首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
白杨河冲积扇是由阵发性洪水期的碎屑流沉积物与间洪期辫状河沉积物组成的复合型冲积扇,其构型与碎屑流扇的构型和河流型扇的构型有很大的不同。本研究选取准噶尔盆地西北缘干旱气候下发育的现代白杨河冲积扇作为解剖实例,对103个天然剖面和9个人工大型探槽进行了详细测量,在沉积微相及不同级别的沉积构型的观测和分析的基础上,分析了阵发性洪水条件下间歇性辫状河型冲积扇体的地貌单元的演化过程和沉积构型特征,研究不同流态的阵发性洪水条件下各种建造和改造机制,明确受阵发性洪水控制的间歇性辫状河型冲积扇的沉积特征,建立了其沉积构型模式。认为: 在洪水期,阵发性洪流(碎屑流)形成席状化的片流(或片洪)沉积,在洪退期,随着洪水强度的减弱,又转变为辫流沉积,而在间洪期,仍有持续的辫状流体(牵引流)在限制性的水道中流动,并对洪水期的碎屑流沉积物进行改造,形成了限制性的(条带状的)辫状河道沉积,2个时期的沉积物在时空上频繁叠置,形成了一种更加复杂的沉积构型。该模式对油田地下冲积扇砂砾储集层的成因识别、预测及对比具有一定的参考价值。  相似文献   

2.
冲积扇砂砾岩储层是准噶尔盆地一类重要的油气储层类型,由于其具岩相类型多、连续性差等特点,对冲积扇内部岩相成因解释一直是冲积扇相带认知的基础和难点。以准噶尔盆地西北缘现代白杨河冲积扇为例,在大量的野外露头资料和粒度分析数据的基础上,结合冲积扇源区母岩类型、水文资料以及冲积扇文献资料,对现代白杨河冲积扇岩相的类型、成因及分布规律进行探讨。按沉积机制,白杨河冲积扇属于辫状河型冲积扇,具有规模大(扇体总面积约327.6 km^2),坡度平缓(约1‰~7‰),沉积粒度粗等特征。在白杨河冲积扇内共可识别出16种岩相类型,并根据岩相形成的流体动力差异划归为5类成因,即重力流成因、高流态牵引流成因、低流态牵引流成因、静水沉积成因以及风成沉积成因。重力流以洪流沉积为主;高流态牵引流主要包括片流沉积和湍流沉积;低流态牵引流以砂(砾)质河道沉积为主;静水沉积以蓄水细粒沉积为主;风成沉积以风携细粒沉积为主。根据各岩相沉积构造、粒度特征及展布规模,可将岩相划分为四类:Ⅰ类岩相沉积构造特征明显并具有较大展布规模;Ⅱ类岩相沉积构造特征明显但展布规模局限;Ⅲ类岩相为不具层理构造但具有较大展布规模的岩相;Ⅳ类岩相不具层理构造并且展布规模局限。其中Ⅰ类和Ⅱ类岩相多为牵引流成因,多发育于洪水期扇体扇中、扇缘区域以及间洪期扇体的扇中区域,并可在地下继承性发育为较好的储集相带。  相似文献   

3.
Abstract

Alluvial fans are abundant in many valleys of the Alps, consisting of important sites for human settlements. Relationships between alluvial fan morphometry and drainage basin characteristics have been investigated in six valleys of the Eastern Italian Alps, displaying different geological and morphological conditions. Both debris flow fans and fluvial fans are present in the studied region, the latest occurring only in quite large basins. Expansion of alluvial fans is greatly determined by the topographic characteristics of receiving valleys. Fan gradient is mainly affected by basin ruggedness conditioning depositional processes, by debris size, and, in some cases, by post-depositional reworking of fan surfaces.  相似文献   

4.
Studies, spanning a 3 year period, of Westphalian C strata exposed in an active quarry have enabled three dimensional reconstruction of a lacustrine delta complex. The sequence exhibits a complex history of lake infilling by sediment introduced by intermittent high energy, low sinuosity distributary channel flows. Deposition in the small 0.2 km2 lake prior to delta formation was dominated by organic matter and typified rheotrophic swamp conditions. Large lycopods colonized the swamp floor. The lake was filled by a prograding delta which comprised six horizontally and vertically stacked delta lobes. The presence of lycopods aided sediment accumulation. Fluctuations in river discharge and consequent lake level rise and fall exerted a fundamental control on delta progradation and aggradation. Flooding during low lake levels first produced erosion on the existing lobe followed by a lake level rise which created accommodation for aggradation of a new delta lobe. Further lobe erosion and low stand lobe formation occurred during lake level fall. The area's proximity to alluvial fans resulted in hyperconcentrated flood flow within the distributary channels. The occurrence upon in-channel surfaces of plant colonization, including lycopods, testifies to the ephemeral nature of the flow. The lacustrine delta complex formed at the front of a terminal alluvial fan. Northward progradation of the alluvial fan was achieved by the capture and infilling of lakes by northerly flowing distributary channels.  相似文献   

5.
利用延时相机以及3D激光扫描仪等设备,通过水槽实验获得了74组扇面地貌数据,并采用定量化的软件对这些数据进行了精细的沉积学分析,明确了干旱条件下冲积扇的沉积演化过程及其控制的沉积构型。研究表明: (1)干旱条件下冲积扇沉积演化过程中水动力、水流样式、扇体增生规律等均存在明显的差异性,根据这些差异将整个模拟实验分为早期、中期、晚期3个阶段。(2)实验早期,扇体水动力较强,主控沉积作用为片流沉积,根据片流沉积的分布范围,可将其分为整体片流沉积和局部片流沉积。(3)实验中期,扇体中远端水动力及扇面扩大速率均有所减小,主控沉积作用为非限定性水道,主要沉积体为朵体沉积,非限定性水道主要分布在近源端,而朵体主要分布在水道末端的开阔地带。(4)实验晚期,受巨大的扇体影响,水动力进一步减小,主控沉积作用为限定性水道沉积。(5)通过实验研究,建立了具有明显3层结构的干旱条件下冲积扇沉积构型模式,其中底层是片流朵体复合体、中层为非限制性水道与末端朵体复合体、顶层是水道和小型末端朵体复合体。  相似文献   

6.
Using time-lapse cameras and a 3D laser scanner,74 groups of geomorphic data of alluvial fans were obtained through flume experiments. Then a detailed sedimentary analysis based on these data was performed by using a quantitative software to reveal the sedimentary evolution process of the arid alluvial fan and its depositional architecture. Results suggest that there are obvious differences in hydrodynamics,water flow patterns and growth pattern during the evolution of arid alluvial fans. Based on these differences,the experiment is divided into three stages,including an early,middle,and late stage. In the early stage,the fan surface hydrodynamics was relatively strong,and the sheet flow dominated the deposition. According to the distribution of sheet flow deposits,it can be divided into wide-spread sheet flow deposition and local sheet flow deposition. In the middle period of the experiment,the hydrodynamic strength and expansion rate at the middle-distal part of the fan body reduced. The non-confined channel which is close to the source dominated the deposition,and terminal lobe was mainly deposited on the edge of the river channel. In the late stage of the experiment,the hydrodynamic further reduced causing by the large fan surface and confined channels were the main deposits. Through the flume experiment,an arid alluvial fan depositional architecture model with a three-layer structure has been established. The bottom layer is of a sheet flow lobe complex,the middle layer is characterized by unconfined channels and terminal lobes,and the top layer is constituted by stacked confined channels and small terminal lobes.  相似文献   

7.
冲积扇沉积构型研究进展*   总被引:3,自引:2,他引:1       下载免费PDF全文
冲积扇是发育于盆地边缘的一种重要的沉积相类型。近20年来,在冲积扇分布的控制作用、内部构型及储集层特征研究等方面取得了很大的进展:(1)深化了断层活动、物源岩性条件及不同级次基准面旋回对冲积扇沉积构型的控制作用机理;(2)建立了碎屑流主控、碎屑流与河流主控、河流主控的冲积扇以及末端扇的沉积构型模式;(3)分析了冲积扇沉积机制及沉积构型对储集层质量的控制作用。今后有必要充分应用水槽模拟实验、沉积数值模拟和探地雷达等先进技术,对冲积扇沉积过程、内部构型及储集层非均质性进行更为深入的研究。  相似文献   

8.
柴达木盆地处于古亚洲构造域和特提斯-喜马拉雅构造域的结合部,构造应力大而复杂,导致盆内地势起伏大,加上西南暖湿气流受喜马拉雅山系阻隔难以进入境内,盆内气候干旱,最终导致盆地内冲积扇极为发育。通过对大柴旦地区大头羊煤矿、鱼卡河、波门河和八里沟四个冲积扇的实地考察,共观测到3个亚相8个微相:扇根亚相沉积物最粗,分为古沟道、主水道和主水道间微相;扇中亚相沉积物偏细,成熟度增高,分为辫状水道、辫状水道间和纵坝微相;扇缘亚相沉积物最细,流体能量最低,分为水道径流和片流微相。不同沉积微相其沉积特征差异较大,认为古沟道、主水道和辫状水道微相具有较好的储集性能。勘探表明,冲积扇沉积与储层有着密切的关系,其内形成的油藏具有“自我保护”的能力;另外,冲积扇的形成很可能导致上覆地层形成扇背斜油藏,也可能导致下伏基岩形成基岩风化壳油藏。  相似文献   

9.
冲积扇砂砾岩储集层具有相变快、连续性差等特点,显示冲积扇内部沉积环境的复杂性。本次研究以准噶尔盆地西北缘现代白杨河冲积扇为例,在丰富的野外露头资料基础上,结合区域水文资料以及冲积扇文献资料,对白杨河冲积扇沉积演化特征及沉积模式进行探讨。按其沉积机制,白杨河冲积扇属于辫状河型冲积扇,具有规模大(扇体总面积约327.6km2)、坡度平缓(约4‰~7‰)、沉积粒度粗和漫洪细粒沉积物不发育的典型特征。在白杨河冲积扇内共可识别出16种岩相类型,并根据岩相形成的流体动力差异划归为5类成因,即重力流成因、高流态牵引流成因、低流态牵引流成因、静水沉积成因以及风成沉积成因。白杨河冲积扇扇体建造过程可划分为洪水期和间洪期2个时期,洪水期以沉积作用为主,从扇根至扇缘依次发育扇根补给水道沉积、扇根片流沉积、扇中片流沉积、扇中辫状水道沉积、扇缘径流水道沉积和扇缘湿地沉积6种沉积微相类型;间洪期以改造作用为主,从扇根至扇缘依次发育扇根主槽沉积、扇中辫状沟槽沉积和扇缘湿地沉积3种沉积微相类型。最后,依据白杨河冲积扇建立了砾质辫状河型冲积扇洪水期和间洪期的沉积模式。  相似文献   

10.
The Chitral district of northern Pakistan lies in the eastern Hindu Kush Range. The population in this high-relief mountainous terrain is restricted to tributary-junction fans in the Chitral valley. Proximity to steep valley slopes renders these fans prone to hydrogeomorphic hazards, including landslides, floods and debris flows.This paper focuses on debris-flow hazards on tributary-junction fans in Chitral. Using field observations, satellite-image analyses and a preliminary morphometry, the tributary-junction fans in the Chitral valley are classified into (1) discrete and (2) composite. The discrete fans are modern-day active landforms and include debris cones associated with ephemeral gullies, debris fans associated with ephemeral channels and alluvial fans formed by perennial streams. The composite fans are a collage of sediment deposits of widely different ages and formed by diverse alluvial-fan forming processes. These include fans formed predominantly during MIS-2/Holocene interglacial stages superimposed by modern-day alluvial and debris fans. Composite fans are turned into relict fans when entrenched by modern-day perennial streams. These deeply incised channels discharge their sediment load directly into the trunk river without significant spread on fan surface. In comparison, when associated with ephemeral streams, active debris fans develop directly at composite-fan surfaces. Major settlements in Chitral are located on composite fans, as they provide large tracts of leveled land with easy accesses to water from the tributary streams. These fan surfaces are relatively more stable, especially when they are entrenched by perennial streams (e.g., Chitral, Ayun, and Reshun). When associated with ephemeral streams (e.g., Snowghar) or a combination of ephemeral and perennial streams (e.g., Drosh), these fans are subject to frequent debris-flow hazards.Fans associated with ephemeral streams are prone to high-frequency (∼10 years return period) debris-flow hazards. By comparison, fans associated with perennial streams are impacted by debris-flow hazards during exceptionally large events with return periods of ∼30 years. This study has utility for quick debris-flow hazard assessment in high-relief mountainous regions, especially in arid- to semi-arid south-central Asia where hazard zonation maps are generally lacking.  相似文献   

11.
A long-term flood record from the Buffels River, the largest ephemeral river of NW South Africa (9250 km2), was reconstructed based on interpretation of palaeoflood, documentary and instrumental rainfall data. Palaeoflood data were obtained at three study reaches, with preserved sedimentary evidence indicating at least 25 large floods during the last 700 yr. Geochronological control for the palaeoflood record was provided by radiocarbon and optically stimulated luminescence (OSL) dating. Annual resolution was obtained since the 19th century using the overlapping documentary and instrumental records. Large floods coincided in the past within three main hydroclimatic settings: (1) periods of regular large flood occurrence (1 large flood/~30 yr) under wetter and cooler prevailing climatic conditions (AD 1600–1800), (2) decreasing occurrence of large floods (1 large flood/~100 yr) during warmer conditions (e.g., AD 1425–1600 and after 1925), and (3) periods of high frequency of large floods (~ 4–5 large floods in 20–30 yr) coinciding with wetter conditions of decadal duration, namely at AD 1390–1425, 1800–1825 and 1915–1925. These decadal-scale periods of the highest flood frequency seem to correspond in time with changes in atmospheric circulation patterns, as inferred when comparing their onset and distribution with temperature proxies in southern Africa.  相似文献   

12.
ROGER HIGGS 《Sedimentology》1990,37(1):83-103
The Honna Formation, of Coniacian age, consists of several hundred metres of polymictic clast-supported conglomerate associated with sandstone and mudstone. Five conglomerate facies are recognized: ungraded beds; inverse graded beds; normal graded beds; inverse-to-normal graded beds; and parallel-stratified beds. These facies are interpreted as the deposits of subaqueous cohesionless debris flows and/or high-density turbidity currents. The depositional environment was a deep-water, gravelly fan that draped a fault-controlled, basin-margin slope. The fan is inferred to have passed upslope directly into an alluvial fan (unpreserved); hence, the name fan delta can be applied to the overall depositional system. This type of fan delta, of which the Brae oilfield in the North Sea is an example, is defined here as a deep-water fan delta. The lack of a shelf is in marked contrast to other types of fan delta. Three facies associations are recognized in the Honna Formation: subaqueous proximal-fan conglomerates, distal-fan turbiditic sandstones, and pro-fan/interfan mudstones with thin sandy turbidites. The proximal fan is envisaged as an unchannelled gravel belt with a downslope length of at least 20 km; such a long subaqueous gravel belt lacks a known modern analogue. The distal fan was an unchannelled sandy extension of the proximal gravel belt. It is postulated that the Honna Formation accumulated in a foreland basin which migrated westwards from the Coast Mountains where the Wrangellia-Alexander terrane was colliding with North America. In this model, the Honna fan delta was sourced by a (west-verging) thrust sheet whose sole-thrust was the Sandspit Fault immediately to the east. Deep-water fan deltas appear to develop preferentially when eustatic sea-level is relatively high, so that the‘feeder’ alluvial fan is small, and gravelly throughout. In petroleum exploration and field development, care should be taken to distinguish deep-water fan deltas from base-of-slope (canyon-fed) submarine fans, because the two systems differ significantly in terms of coarse-sediment distribution.  相似文献   

13.
This paper presents a model of facies distribution within a set of early Cretaceous, deep‐lacustrine, partially confined turbidite fans (Sea Lion Fan, Sea Lion North Fan and Otter Fan) in the North Falkland Basin, South Atlantic. As a whole, ancient deep‐lacustrine turbidite systems are under‐represented in the literature when compared with those documented in marine basins. Lacustrine turbidite systems can form extensive, good quality hydrocarbon reservoirs, making the understanding of such systems crucial to exploration within lacustrine basins. An integrated analysis of seismic cross‐sections, seismic amplitude extraction maps and 455 m of core has enabled the identification of a series of turbidite fans. The deposits of these fans have been separated into lobe axis, lobe fringe and lobe distal fringe settings. Seismic architectures, observed in the seismic amplitude extraction maps, are interpreted to represent geologically associated heterogeneities, including: feeder systems, terminal mouth lobes, flow deflection, sinuous lobe axis deposits, flow constriction and stranded lobe fringe areas. When found in combination, these architectures suggest ‘partial confinement’ of a system, something that appears to be a key feature in the lacustrine turbidite setting of the North Falkland Basin. Partial confinement of a system occurs when depositionally generated topography controls the flow‐pathway and deposition of subsequent turbidite fan deposits. The term ‘partial confinement’ provides an expression for categorising a system whose depositional boundaries are unconfined by the margins of the basin, yet exhibit evidence of internal confinement, primarily controlled by depositional topography. Understanding the controls that dictate partial confinement; and the resultant distribution of sand‐prone facies within deep‐lacustrine turbidite fans, is important, particularly considering their recent rise as hydrocarbon reservoirs in rift and failed‐rift settings.  相似文献   

14.
The Piedmont Zone of the Indo-Gangetic Plain contains numerous, laterally coalescing small alluvial fans. The Latest Pleistocene–Holocene 30 km long Gaula Fan can be divided into gravelly proximal fan (0–14 km down-stream), gravel-sand rich mid fan (14–22 km) and sand–mud dominated distal fan (22–30 km). The fan succession is composed of two fan expansion cycles A and B. Separated by an undulatory erosional contact of regional extent, cycle A is characterized by river borne clast-supported gravelly deposits, and the overlying fan expansion cycle B by matrix-supported gravely debris flows. The main process behind fan development has been lateral migration of channels over the fan surface probably due to rapid sedimentation caused by increased sediment supply, and the fluctuating water budget in response to changing climate. The water laid expansion cycle A represents a humid phase. The debris flow deposits of expansion cycle B suggest a dry phase. Approximately between 8 and 3 Ka, cycle B also indicates a phase of tectonic instability in the Siwalik Hills forming the mountain front. The tectonic activity caused incision of rivers into the fan surface, and in turn resulted in reduced fan-building activity. At present the fan surface is accreting by sheet flow processes.  相似文献   

15.
辽西义县盆地义县组底部沉积相与沉积环境分析   总被引:2,自引:2,他引:0  
辽西义县盆地下白垩统义县组底部发育有马神庙、老公沟两个沉积层。马神庙沉积层从下至上可以划分出6个沉积亚层,其下部复成分砾岩沉积层为干旱气候条件下形成的洪(冲)积扇底部沉积相、洪(冲)积扇上的山洪冲槽充填相;中部为复成分砾岩夹凝灰质沉积层;顶部被中基性的火山岩覆盖。老公沟沉积层下部是以泥质粉砂岩为主的滨浅湖相、洪(冲)积扇向湖盆过渡的季节性河流作用形成的粗砂岩—含砾粗砂岩沉积相;顶部为一套滨浅湖相的膨润土化粉砂岩—膨润土—碳酸盐岩沉积岩石组合。义县盆地演化初期气候干旱,盆地边缘地势起伏较大,盆地边缘形成洪(冲)积扇、扇面上发育洪槽充填沉积作用,洪(冲)积扇向湖盆过渡区存在季节性河流;老公沟顶部湖泊相沉积指示受区域季节性变化的半干旱、频繁火山作用影响下,湖盆水深频繁波动的古地理、古气候的沉积特征。义县组底部沉积相表现了该盆地边缘向中心横向上的洪(冲)扇、季节性河流和湖泊沉积的三相发育的古地理特征。  相似文献   

16.
Alluvial fans are relatively simple depositional systems, due to the direct coupling of sediment sources and adjacent accumulation areas. Nonetheless, general models of alluvial‐fan evolution and stratigraphy remain elusive, due to the great sensitivity of such systems to allogenic controls and their strongly case‐specific responses. Autogenic processes intrinsic to alluvial‐fan dynamics can complicate stratigraphic architectures, with effects not easily distinguishable from those of allogenic forcing. A distinction is made here between lateral autogenic dynamics, tied to spatial sediment distribution over fan surfaces, and vertical autogenic dynamics, related to independent incision‐aggradation cycles. Autogenic mechanisms have been highlighted recently by modelling studies, but remain poorly constrained in field‐based studies. Examples are presented here from the margins of the Cenozoic Teruel and Ebro basins (Spain), where alluvial fans accumulated thick successions during phases of basin topographic closure and endorheic drainage which promoted forced aggradation. Fan successions consist of conformable architectures of stacked clastic sheets, laterally continuous and with no evidence of internal unconformities, inset architectures, fan segmentation or preserved incised channels. Continuous aggradation in these closed basins strongly inhibited ‘vertical’ autogenic dynamics in the form of fan head and through fan incision, due to the forced rise in geomorphic base level and the creation of positive accommodation. Furthermore, the lack of incised channels favoured widespread sediment transport and aggradation over broad fan sectors in relatively short time spans, in contrast to the typical occurrence of active lobes and abandoned fan surfaces caused by ‘lateral’ autogenic dynamics. Stratigraphic records of alluvial fans developed in endorheic basins are essentially complete and largely unaffected by autogenic processes. The latter characteristic implies that they can be more unambiguously interpreted in terms of allogenic forcing, because stratigraphic signatures are not complicated by the effects of complex fan autodynamics.  相似文献   

17.
The deposits comprising 'valley-side fans' in a small intermontane basin of the Southern Alps are classified as debris flow, water-laid, intermediate and mixed deposits on the basis of particle size and clast orientation characteristics. Five varieties of debris flow deposit are identified including unimodal and bimodal 'mudflow gravels'. The fans comprise mainly unimodal mudflow gravels which although apparently similar to the mudflow gravels described from montane and periglacial environments are coarser, have less silt and clay and are better sorted than the mudflow deposits described from semiarid alluvial fans. Additions of airborne silt and fine sand to the fan catchments during later stages of fan building gave rise to bimodal debris flow deposits which appear similar to gravels described from cold-climate fans in Tasmania and classed as water-laid deposits. Braided stream deposits were added to the depositional sequence towards the closing stages of fan building indicating that the fan had become 'wetter'. In many places, however, the youngest Pleistocene fan deposits are silt-rich mixtons reflecting a peak in loess deposition.  相似文献   

18.
通过现场实地踏勘、拍照、开挖探槽、利用卫星图解译等方法,对乌伦古湖环布伦托海区域和吉力湖北部乌伦古河现代三角洲地区的湖泊滨岸沉积环境和沉积体系进行了现代沉积调查。研究表明乌伦古湖滨岸沉积环境可以划分为基岩型湖岸、砾质湖岸、砂质湖岸、泥质湖岸等4种类型,发育山前基岩型湖岸、侵蚀基岩型湖岸、砾质冲积扇-扇三角洲、砾质辫状河三角洲、砾质滩坝、砂质滩坝、砂质三角洲、风成沙丘和泥质沼泽等9种滨岸沉积体系。山前基岩湖岸分布在布伦托海的北部,主要发育小型塌积扇、倒石锥和狭窄的湖滩。侵蚀型基岩湖岸位于布伦托海西岸和东北角地区,发育湖滩宽20~40 m。砾质冲积扇-扇三角洲沉积体系分布在布伦托海西北部25.8 km狭长区域,表现为一系列冲积扇-扇三角洲体系在山前形成裙边状展布的辫状平原,顺流向长5~15 km。砾质辫状河三角洲体系发育在布伦托海西部,砾质滩坝发育在砾质三角洲前缘,沉积物一般为中砾和粗砾,泥质含量低。现代乌伦古河三角洲位于吉力湖北部,沙丘广泛分布在布伦托海东部的三角洲平原。砂质滩坝发育在布伦托海东岸南部地区,滩坝带宽30~100 m,发育大量障碍痕、冰划痕。泥质沼泽占据湖岸总长度29.22 km,沼泽地带植物繁茂,水动力微弱,泥质和有机质含量高。根据卫星照片推测乌伦古湖水位可能发生过3次较大的下降,现代乌伦古河三角洲可能经过了4个发育阶段,但目前缺乏地质年代学证据。构造格局控制了湖泊边界的地形地貌特征,平行构造线走向容易形成规模较大的沉积体系,垂直构造走向形成的沉积体系规模较小。寒旱地区湖泊周缘入湖河流较少,具有季节性和暂时性特点,洪水泥石流、塌积扇等重力沉积体系比较发育。湖泊封冻是寒旱区湖泊区别于温暖地区湖泊的重要特征。在相同气候背景下,源汇地区的高差和河流的流程、流量决定了沉积物的供给总量和沉积体系的特征。湖盆边界形态影响沿岸流的发育,也影响湖泊风动力方向和强度。乌伦古湖滨岸沉积体系的多样性对研究古代湖泊滨岸沉积体系具有重要的启发,开展湖泊滨岸沉积环境和沉积体系调查对完善陆相湖盆沉积体系模式,对发现新的储层类型,对重建湖泊古地理环境具有重要的意义。  相似文献   

19.
库车坳陷新近系库车组冲积扇沉积特征及相模式   总被引:1,自引:0,他引:1  
通过野外露头考察和测井分析,并结合地震和三维电法资料,对库车坳陷新近系库车组冲积扇的沉积特征和分布规律进行研究,建立了冲积扇沉积模式。库车坳陷新近系库车组冲积扇岩性主要为黄色、黄红色砾岩、砂砾岩及含砾砂岩。砾石层中可见底冲刷-充填构造、交错层理和平行层理。测井曲线整体表现出GR低和电阻率高的特征,曲线呈箱形、漏斗形和钟形;地震相以杂乱反射和前积特征为主。为了提高了研究的精度,在钻井分布稀少和地震相特征不明显的地区,将三维电法资料用于冲积扇分布的研究。通过综合研究,认为冲积扇在西部的Bz1井地区和Db1井地区规模最大,在东部地区发育规模小。构造运动是冲积扇发育的主要控制因素,库车期构造运动活动强烈,南天山快速隆升,为冲积扇提供大量的物源,Bz1井地区持续隆升,遭受剥蚀,物源充足,冲积扇规模不断增大;Db1井地区由于受构造断裂的影响,局部隆升,为冲积扇提供了局部物源。通过分析,认为库车坳陷新近系库车组冲积扇主要有长期稳定的继承性单物源冲积扇模式和受局部构造控制的多物源冲积扇模式。  相似文献   

20.
A section cut across an alluvial fan and the underlying floodplain terrace in the central Grampian Highlands provides an unusually complete record of late Holocene events. At ca. 2.7–2.4 cal kyr BP floodplain aggradation was replaced by net floodplain incision. Pollen evidence and charcoal counts provide no evidence for contemporaneous anthropogenic landscape change, and the timing of the transition suggests that it reflects an increase in high-magnitude erosive flood events following overall climatic deterioration. The overlying fan was deposited by torrential hyperconcentrated flows during three brief storm-generated depositional events at ca. 2.2–2.1, 1.9–1.8 and 0.9–0.7 cal kyr BP, separated and succeeded by prolonged periods of stability and peat accumulation. During these three events, a cumulative total of ca. 6750 m3 of sediment was deposited, probably in no more than a few hours over a timescale of two millennia. These findings imply that proposed links between human activity and the development of alluvial fans or debris cones require reassessment, and that different elements of the Holocene alluvial landscape have responded in different ways to the same climatic inputs. Aggregation of dating evidence relating to aggradation or incision of alluvial landforms at different scales therefore may produce misleading results. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号