首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Zinc and Cu play important roles in the biogeochemistry of natural systems, and it is likely that these interactions result in mass-dependent fractionations of their stable isotopes. In this study, we examine the relative abundances of dissolved Zn and Cu isotopes in a variety of stream waters draining six historical mining districts located in the United States and Europe. Our goals were to (1) determine whether streams from different geologic settings have unique or similar Zn and Cu isotopic signatures and (2) to determine whether Zn and Cu isotopic signatures change in response to changes in dissolved metal concentrations over well-defined diel (24-h) cycles.Average δ66Zn and δ65Cu values for streams varied from +0.02‰ to +0.46‰ and −0.7‰ to +1.4‰, respectively, demonstrating that Zn and Cu isotopes are heterogeneous among the measured streams. Zinc or Cu isotopic changes were not detected within the resolution of our measurements over diel cycles for most streams. However, diel changes in Zn isotopes were recorded in one stream where the fluctuations of dissolved Zn were the largest. We calculate an apparent separation factor of ∼0.3‰ (66/64Zn) between the dissolved and solid Zn reservoirs in this stream with the solid taking up the lighter Zn isotope. The preference of the lighter isotope in the solid reservoir may reflect metabolic uptake of Zn by microorganisms. Additional field investigations must evaluate the contributions of soils, rocks, minerals, and anthropogenic components to Cu and Zn isotopic fluxes in natural waters. Moreover, rigorous experimental work is necessary to quantify fractionation factors for the biogeochemical reactions that are likely to impact Cu and Zn isotopes in hydrologic systems. This initial investigation of Cu and Zn isotopes in stream waters suggests that these isotopes may be powerful tools for probing biogeochemical processes in surface waters on a variety of temporal and spatial scales.  相似文献   

2.
High-precision Ni isotopic variations are reported for the metal phase of equilibrated and unequilibrated ordinary chondrites, carbonaceous chondrites, iron meteorites, mesosiderites, and pallasites. We also report new Zn and Cu isotopic data for some of these samples and combine them with literature Fe, Cu, and Zn isotope data to constrain the fractionation history of metals during nebular (vapor/solid) and planetary (metal/sulfide/silicate) phase changes.The observed variations of the 62Ni/58Ni, 61Ni/58Ni, and 60Ni/58Ni ratios vary linearly with mass difference and define isotope fractionation lines in common with terrestrial samples. This implies that Ni was derived from a single homogeneous reservoir. While no 60Ni anomaly is detected within the analytical uncertainties, Ni isotopic fractionation up to 0.45‰ per mass-difference unit is observed. The isotope compositions of Ni and Zn in chondrites are positively correlated. We suggest that, in ordinary chondrites, exchange between solid phases, in particular metal and silicates, and vapor followed by mineral sorting during accretion are the main processes controlling these isotopic variations. The positive correlation between Ni and Zn isotope compositions contrasts with a negative correlation between Ni (and Zn) and Cu isotope compositions, which, when taken together, do not favor a simple kinetic interpretation. The observed transition element similarities between different groups of chondrites and iron meteorites are consistent with the genetic relationships inferred from oxygen isotopes (IIIA/pallasites and IVA/L chondrites). Copper is an exception, which we suggest may be related to separate processing of sulfides either in the vapor or during core formation.  相似文献   

3.
对不同离子交换柱、淋洗体积、盐度、分离次数等一系列影响铜、锌纯化分离效果的条件进行了探讨,确定了环境样品(湖泊沉积物、植物和颗粒物)中铜、锌同位素测定时化学分离的最佳条件。采用AGMP-1(100~200目)阴离子交换树脂,以7mol/LHCl+0.001%H2O2、2mol/LHCl+0.001%H2O2、0.5mol/LHNO3作为淋洗液,分别在适当的体积接收淋洗液,可以有效地分离沉积物、植物和悬浮物等样品中的铜和锌。化学分离过程中Cu和Zn的回收率接近100%,同位素分馏在测试误差范围以内。将此方法应用于对红枫湖和阿哈湖水体悬浮物、植物和鱼类等样品中Cu、Zn的分离,经MC-ICP-MS测试后,准确获得了这些样品的Cu、Zn同位素组成。  相似文献   

4.
Copper and Zn metals are produced in large quantities for different applications. During Cu production, large amounts of Cu and Zn can be released to the environment. Therefore, the surroundings of Cu smelters are frequently metal-polluted. We determined Cu and Zn concentrations and Cu and Zn stable isotope ratios (δ65Cu, δ66Zn) in three soils at distances of 1.1, 3.8, and 5.3 km from a Slovak Cu smelter and in smelter wastes (slag, sludge, ash) to trace sources and transport of Cu and Zn in soils. Stable isotope ratios were measured by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) in total digests. Soils were heavily contaminated with concentrations up to 8087 μg g−1 Cu and 2084 μg g−1 Zn in the organic horizons. The δ65Cu values varied little (−0.12‰ to 0.36‰) in soils and most wastes and therefore no source identification was possible. In soils, Cu became isotopically lighter with increasing depth down to 0.4 m, likely because of equilibrium reactions between dissolved and adsorbed Cu species during transport of smelter-derived Cu through the soil. The δ66ZnIRMM values were isotopically lighter in ash (−0.41‰) and organic horizons (−0.85‰ to −0.47‰) than in bedrock (−0.28‰) and slag (0.18‰) likely mainly because of kinetic fractionation during evaporation and thus allowed for separation of smelter-Zn from native Zn in soil. In particular in the organic horizons large variations in δ66Zn values occur, probably caused by biogeochemical fractionation in the soil-plant system. In the mineral horizons, Zn isotopes showed only minor shifts to heavier δ66Zn values with depth mainly because of the mixing of smelter-derived Zn and native Zn in the soils. In contrast to Cu, Zn isotope fractionation between dissolved and adsorbed species was probably only a minor driver in producing the observed variations in δ66Zn values. Our results demonstrate that metal stable isotope ratios may serve as tracer of sources, vertical dislocation, and biogeochemical behavior in contaminated soil.  相似文献   

5.
Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (αsoln-solid) are 0.99927 ± 0.00008 for Cu and 0.99948 ± 0.00004 for Zn or, alternately, the separation factors (Δsoln-solid) are −0.73 ± 0.08‰ for Cu and −0.52 ± 0.04‰ for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).  相似文献   

6.
This work is aimed at quantifying the main environmental factors controlling isotope fractionation of Cu during its adsorption from aqueous solutions onto common organic (bacteria, algae) and inorganic (oxy(hydr)oxide) surfaces. Adsorption of Cu on aerobic rhizospheric (Pseudomonas aureofaciens CNMN PsB-03) and phototrophic aquatic (Rhodobacter sp. f-7bl, Gloeocapsa sp. f-6gl) bacteria, uptake of Cu by marine (Skeletonema costatum) and freshwater (Navicula minima, Achnanthidium minutissimum and Melosira varians) diatoms, and Cu adsorption onto goethite (FeOOH) and gibbsite (AlOOH) were studied using a batch reaction as a function of pH, copper concentration in solution and time of exposure. Stable isotopes of copper in selected filtrates were measured using Neptune multicollector ICP-MS. Irreversible incorporation of Cu in cultured diatom cells at pH 7.5-8.0 did not produce any isotopic shift between the cell and solution (Δ65/63Cu(solid-solution)) within ±0.2‰. Accordingly, no systematic variation was observed during Cu adsorption on anoxygenic phototrophic bacteria (Rhodobacter sp.), cyanobacteria (Gloeocapsa sp.) or soil aerobic exopolysaccharide (EPS)-producing bacteria (P. aureofaciens) in circumneutral pH (4-6.5) and various exposure times (3 min to 48 h): Δ65Cu(solid-solution) = 0.0 ± 0.4‰. In contrast, when Cu was adsorbed at pH 1.8-3.5 on the cell surface of soil the bacterium P. aureofacienshaving abundant or poor EPS depending on medium composition, yielded a significant enrichment of the cell surface in the light isotope (Δ65Cu (solid-solution) = −1.2 ± 0.5‰). Inorganic reactions of Cu adsorption at pH 4-6 produced the opposite isotopic offset: enrichment of the oxy(hydr)oxide surface in the heavy isotope with Δ65Cu(solid-solution) equals 1.0 ± 0.25‰ and 0.78 ± 0.2‰ for gibbsite and goethite, respectively. The last result corroborates the recent works of Mathur et al. [Mathur R., Ruiz J., Titley S., Liermann L., Buss H. and Brantley S. (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta69, 5233-5246] and Balistrieri et al. [Balistrieri L. S., Borrok D. M., Wanty R. B. and Ridley W. I. (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorhous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim. Cosmochim. Acta72, 311-328] who reported heavy Cu isotope enrichment onto amorphous ferric oxyhydroxide and on metal hydroxide precipitates on the external membranes of Fe-oxidizing bacteria, respectively.Although measured isotopic fractionation does not correlate with the relative thermodynamic stability of surface complexes, it can be related to their structures as found with available EXAFS data. Indeed, strong, bidentate, inner-sphere complexes presented by tetrahedrally coordinated Cu on metal oxide surfaces are likely to result in enrichment of the heavy isotope on the surface compared to aqueous solution. The outer-sphere, monodentate complex, which is likely to form between Cu2+ and surface phosphoryl groups of bacteria in acidic solutions, has a higher number of neighbors and longer bond distances compared to inner-sphere bidentate complexes with carboxyl groups formed on bacterial and diatom surfaces in circumneutral solutions. As a result, in acidic solution, light isotopes become more enriched on bacterial surfaces (as opposed to the surrounding aqueous medium) than they do in neutral solution.Overall, the results of the present study demonstrate important isotopic fractionation of copper in both organic and inorganic systems and provide a firm basis for using Cu isotopes for tracing metal transport in earth-surface aquatic systems. It follows that both adsorption on oxides in a wide range of pH values and adsorption on bacteria in acidic solutions are capable of producing a significant (up to 2.5-3‰ (±0.1-0.15‰)) isotopic offset. At the same time, Cu interaction with common soil and aquatic bacteria, as well as marine and freshwater diatoms, at 4 < pH < 8 yields an isotopic shift of only ±0.2-0.3‰, which is not related to Cu concentration in solution, surface loading, the duration of the experiment, or the type of aquatic microorganisms.  相似文献   

7.
Zn isotopic fractionation caused by sorption on 2-Lines ferrihydrite (Fh2L) and goethite was investigated to assess the role of reactions at the Fe-oxyhydroxide/water interface in changes of the isotopic distribution of Zn. Since sorption reactions are ubiquitous in Earth’s surface environments, it is important to evaluate their influence on the isotopic distribution of Zn before it can be used to track and quantify contributions of various sources and/or biogeochemical processes involving this element. Our results show that Zn isotopes are fractionated upon sorption on Fe-oxyhydroxides with an enrichment of the heavy isotopes present on the solid’s surface. This fractionation appears to proceed through an equilibrium mechanism and yields different (Δ66/64Zn)sorbed-aqueous values for Zn sorption on goethite [(Δ66/64Zn)sorbed-aqueous around +0.29‰] and Fh2L [(Δ66/64Zn)sorbed-aqueous around +0.53‰]. These different magnitudes of Zn fractionation are related to structural differences between Zn complexes existing on the surface of goethite (octahedrally coordinated Zn by oxygen atoms) and Fh2L (tetrahedrally coordinated Zn by oxygen atoms), as evidenced by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and CD-MUSIC modeling. These results show the importance of accounting for reactions at the Fe-oxyhydroxide/water interface when dealing with the isotopic distribution of Zn at the Earth’s surface. Considering the large range of other possible sorbents (Mn or Al oxides, phyllosilicates, carbonates, biologic surfaces, etc.) and the importance of reactions at sorbent/water interfaces for other non-traditional stable isotopes (i.e. Cr, Fe, Ni and Cu) that are increasingly used in environmental studies, these results emphasize the need for further experimental studies that are needed to quantify the isotopic fractionation of these elements possibly accompanying their sorption.  相似文献   

8.
High-precision Zn isotopic variations are reported for carbonaceous chondrites (CC), equilibrated (EOC) and unequilibrated (UOC) ordinary chondrites, iron meteorites from the IAB-IIICD (nonmagmatic) and IIIA (magmatic) groups, and metal from the Brenham pallasite. For irons, δ65Cu values are also reported. Data have also been obtained on a coarse-grained type-B calcium-, aluminum-rich refractory inclusion (CAI) from Allende and on acid leaches of Allende (CV3), Krymka (LL3), and Charsonville (H6). Variations expressed as δ66Zn (deviation in parts per thousand of 66Zn/64Zn in samples relative to a standard) spread over a range of 0.3‰ for carbonaceous chondrites, 2‰ for ordinary chondrites, and 4‰ for irons.The measured 66Zn/64Zn, 67Zn/64Zn, and 68Zn/64Zn ratios vary linearly with mass difference and define a common isotope fractionation line with terrestrial samples, which demonstrates that Zn was derived from an initially single homogeneous reservoir. The δ66Zn values are correlated with meteorite compositions and slightly decrease in the order CI, CM, CV-CO, and to UOC. The isotopically light Zn of Allende CAI and the acid-resistant residues of Allende and Krymka show that the light component is associated with refractory material, presumably minerals from the spinel-group. This, together with the reverse correlation between relative abundances of light Zn isotopes and volatile element abundances, suggests that Zn depletion in planetary bodies with respect to CI cannot be ascribed to devolatilization of CI-like material. These observations rather suggest that refractory material reacted with a gas phase enriched in the lighter Zn isotopes. Alternatively, chondrules with their associated rims should carry a light Zn isotopic signature. The δ66Zn values of unequilibrated chondrites are rather uniform, whereas equilibrated chondrites show distinctly more isotopic variability.The values of δ65Cu-δ66Zn in irons define two trends. The moderate and positively correlated Cu and Zn isotope variations in IIIA and pallasite samples probably reflect crystallization of silicate, sulfide, and solid metal from the liquid metal. The range of δ66Zn values of the IAB-IIICD group is large (>3‰) and contrasts with the moderate fractionation of Cu isotopes. We interpret this feature and the negative δ66Zn-δ65Cu correlation as reflecting mixing, possibly achieved by percolation, between metals from a regolith devolatilized at low temperature (enriched in heavy zinc) and metallic liquids formed within the parent body.  相似文献   

9.
Significant, systematic Cu isotopic variations have been found in the Northparkes porphyry Cu-Au deposit, NSW, Australia, which is an orthomagmatic porphyry Cu deposit. Copper isotope ratios have been measured in sulfide minerals (chalcopyrite and bornite) by both solution and laser ablation multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The results from both methods show a variation in δ65Cu of hypogene sulfide minerals of greater than 1‰ (relative to NIST976). Significantly, the results from four drill holes through two separate ore bodies show strikingly similar patterns of Cu isotope variation. The patterns are characterized by a sharp down-hole decrease from up to 0.8‰ (0.29 ± 0.56‰, 1σ, n = 20) in the low-grade peripheral alteration zones (phyllic-propylitic alteration zone) to a low of ∼−0.4‰ (−0.25 ± 0.36‰, 1σ, n = 30) at the margins of the most mineralized zones (Cu grade >1 wt%). In the high-grade cores of the systems, the compositions are more consistent at around 0.2‰ (0.19 ± 0.14‰, 1σ, n = 40). The Cu isotopic zonation may be explained by isotope fractionation of Cu between vapor, solution and sulfides at high temperature, during boiling and sulfide precipitation processes. Sulfur isotopes also show an isotopically light shell at the margins of the high-grade ore zones, but these are displaced from the low δ65Cu shells, such that there is no correlation between the Cu and S isotope signatures. Fe isotope data do not show any discernable variation along the drill core. This work demonstrates that Cu isotopes show a large response to high-temperature porphyry mineralizing processes, and that they may act as a vector to buried mineralization.  相似文献   

10.
Cu and Zn have naturally occurring non radioactive isotopes, and their isotopic systematics in a biological context are poorly understood. In this study we used double focussing mass spectroscopy to determine the ratios for these isotopes for the first time in mouse brain. The Cu and Zn isotope ratios for four strains of wild-type mice showed no significant difference (δ65Cu -0.12 to -0.78 permil; δ66Zn -0.23 to -0.48 permil). We also looked at how altering the expression of a single copper binding protein, the prion protein (PrP), alters the isotope ratios. Both knockout and overexpression of PrP had no significant effect on the ratio of Cu isotopes. Mice brains expressing mutant PrP lacking the known metal binding domain have δ65Cu isotope values of on average 0.57 permil higher than wild-type mouse brains. This implies that loss of the copper binding domain of PrP increases the level of 65Cu in the brain. δ66Zn isotope values of the transgenic mouse brains are enriched for 66Zn to the wild-type mouse brains. Here we show for the first time that the expression of a single protein can alter the partitioning of metal isotopes in mouse brains. The results imply that the expression of the prion protein can alter cellular Cu isotope content.  相似文献   

11.
采用AGMP-1阴离子交换树脂,分别以7mol/L HCl、2mol/L HCl、0.5mol/L HNO3作为淋洗剂,可有效分离Cu、Fe、Zn。介绍了方法的基本原理、化学分离过程及混合标准溶液与地质标样的分离结果。结果表明,Cu、Fe、Zn回收率均接近100%,标准溶液在离子交换分离前后同位素组成一致,可以满足多接收器等离子体质谱对Cu、Fe、Zn同位素高精度分析的要求。  相似文献   

12.
Equilibrium and kinetic Fe isotope fractionation between aqueous ferrous and ferric species measured over a range of chloride concentrations (0, 11, 110 mM Cl) and at two temperatures (0 and 22°C) indicate that Fe isotope fractionation is a function of temperature, but independent of chloride contents over the range studied. Using 57Fe-enriched tracer experiments the kinetics of isotopic exchange can be fit by a second-order rate equation, or a first-order equation with respect to both ferrous and ferric iron. The exchange is rapid at 22°C, ∼60-80% complete within 5 seconds, whereas at 0°C, exchange rates are about an order of magnitude slower. Isotopic exchange rates vary with chloride contents, where ferrous-ferric isotope exchange rates were ∼25 to 40% slower in the 11 mM HCl solution compared to the 0 mM Cl (∼10 mM HNO3) solutions; isotope exchange rates are comparable in the 0 and 110 mM Cl solutions.The average measured equilibrium isotope fractionations, ΔFe(III)-Fe(II), in 0, 11, and 111 mM Cl solutions at 22°C are identical within experimental error at +2.76±0.09, +2.87±0.22, and +2.76±0.06 ‰, respectively. This is very similar to the value measured by Johnson et al. (2002a) in dilute HCl solutions. At 0°C, the average measured ΔFe(III)-Fe(II) fractionations are +3.25±0.38, +3.51±0.14 and +3.56±0.16 ‰ for 0, 11, and 111 mM Cl solutions. Assessment of the effects of partial re-equilibration on isotope fractionation during species separation suggests that the measured isotope fractionations are on average too low by ∼0.20 ‰ and ∼0.13 ‰ for the 22°C and 0°C experiments, respectively. Using corrected fractionation factors, we can define the temperature dependence of the isotope fractionation from 0°C to 22°C as: where the isotopic fractionation is independent of Cl contents over the range used in these experiments. These results confirm that the Fe(III)-Fe(II) fractionation is approximately half that predicted from spectroscopic data, and suggests that, at least in moderate Cl contents, the isotopic fractionation is relatively insensitive to Fe-Cl speciation.  相似文献   

13.
Isotopic fractionation of Cu in tektites   总被引:1,自引:0,他引:1  
Tektites are terrestrial natural glasses of up to a few centimeters in size that were produced during hypervelocity impacts on the Earth’s surface. It is well established that the chemical and isotopic composition of tektites is generally identical to that of the upper terrestrial continental crust. Tektites typically have very low water content, which has generally been explained by volatilization at high temperature; however, the exact mechanism is still debated. Because volatilization can fractionate isotopes, comparing the isotopic composition of volatile elements in tektites with those of their source rocks may help to understand the physical conditions during tektite formation.Interestingly, volatile chalcophile elements (e.g., Cd and Zn) seem to be the only elements for which isotopic fractionation is known so far in tektites. Here, we extend this study to Cu, another volatile chalcophile element. We have measured the Cu isotopic composition for 20 tektite samples from the four known different strewn fields. All of the tektites (except the Muong Nong-types) are enriched in the heavy isotopes of Cu (1.98 < δ65Cu < 6.99) in comparison to the terrestrial crust (δ65Cu ≈ 0) with no clear distinction between the different groups. The Muong Nong-type tektites and a Libyan Desert Glass sample are not fractionated (δ65Cu ≈ 0) in comparison to the terrestrial crust. To refine the Cu isotopic composition of the terrestrial crust, we also present data for three geological reference materials (δ65Cu ≈ 0).An increase of δ65Cu with decreasing Cu abundance probably reflects that the isotopic fractionation occurred by evaporation during heating. A simple Rayleigh distillation cannot explain the Cu isotopic data and we suggest that the isotopic fractionation is governed by a diffusion-limited regime. Copper is isotopically more fractionated than the more volatile element Zn (δ66/64Zn up to 2.49‰). This difference of behavior between Cu and Zn is predicted in a diffusion-limited regime, where the magnitude of the isotopic fractionation is regulated by the competition between the evaporative flux and the diffusive flux at the diffusion boundary layer. Due to the difference of ionic charge in silicates (Zn2+ vs. Cu+), Cu has a diffusion coefficient that is larger than that of Zn by at least two orders of magnitude. Therefore, the larger isotopic fractionation in Cu than in Zn in tektites is due to the significant difference in their respective chemical diffusivity.  相似文献   

14.
The isotopic composition of dissolved Cu and solid Cu-rich minerals [δ65Cu (‰) = (65Cu/63Cusample/65Cu/63Custd) - 1)*1000] were monitored in batch oxidative dissolution experiments with and without Thiobacillus ferrooxidans. Aqueous copper in leach fluids released during abiotic oxidation of both chalcocite and chalcopyrite was isotopically heavier (δ65Cu = 5.34‰ and δ65Cu = 1.90‰, respectively, [±0.16 at 2σ]) than the initial starting material (δ65Cu = 2.60 ± 0.16‰ and δ65Cu = 0.58 ± 0.16‰, respectively). Isotopic mass balance between the starting material, aqueous copper, and secondary minerals precipitated in these experiments explains the heavier isotopic values of aqueous copper. In contrast, aqueous copper from leached chalcocite and chalcopyrite inoculated with Thiobacillus ferrooxidans was isotopically similar to the starting material. The lack of fractionation of the aqueous copper in the biotic experiments can best be explained by assuming a sink for isotopically heavy copper present in the bacteria cells with δ65Cu = 5.59 ± 0.16‰. Consistent with this inference, amorphous Cu-Fe oxide minerals are observed surrounding cell membranes of Thiobacillus grown in the presence of dissolved Cu and Fe.Extrapolating these experiments to natural supergene environments implies that release of isotopically heavy aqueous Cu from oxidative leach caps, especially under abiotic conditions, should result in precipitates in underlying enrichment blankets that are isotopically heavy. Where iron-oxidizing cells are involved, isotopically heavy oxidized Cu entrained in cellular material may become associated with leach caps, causing the released aqueous Cu to be less isotopically enriched in the heavy isotope than predicted for the abiotic system. Rayleigh fractionation trends with fractionation factors calculated from our experiments for both biotic and abiotic conditions are consistent with large numbers of individual abiotic or biotic leaching events, explaining the supergene chalcocites in the Morenci and Silver Bell porphyry copper deposits.  相似文献   

15.
We present molecular orbital/density functional theory (MO/DFT) calculations that predict a greater isotopic fractionation in redox reactions than in reactions involving ligand exchange. The predicted fractionation factors, reported as 1000·ln(56-54α), associated with equilibrium between Fe-organic and Fe-H2O species were <1.6‰ in vacuo and <1.2‰ in solution when the oxidation state of the system was held constant. These fractionation factors were significantly smaller than those predicted for equilibrium between different oxidation states of Fe, for which 1000·ln(56-54α) was >2.7‰ in vacuo and >2.2‰ in solution when the bound ligands were unchanged. The predicted 56Fe/54Fe ratio was greater in complexes containing Fe3+ and in complexes with shorter Fe-O bond lengths; both of these trends follow previous theoretical results. Our predictions also agree with previous experimental measurements that suggest that the largest biological fractionations will be associated with processes that change the oxidation state of Fe, and that identification of biologically controlled Fe isotope fractionation may be difficult when abiotic redox fractionations are present in the system. The models studied here also have important implications for future theoretical isotope calculations, because we have discovered the necessity of using vibrational frequencies instead of reduced masses when predicting reduced partition functions in aqueous-phase species.  相似文献   

16.
AG MP-1阴离子交换树脂元素分离方法研究   总被引:20,自引:1,他引:19  
在用多接收器等离子体质谱仪(MC—ICP—MS)测定过渡族元素同位素时,需要对待测样品进行分离纯化。目前,人们常用AGMP-1阴离子交换树脂在不同浓度的HCl和HNO,介质中依次分离出Cu,Fe和zn。为详细了解样品中基体元素与AGMP-1阴离子交换树脂的作用以及它们在该树脂中的淋洗过程,根据金属阳离子与Cl^-形成络合物的稳定性及它们与阴离子交换树脂的亲和力,对利用AGMP-1进行Cu和Fe分离过程中基质元素的行为进行了实验研究。结果表明,除Co外,在7mol/LHCl条件下,地质样品中基体元素(包括cr和Ni)能与Cu,Fe进行很好的分离。不同酸度下的实验研究表明,在6mol/LHCl条件下,可以将Cu和Co进行很好的分离。为此提出,对于基质元素含量较少的样品(如硫化物、氧化物、氢氧化物等),可直接用6mol/LHCl进行样品分离。由于这类样品中K,Na,Ca,Mg,A1等元素含量较低,在Cu被洗脱前已被彻底淋洗,该方法可将Cu和包括Co在内的基质元素进行理想的分离。对于含Co较高的部分硅酸盐等样品,则应先用7mol/LHCl分离出Cu接收液,之后过二遍柱,以6mol/LHCl作淋洗液,去掉Co。建立的分离方法还可应用于Ca,Mg同位素的前期分离纯化  相似文献   

17.
The equilibrium Mg isotope fractionation factor between epsomite and aqueous MgSO4 solution has been measured using the three isotope method in recrystallization experiments conducted at 7, 20, and 40 °C. Complete or near-complete isotopic exchange was achieved within 14 days in all experiments. The Mg isotope exchange rate between epsomite and MgSO4 solution is dependent on the temperature, epsomite seed crystal grain size, and experimental agitation method. The Mg isotope fractionation factors (Δ26Mgeps-sol) at 7, 20, and 40 °C are 0.63 ± 0.07‰, 0.58 ± 0.16‰, and 0.56 ± 0.03‰, respectively. These values are indistinguishable within error, indicating that the Mg isotope composition of epsomite is relatively insensitive to temperature. The magnitude of the isotope fractionation factor (Δ26Mgeps-sol = ca. 0.6‰ between 7 and 40 °C) indicates that significant Mg isotope variations can be produced in evaporite sequences, and Mg isotopes may therefore, constrain the degree of closed-system behavior, paleo-humidity, and hydrological history of evaporative environments.  相似文献   

18.
Iron isotope and major- and minor-element compositions of coexisting olivine, clinopyroxene, and orthopyroxene from eight spinel peridotite mantle xenoliths; olivine, magnetite, amphibole, and biotite from four andesitic volcanic rocks; and garnet and clinopyroxene from seven garnet peridotite and eclogites have been measured to evaluate if inter-mineral Fe isotope fractionation occurs in high-temperature igneous and metamorphic minerals and if isotopic fractionation is related to equilibrium Fe isotope partitioning or a result of open-system behavior. There is no measurable fractionation between silicate minerals and magnetite in andesitic volcanic rocks, nor between olivine and orthopyroxene in spinel peridotite mantle xenoliths. There are some inter-mineral differences (up to 0.2 in 56Fe/54Fe) in the Fe isotope composition of coexisting olivine and clinopyroxene in spinel peridotites. The Fe isotope fractionation observed between clinopyroxene and olivine appears to be a result of open-system behavior based on a positive correlation between the Δ56Feclinopyroxene-olivine fractionation and the δ56Fe value of clinopyroxene and olivine. There is also a significant difference in the isotopic compositions of garnet and clinopyroxene in garnet peridotites and eclogites, where the average Δ56Feclinopyroxene-garnet fractionation is +0.32 ± 0.07 for six of the seven samples. The one sample that has a lower Δ56Feclinopyroxene-garnet fractionation of 0.08 has a low Ca content in garnet, which may reflect some crystal chemical control on Fe isotope fractionation. The Fe isotope variability in mantle-derived minerals is interpreted to reflect subduction of isotopically variable oceanic crust, followed by transport through metasomatic fluids. Isotopic variability in the mantle might also occur during crystal fractionation of basaltic magmas within the mantle if garnet is a liquidus phase. The isotopic variations in the mantle are apparently homogenized during melting processes, producing homogenous Fe isotope compositions during crust formation.  相似文献   

19.
In order to test the potential of B isotopes as a tracer of contamination of the atmosphere, the B isotopic composition of rainwater samples monitored over a year in the centre of Paris, France were determined. Boron concentrations range from 19 nmol/L to 500 nmol/L and δ11B range from 0‰ to +38‰. Mean annual values are 148 nmol/L and +25‰, respectively. The results suggest that variability in B isotopic compositions is mainly caused by mixing of two main sources, although isotopic fractionation during the evaporation–condensation processes may also be important. One source is a marine component, which exhibits a heavy B isotopic composition. The decrease of δ11B in rainwater with increasing NO3/B and SO4/B molar ratios suggests that a second source may be anthropogenic emissions. To constrain this end-member, B was determined in urban particulates, which were enriched in the light isotope and the lowest values were consistent with a B-rich fossil fuel composition. These results confirm the great sensitivity of B to anthropogenic sources and the ability of B isotopic ratios to decipher the origin of B in the atmosphere.  相似文献   

20.
The stable copper isotope composition of 79 samples of primary and secondary copper minerals from hydrothermal veins in the Schwarzwald mining district, South Germany, shows a wide variation in δ65Cu ranging from −2.92 to 2.41‰. We investigated primary chalcopyrite, various kinds of fahlores and emplectite, as well as supergene native copper, malachite, azurite, cuprite, tenorite, olivenite, pseudomalachite and chrysocolla. Fresh primary Cu(I) ores have at most localities copper isotope ratios (δ65Cu values) of 0 ± 0.5‰ despite the fact that the samples come from mineralogically different types of deposits covering an area of about 100 by 50 km and that they formed during three different mineralization events spanning the last 300 Ma. Relics of the primary ores in oxidized samples (i.e., chalcopyrite relics in an iron oxide matrix with an outer malachite coating) display low isotope ratios down to −2.92‰. Secondary Cu(I) minerals such as cuprite have high δ65Cu values between 0.4 and 1.65‰, whereas secondary Cu(II) minerals such as malachite show a range of values between −1.55 and 2.41‰, but typically have values above +0.5‰. Within single samples, supergene oxidation of fresh chalcopyrite with a δ value of 0‰ causes significant fractionation on the scale of a centimetre between malachite (up to 1.49‰) and relict chalcopyrite (down to −2.92‰). The results show that—with only two notable exceptions—high-temperature hydrothermal processes did not lead to significant and correlatable variations in copper isotope ratios within a large mining district mineralized over a long period of time. Conversely, low-temperature redox processes seriously affect the copper isotope compositions of hydrothermal copper ores. While details of the redox processes are not yet understood, we interpret the range in compositions found in both primary Cu(I) and secondary Cu(II) minerals as a result of two competing controls on the isotope fractionation process: within-fluid control, i.e., the fractionation during the redox process among dissolved species, and fluid-solid control, i.e., fractionation during precipitation involving reactions between dissolved Cu species and minerals. Additionally, Rayleigh fractionation in a closed system may be responsible for some of the spread in isotope compositions. Our study indicates that copper isotope variations may be used to decipher details of natural redox processes and therefore may have some bearing on exploration, evaluation and exploitation of copper deposits. On the other hand, copper isotope analyses of single archeological artefacts or geological or biological objects cannot be easily used as reliable fingerprint for the source of copper, because the variation caused by redox processes within a single deposit is usually much larger than the inter-deposit variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号