏的气-液相界面特征的视角出发,分析自然条件下水面蒸发和降水冷凝的同位素分馏过程存在的差异,分析表明降水氘剩余值产生的直接原因为水面蒸发过程与降水冷凝过程分别遵循动力学分馏与平衡分馏原理,而界面效应是决定蒸发-冷凝过程会否受到动力学过程影响的内因。水面蒸发过程的比界面面积较小,界面效应较大,水分子扩散作用显著,因此,自然条件下水面蒸发过程需要考虑水分子扩散的动力学过程,属于非平衡分馏;相反,降水冷凝过程的比界面面积巨大,界面效应影响很小,分馏基本不受分子扩散分馏影响,降水冷凝过程符合平衡分馏原理。用以上结论作为假设条件,模拟10~40℃从海水蒸发到降水冷凝的水循环过程,模拟结果与全球降水线相吻合,佐证了造成降水氘剩余产生的内在原因为水面蒸发过程与降水冷凝过程的界面效应不同的结论。  相似文献   

16.
Recent experiments in the fields of crystal growth, crystal-melt element partitioning, and diffusion in magmatic melts make it possible to estimate disequilibrium partitioning for many species between liquid and crystals and to compute quantitative models which take into account partition coefficients, diffusivities and rates of crystal growth. A slight difference in the diffusivities of two isotopes should lead to selective depletion (or enrichment) in the crystals as they grow, resulting in varying isotopic ratios as crystallization proceeds. Reasonable hypotheses permit under general kinetic conditions an estimation of magnitude of possible effects. The resulting isotopic fractionation for major elements (like oxygen) may exceed the per ml level; for trace elements the effects may be more significant (5–10 per ml), especially in the case of low partition coefficients, but analytical difficulties are formidable at present.  相似文献   

17.
Oxygen isotope fractionation factors between calcium carbonates and water have been applied to ancient marine geochemistry principally for the purpose of geothermometry. The problem was encountered, however, with respect to the direction and magnitude of oxygen isotope fractionation between calcite and aragonite at thermodynamic equilibrium. This basically involves sound understanding of both thermodynamics and kinetics of oxygen isotope fractionation between inorganically precipitated carbonate and water at low temperatures. Thus the crucial issues are to acknowledge the processes of chemical reaction and isotopic exchange during precipitation of CaCO3 minerals in solution, the kinetic mechanism of isotope equilibrium or disequilibrium, the effect of polymorphic transition from metastable aragonite to stable calcite under hydrous or anhydrous conditions, and the presence or absence of isotope salt effect on oxygen isotope exchange between carbonate and water in response to the hydrous or anhydrous conditions at thermodynamic equilibrium. Because good agreements exist in carbonate–water oxygen isotope fractionation factors between theoretical calculations and experimental determinations, it is encouraging to applying the thermodynamic and kinetic data to isotopic paleothermometry and geochemical tracing.  相似文献   

18.
Isotope fractionation of electroplated Fe was measured as a function of applied electrochemical potential. As plating voltage was varied from −0.9 V to 2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ56Fe values (relative to IRMM-14) ranging from −0.18(±0.02) to −2.290(±0.006) ‰, and corresponding δ57Fe values of −0.247(±0.014) and −3.354(±0.019) ‰. This study demonstrates that there is a voltage-dependent isotope fractionation associated with the reduction of iron. We show that Marcus’s theory for the kinetics of electron transfer can be extended to include the isotope effects of electron transfer, and that the extended theory accounts for the voltage dependence of Fe isotope fractionation. The magnitude of the electrochemically-induced fractionation is similar to that of Fe reduction by certain bacteria, suggesting that similar electrochemical processes may be responsible for biogeochemical Fe isotope effects. Charge transfer is a fundamental physicochemical process involving Fe as well as other transition metals with multiple isotopes. Partitioning of isotopes among elements with varying redox states holds promise as a tool in a wide range of the Earth and environmental sciences, biology, and industry.  相似文献   

19.
随着分析技术的进步,非传统稳定同位素体系在地球化学、天体化学和生物地球化学等研究领域的应用日益广泛。钛(Ti)是一个非常重要的过渡族金属元素,在地球和其他类地球行星中广泛存在。但是由于Ti是一种难熔的、流体不活动性元素,高温地质过程中Ti同位素分馏很小。人们对Ti同位素体系的地球化学应用的关注相对其他非传统稳定同位非常有限。而近年来,随着化学纯化方案的优化以及双稀释剂方法的改进和仪器质谱性能的提高,Ti同位素组成的高精度测试已经能够实现。天然样品中Ti同位素组成的变化随之得以发现,使得学者们能够利用这一新的稳定同位素体系来解决与高温和低温地球化学相关的问题。很快Ti同位素体系地球化学研究成为当前国际地质学界的前沿研究课题和新的发展方向之一。本文首先在简要介绍Ti元素和Ti同位素体地球化学性质的基础上,介绍了Ti元素化学分离和Ti同位素分析方法。随后笔者总结了已有的不同类型球粒陨石和地球样品的质量相关Ti同位素组成研究结果,对硅酸盐地球的Ti同位素组成做了初步评估。前人对高温地质样品的Ti同位素组成研究初步探明Ti同位素在岩浆演化过程,例如部分熔融和结晶分异等重要地质过程中的分馏行为。笔者在此基础上探讨了结晶分异过程中引起Ti同位素分馏的主要控制因素,指出Ti同位素是潜在的研究岩浆演化过程的新工具。最后笔者探讨了Ti同位素地球化学未来的发展方向,以加速我国在Ti同位素地球化学方面的应用研究。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号