首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anhydrous phase relations of an uncontaminated (primitive),ferropicrite lava from the base of the Early Cretaceous Paraná–Etendekacontinental flood basalt province have been determined between1 atm and 7 GPa. The sample has high contents of MgO (14·9wt %), FeO* (14·9 wt %) and Ni (660 ppm). Olivine phenocrystshave maximum Fo contents of 85 and are in equilibrium with thebulk rock, assuming a of 0·32. A comparison of our results with previous experimental studiesof high-Mg rocks shows that the high FeO content of the ferropicritecauses an expansion of the liquidus crystallization field ofgarnet and clinopyroxene relative to olivine; orthopyroxenewas not observed in any of our experiments. The high FeO contentalso decreases solidus temperatures. Phase relations indicatethat the ferropicrite melt last equilibrated either at 2·2GPa with an olivine–clinopyroxene residue, or at 5 GPawith a garnet–clinopyroxene residue. The low bulk-rockAl2O3 content (9 wt %) and high [Gd/Yb]n ratio (3·1)are consistent with the presence of residual garnet in the ferropicritemelt source and favour high-pressure melting of a garnet pyroxenitesource. The garnet pyroxenite may represent subducted oceaniclithosphere entrained by the upwelling Tristan starting mantleplume head. During adiabatic decompression, intersection ofthe garnet pyroxenite solidus at 5 GPa would occur at a mantlepotential temperature of 1550°C and yield a ferropicriteprimary magma. Subsequent melting of the surrounding peridotiteat 4·5 GPa may be restricted by the thickness of theoverlying sub-continental lithosphere, such that dilution ofthe garnet pyroxenite melt component would be significantlyless than in intra-oceanic plate settings (where the lithosphereis thinner). This model may explain the limited occurrence offerropicrites at the base of continental flood basalt sequencesand their apparent absence in ocean-island basalt successions. KEY WORDS: continental flood basalt; ferropicrite; mantle heterogeneity; mantle melting; phase relations; pyroxenite  相似文献   

2.
The ascent history of the Horoman peridotite complex, Hokkaido,northern Japan, is revised on the basis of a detailed studyof large ortho- and clinopyroxene grains 1 cm in size (megacrysts)in the Upper Zone of the complex. The orthopyroxene megacrystsexhibit distinctive M-shaped Al zoning patterns, which werenot observed in porphyroclastic grains less than 5 mm in sizedescribed in previous studies. Moreover, the Al and Ca contentsof the cores of the orthopyroxene megacrysts are lower thanthose of the porphyroclasts. The Upper Zone is inferred to haveresided not only at a higher temperature than previously suggestedbut also at a higher pressure (1070°C, 2·3 GPa) thanthe Lower Zone (950°C, 1·9 GPa), in the garnet stabilityfield, before the ascent of the two zones. The Horoman complexprobably represents a 12 ± 5 km thick section of lithosphericmantle with an 10 ± 8°C/km vertical thermal gradient.The current thickness of the Horoman complex is 3 km, whichis a result of shortening of the lithospheric mantle by 0·25± 0·1 during its ascent. The Upper Zone appearsto have experienced a heating event during its ascent throughthe spinel stability field, with a peak temperature as highas 1200°C. The effect of heating decreases continuouslytowards the base of the complex, and the lowermost part of theLower Zone underwent very minor heating at a pressure higherthan 0·5 GPa. The uplift and associated deformation,as well as heating, was probably driven by the ascent of a hotasthenospheric upper-mantle diapir into the Horoman lithosphere. KEY WORDS: Horoman; PT trajectory; thermal history; Al diffusion in pyroxene; geothermobarometry  相似文献   

3.
The Grønnedal-Ika complex is dominated by layered nephelinesyenites which were intruded by a xenolithic syenite and a centralplug of calcite to calcite–siderite carbonatite. Aegirine–augite,alkali feldspar and nepheline are the major mineral phases inthe syenites, along with rare calcite. Temperatures of 680–910°Cand silica activities of 0·28–0·43 weredetermined for the crystallization of the syenites on the basisof mineral equilibria. Oxygen fugacities, estimated using titanomagnetitecompositions, were between 2 and 5 log units above the fayalite–magnetite–quartzbuffer during the magmatic stage. Chondrite-normalized REE patternsof magmatic calcite in both carbonatites and syenites are characterizedby REE enrichment (LaCN–YbCN = 10–70). Calcite fromthe carbonatites has higher Ba (5490 ppm) and lower HREE concentrationsthan calcite from the syenites (54–106 ppm Ba). This isconsistent with the behavior of these elements during separationof immiscible silicate–carbonate liquid pairs. Nd(T =1·30 Ga) values of clinopyroxenes from the syenites varybetween +1·8 and +2·8, and Nd(T) values of whole-rockcarbonatites range from +2·4 to +2·8. Calcitefrom the carbonatites has 18O values of 7·8 to 8·6and 13C values of –3·9 to –4·6. 18Ovalues of clinopyroxene separates from the nepheline syenitesrange between 4·2 and 4·9. The average oxygenisotopic composition of the nepheline syenitic melt was calculatedbased on known rock–water and mineral–water isotopefractionation to be 5·7 ± 0·4. Nd and C–Oisotope compositions are typical for mantle-derived rocks anddo not indicate significant crustal assimilation for eithersyenite or carbonatite magmas. The difference in 18O betweencalculated syenitic melts and carbonatites, and the overlapin Nd values between carbonatites and syenites, are consistentwith derivation of the carbonatites from the syenites via liquidimmiscibility. KEY WORDS: alkaline magmatism; carbonatite; Gardar Province; liquid immiscibility; nepheline syenite  相似文献   

4.
Leucocratic and Gabbroic Xenoliths from Hualalai Volcano, Hawai'i   总被引:1,自引:0,他引:1  
A diverse range of crustal xenoliths is hosted in young alkalibasalt lavas and scoria deposits (erupted 3–5 ka) at thesummit of Huallai. Leucocratic xenoliths, including monzodiorites,diorites and syenogabbros, are distinctive among Hawaiian plutonicrocks in having alkali feldspar, apatite, zircon and biotite,and evolved mineral compositions (e.g. albitic feldspar, clinopyroxeneMg-number 67–78). Fine-grained diorites and monzodioritesare plutonic equivalents of mugearite lavas, which are unknownat Huallai. These xenoliths appear to represent melt compositionsfalling along a liquid line of descent leading to trachyte—amagma type which erupted from Huallai as a prodigious lava flowand scoria cone at 114 ka. Inferred fractionating assemblages,MELTS modeling, pyroxene geobarometry and whole-rock norms allpoint to formation of the parent rocks of the leucocratic xenolithsat 3–7 kbar pressure. This depth constraint on xenolithformation, coupled with a demonstrated affinity to hypersthene-normativebasalt and petrologic links between the xenoliths and the trachyte,suggests that the shift from shield to post-shield magmatismat Huallai was accompanied by significant deepening of the activemagma reservoir and a gradual transition from tholeiitic toalkalic magmas. Subsequent differentiation of transitional basaltsby fractional crystallization was apparently both extreme—culminatingin >5·5 km3 of trachyte—and rapid, at 2·75x 106 m3 magma crystallized/year. KEY WORDS: geothermobarometry; magma chamber; xenolith; cumulate; intensive parameters  相似文献   

5.
The Campanian Ignimbrite is a > 200 km3 trachyte–phonolitepyroclastic deposit that erupted at 39·3 ± 0·1ka within the Campi Flegrei west of Naples, Italy. Here we testthe hypothesis that Campanian Ignimbrite magma was derived byisobaric crystal fractionation of a parental basaltic trachyandesiticmelt that reacted and came into local equilibrium with smallamounts (5–10 wt%) of crustal rock (skarns and foid-syenites)during crystallization. Comparison of observed crystal and magmacompositions with results of phase equilibria assimilation–fractionationsimulations (MELTS) is generally very good. Oxygen fugacitywas approximately buffered along QFM + 1 (where QFM is the quartz–fayalite–magnetitebuffer) during isobaric fractionation at 0·15 GPa ( 6km depth). The parental melt, reconstructed from melt inclusionand host clinopyroxene compositions, is found to be basaltictrachyandesite liquid (51·1 wt% SiO2, 9·3 wt%MgO, 3 wt% H2O). A significant feature of phase equilibria simulationsis the existence of a pseudo-invariant temperature, 883 °C,at which the fraction of melt remaining in the system decreasesabruptly from 0·5 to < 0·1. Crystallizationat the pseudo-invariant point leads to abrupt changes in thecomposition, properties (density, dissolved water content),and physical state (viscosity, volume fraction fluid) of meltand magma. A dramatic decrease in melt viscosity (from 1700Pa s to 200 Pa s), coupled with a change in the volume fractionof water in magma (from 0·1 to 0·8) and a dramaticdecrease in melt and magma density acted as a destabilizingeruption trigger. Thermal models suggest a timescale of 200kyr from the beginning of fractionation until eruption, leadingto an apparent rate of evolved magma generation of about 10–3km3/year. In situ crystallization and crystal settling in density-stratifiedregions, as well as in convectively mixed, less evolved subjacentmagma, operate rapidly enough to match this apparent volumetricrate of evolved magma production. KEY WORDS: assimilation; Campanian Ignimbrite; fractional crystallization; magma dynamics; phase equilibria  相似文献   

6.
We have determined the near-solidus melt compositions for peridotiteMM-3, a suitable composition for the production of mid-oceanridge basalt (MORB) by decompression partial melting, at 1 and1·5 GPa. At 1 GPa the MM-3 composition has a subsolidusplagioclase-bearing spinel lherzolite assemblage, and a solidusat 1270°C. At only 5°C above the solidus, 4% meltis present as a result of almost complete melting of plagioclase.This melting behaviour in plagioclase lherzolite is predictedfrom simple systems and previous experimental work. The persistenceof plagioclase to > 0·8 GPa is strongly dependenton bulk-rock CaO/Na2O and normative plagioclase content in theperidotite. At 1·5 GPa the MM-3 composition has a subsolidusspinel lherzolite assemblage, and a solidus at 1350°C.We have determined a near-solidus melt composition at 2% meltingwithin 10°C of the solidus. Near-solidus melts at both 1and 1·5 GPa are nepheline normative, and have low normativediopside contents; also they have the highest TiO2, Al2O3 andNa2O, and the lowest FeO and Cr2O3 contents compared with higherdegree partial melts. Comparison of these near-solidus meltswith primitive MORB glasses, which lie in the olivine-only fieldof crystallization at low pressure, indicate that petrogeneticmodels involving aggregation of near-fractional melts formedduring melting at pressures of 1·5 GPa or less are unlikelyto be correct. In this study we use an experimental approachthat utilizes sintered oxide mix starting materials and peridotitereaction experiments. We also examine some recent studies usingan alternative approach of melt migration into, and entrapmentwithin ‘melt traps’ (olivine, diamond, vitreouscarbon) and discuss optimal procedures for this method. KEY WORDS: experimental petrology; mantle melting; near-solidus; fertile peridotite; MORB  相似文献   

7.
Tourmaline in the Martinamor antiform occurs in tourmalinites(rocks with >15–20% tourmaline by volume), clasticmetasedimentary rocks of the Upper Proterozoic Monterrubio formation,quartz veins, pre-Variscan orthogneisses and Variscan graniticrocks. Petrographic observations, back-scattered electron (BSE)images, and microprobe data document a multistaged developmentof tourmaline. Overall, variations in the Mg/(Mg + Fe) ratiosdecrease from tourmalinites (0·36–0·75),through veins (0·38–0·66) to granitic rocks(0·23–0·46), whereas Al increases in thesame order from 5·84–6·65 to 6·22–6·88apfu. The incorporation of Al into tourmaline is consistentwith combinations of xAl(NaR)–1 and AlO(R(OH))–1exchange vectors, where x represents X-site vacancy and R is(Mg + Fe2+ + Mn). Variations in x/(x + Na) ratios are similarin all the types of tourmaline occurrences, from 0·10to 0·53, with low Ca-contents (mostly <0·10apfu). Based on field and textural criteria, two groups of tourmaline-richrocks are distinguished: (1) pre-Variscan tourmalinites (probablyCadomian), affected by both deformation and regional metamorphismduring the Variscan orogeny; (2) tourmalinites related to thesynkinematic granitic complex of Martinamor. Textural and geochemicaldata are consistent with a psammopelitic parentage for the protolithof the tourmalinites. Boron isotope analyses of tourmaline havea total range of 11B values from –15·6 to 6·8;the lowest corresponding to granitic tourmalines (–15·6to –11·7) and the highest to veins (1·9to 6·8). Tourmalines from tourmalinites have intermediate11B values of –8·0 to +2·0. The observedvariations in 11B support an important crustal recycling ofboron in the Martinamor area, in which pre-Variscan tourmaliniteswere remobilized by a combination of mechanical and chemicalprocesses during Variscan deformation, metamorphism and anatexis,leading to the formation of multiple tourmaline-bearing veinsand a new stage of boron metasomatism. KEY WORDS: tourmalinites; metamorphic and granitic rocks; mineral chemistry; whole-rock chemistry; boron isotopes  相似文献   

8.
The spinel lherzolite massif at Balmuccia, northwest Italy,forms an elongate north-south trending lens (4.5 x 0.5 x 1.1km) within the pre-Alpine granulite basement complex of theIvrea zone. The western contact is a mylonite fault zone formedduring late emplacement cataclastic flow near the Insubric line;to the east the lherzolite massif is separated from the granulitesby a magmatic sheath of layered pyroxenites, pyroxene pegmatitesand meta-gabbros. Pyroxene reaction zones on gabbro dikes indunite pods which lie east of the main lherzolite massif showthat emplacement occurred at pressures >9 kb, based on peridotiteequilibria studies. Phase chemistry calculations on pyroxenitesand granulites show ambient P–T conditions to have been850 °C (Cpx–Opx equilibria) and 10–13 kb (Opx–Gt;Plg–Gt–Sill–Qtz) during emplacement of thelherzolite massif. Temperature calculations on 12 peridotitesfrom throughout the massif suggest an earlier high-T stage (1200°C; Ol–Px–Sp) followed by partial re-equilibrationat lower T (850–950 °C; Cpx–Opx). The areaswithin the lherzolite massif with the highest calculated Ol–Px–Sptemperatures have the lowest Cpx–Opx temperatures, suggestingthat the apparent Cpx–Opx temperatures are due to re-equilibrationduring emplacement. The spinel lherzolite probably originatedat 12 and 20 kb, based on the mineral assemblage Ol + Opx +Cpx + Sp + Hnbd. The inferred P–T ranges put both themassif and the granulites on a geotherm that is high for continentalcrust and implies a high surface heat flow at the time of emplacement(2.2 µcal/cm2 sec). The Balmuccia area later became thelocus of early Mesozoic rifting between the North and SouthAlpine plates. These relationships at Balmuccia are similarto the Great Basin of the western United States, where mantlexenoliths in young basalts that show P–T conditions of1100–1300 °C at 17–20 kb, occur in an area ofhigh heat flow (2.0 µCal/cm2 sec average) and extension.This suggests an association between up-welling of mantle peridotitesbelow continents and ensialic tensional tectonics.  相似文献   

9.
Komatiites from the 2 Ga Jeesiörova area in Finnish Laplandhave subchondritic Al2O3/TiO2 ratios like those in Al-depletedkomatiites from Barberton, South Africa. They are distinct inthat their Al abundances are higher than those of the Al-depletedrocks and similar to levels in Al-undepleted komatiites. Moderatelyincompatible elements such as Ti, Zr, Eu, and Gd are enriched.Neither majorite fractionation nor hydrous melting in a supra-subductionzone setting could have produced these komatiites. Their highconcentrations of moderately incompatible elements may haveresulted from contamination of their parental melt through interactionwith metasomatic assemblages in the lithospheric mantle or enrichmentof their mantle source in basaltic melt components. Re–Osisotope data for chromite from the Jeesiörova rocks yieldan average initial 187Os/188Os of 0·1131 ± 0·0006(2), Os(I) = 0·1 ± 0·5. These data, coupledwith an initial Nd of +4, indicate that melt parental to thekomatiites interacted minimally with ancient lithospheric mantle.If their mantle source was enriched in a basaltic component,the combined Os–Nd isotopic data limit the enrichmentprocess to within 200 Myr prior to the formation of the komatiites.Their Os–Nd isotopic composition is consistent with derivationfrom the contemporaneous convecting upper mantle. KEY WORDS: Finnish Lapland; Jeesiörova; komatiites; mantle geochemistry; petrogenesis; redox state; Re/Os isotopes; Ti enrichment  相似文献   

10.
Uranium–Pb sphene and apatite, and 40Ar/39Ar hornblende,muscovite and K-feldspar ages from the core of the ProterozoicNagssugtoqidian orogen, West Greenland, are used to constrainthe timing of granulite-facies metamorphism and the subsequentcooling history. Metamorphic monazite growth occurred at 1858± 2, 1830 ± 1 and 1807 ± 2 Ma and definesthe peak of metamorphism. The uncertainty in the cooling rateshas to include the error in the decay constants of the systemsused. This source of uncertainty is, however, negligible ifa single decay scheme is used or when the age difference betweenthe chronometers is large (>100 m.y.). Over the last twodecades increasingly higher closure temperatures have been proposed.This trend reflects the difficulty of determining ‘absolute’closure temperatures and in using a limited number of closuretemperature estimates to infer closure temperatures of othergeochronometers. Cooling rates at Ussuit were 2·9 ±1·7°C/m.y. from 1762 Ma (670°C) to 1705 Ma (500°C),1·5 ± 1·1°C/m.y. from 1705 Ma to 1640Ma (410°C), and 0·9 ± 0·4°C/m.y.between 1640 and 1416 Ma (200°C). Between 1720 and 1645Ma cooling rates in Lersletten, 60 km north of Ussuit, are indistinguishablefrom those at Ussuit. After 1645 Ma, however, the area cooledto 200°C at a slightly faster rate of 2·6 ±1·2°C/m.y. KEY WORDS: 40Ar/39Ar and U–Pb geochronometers; granulite metamorphism; slow cooling; T–t path  相似文献   

11.
The Jozini and Mbuluzi rhyolites and Oribi Beds of the southernLebombo Monocline, southeastern Africa, have geochemical characteristicsthat indicate they were derived by partial melting of a mixtureof high-Ti/Zr and low-Ti/Zr Sabie River Basalt Formation types.Compositional variations within the different rhyolite typescan largely be explained by subsequent fractional crystallization.The Sr- and Nd-isotope composition of the rhyolites is uniqueamongst Gondwana silicic large igneous provinces, having Ndvalues close to Bulk Earth (–0·94 to 0·35)and low, but more variable, initial 87Sr/86Sr ratios (0·7034–0·7080).Quartz phenocryst 18O values indicate that the rhyolite magmashad 18O values between 5·3 and 6·7, consistentwith derivation from a basaltic protolith with 18O values between4·8 and 6·2. The low-18O rhyolites (< 6·0)come from the same stratigraphic horizon and are overlain andunderlain by rhyolites with more ‘normal’ 18O magmavalues. These low-18O rhyolites cannot have been produced byfractional crystallization or partial melting of mantle-derivedbasaltic material. The rhyolites have low water contents, makingit unlikely that the low 18O values are the result of post-emplacementalteration. Modification of the source by fluid–rock interactionat elevated temperatures is the most plausible mechanism forlowering the 18O magma value. It is proposed that the low-18Orhyolites were derived by melting of earlier altered rhyolitein calderas situated to the east, which were not preserved afterGondwana break-up. KEY WORDS: rhyolite; Lebombo; stable and radiogenic isotopes; low-18O magmas; partial melting  相似文献   

12.
Numerous dykes of ultramafic lamprophyre (aillikite, mela-aillikite,damtjernite) and subordinate dolomite-bearing carbonatite withU–Pb perovskite emplacement ages of 590–555 Ma occurin the vicinity of Aillik Bay, coastal Labrador. The ultramaficlamprophyres principally consist of olivine and phlogopite phenocrystsin a carbonate- or clinopyroxene-dominated groundmass. Ti-richprimary garnet (kimzeyite and Ti-andradite) typically occursat the aillikite type locality and is considered diagnosticfor ultramafic lamprophyre–carbonatite suites. Titanianaluminous phlogopite and clinopyroxene, as well as comparativelyAl-enriched but Cr–Mg-poor spinel (Cr-number < 0.85),are compositionally distinct from analogous minerals in kimberlites,orangeites and olivine lamproites, indicating different magmageneses. The Aillik Bay ultramafic lamprophyres and carbonatiteshave variable but overlapping 87Sr/86Sri ratios (0·70369–0·70662)and show a narrow range in initial Nd (+0·1 to +1·9)implying that they are related to a common type of parentalmagma with variable isotopic characteristics. Aillikite is closestto this primary magma composition in terms of MgO (15–20wt %) and Ni (200–574 ppm) content; the abundant groundmasscarbonate has 13CPDB between –5·7 and –5,similar to primary mantle-derived carbonates, and 18OSMOW from9·4 to 11·6. Extensive melting of a garnet peridotitesource region containing carbonate- and phlogopite-rich veinsat 4–7 GPa triggered by enhanced lithospheric extensioncan account for the volatile-bearing, potassic, incompatibleelement enriched and MgO-rich nature of the proto-aillikitemagma. It is argued that low-degree potassic silicate to carbonatiticmelts from upwelling asthenosphere infiltrated the cold baseof the stretched lithosphere and solidified as veins, therebycrystallizing calcite and phlogopite that were not in equilibriumwith peridotite. Continued Late Neoproterozoic lithosphericthinning, with progressive upwelling of the asthenosphere beneatha developing rift branch in this part of the North Atlanticcraton, caused further veining and successive remelting of veinsplus volatile-fluxed melting of the host fertile garnet peridotite,giving rise to long-lasting hybrid ultramafic lamprophyre magmaproduction in conjunction with the break-up of the Rodinia supercontinent.Proto-aillikite magma reached the surface only after coatingthe uppermost mantle conduits with glimmeritic material, whichcaused minor alkali loss. At intrusion level, carbonate separationfrom this aillikite magma resulted in fractionated dolomite-bearingcarbonatites (13CPDB –3·7 to –2·7)and carbonate-poor mela-aillikite residues. Damtjernites maybe explained by liquid exsolution from alkali-rich proto-aillikitemagma batches that moved through previously reaction-lined conduitsat uppermost mantle depths. KEY WORDS: liquid immiscibility; mantle-derived magmas; metasomatism, Sr–Nd isotopes; U–Pb geochronology  相似文献   

13.
Cretaceous melange of the Cordillera de la Costa belt, north–centralVenezuela, there are knockers of eclogite, barroisite-bearingeclogite, and pelitic glaucophane schist. These occur in a metamorphicmelange matrix that locally consists of marble, serpentinite,amphibolite, actinolite schist, feldspathic schist and gneiss,graphitic schist, chloritoid schist, and garnet-bearing micaschist. The protoliths for these various rock types exhibita wide age range (Cambrian to Early Cretaceous?). Recently discoveredknockers of pelitic glaucophane schist contain Mg-glaucophane+ paragonite + kyanite + garnet + talc + graphite + rutile +quartz. The coexistence of kyanite and Mg-glaucophane suggestsminimum P 2000 MPa at T > 600°C. Eclogite knockers fromthe same outcrop contain garnet and clinopyroxene which yield500°C for cores, 700°C for rims, and P 1200 MPa. Theassemblage garnet–biotite–phengite–albitewithin schists of the melange matrix of this locality indicatesmetamorphic conditions of T = 450–520°C at P = 1800MPa. Because all lithologies in this outcrop record high-P conditions,this metamorphic melange formed before or during peak metamorphismin a mid-Cretaceous subduction zone. KEY WORDS: geothermobarometry; high-P pelitic schist; eclogite; Puerto Cabello; Venezuela  相似文献   

14.
The digital image of airborne radiometric data across SouthAfrica reveals that the largest anomaly, 100 nGy/h, is causedby the granulite-facies rocks of the Namaquan metamorphic complex,whereas most of the country is <60 nGy/h. This observationis consistent with geochemical data that show that the 1900± 100 Ma greenschist-facies Richtersveld Terrane nearNamibia (max. U = 3·4 ppm; Th = 20·1 ppm) andthe adjacent, 1100 ± 100 Ma, amphibolite-facies Aggeneys/SteinkopfTerranes (max. U 10 ppm; Th 52 ppm) are the least enrichedin U, Th and K. In contrast, the lower-T granulite-facies OkiepTerrane near Springbok hosts more enriched granites (max. U 17 ppm; Th 66 ppm) and noritic intrusions (max. U = 14 ppm;Th = 83 ppm). The most enriched rocks are found in the 1030Ma higher-T granulite-facies core of the Namaquan belt and includequartzo-feldspathic gneisses (max. U = 46 ppm; Th = 90 ppm)and charnockites (max. U = 52 ppm; Th = 400 ppm). Our findingscontradict the notion that granulite-facies terrains are characteristicallydepleted in U and Th. In this study we modeled the heat productionin the core of the Namaquan complex, where the granulites havehad a very unusual metamorphic history, and show that ultra-high-T(1000°C, P 10 kbar) metamorphic conditions could have beenachieved by radiogenic heating without invoking external heatsources. However, monazite-rich veins of charnockite and patchesof granulites mark the passage of CO2-dominated melts and fluidsderived from fractionated noritic intrusions. KEY WORDS: charnockite; granulite; Namaqualand; thorium; uranium; radioactive heating; metamorphism  相似文献   

15.
Xenoliths hosted by Quaternary basanites and alkali basaltsfrom Marsabit (northern Kenya) represent fragments of Proterozoiclithospheric mantle thinned and chemically modified during riftingin the Mesozoic (Anza Graben) and in the Tertiary–Quaternary(Kenya rift). Four types of peridotite xenoliths were investigatedto constrain the thermal and chemical evolution of the lithosphericmantle. Group I, III and IV peridotites provide evidence ofa cold, highly deformed and heterogeneous upper mantle. Textures,thermobarometry and trace element characteristics of mineralsindicate that low temperatures in the spinel stability field(750–800°C at <1·5 GPa) were attained bydecompression and cooling from initially high pressures andtemperatures in the garnet stability field (970–1080°Cat 2·3–2·9 GPa). Cooling, decompressionand penetrative deformation are consistent with lithosphericthinning, probably related to the development of the Mesozoicto Paleogene Anza Graben. Re-equilibrated and recrystallizedperidotite xenoliths (Group II) record heating (from 800°Cto 1100°C). Mineral trace element signatures indicate enrichmentby mafic silicate melts, parental to the Quaternary host basanitesand alkali basalts. Relationships between mineral textures,P–T conditions of equilibration, and geochemistry canbe explained by metasomatism and heating of the lithosphererelated to the formation of the Kenya rift, above a zone ofhot upwelling mantle. KEY WORDS: East African Rift System; Anza Graben; in situ LA-ICPMS; peridotite xenoliths; thermobarometry  相似文献   

16.
Liquidus relations in the four-component system Na2O–Al2O3–SiO2–F2O–1were studied at 0· 1 and 100 MPa to define the locationof fluoride–silicate liquid immiscibility and outlinedifferentiation paths of fluorine-bearing silicic magmas. Thefluoride–silicate liquid immiscibility spans the silica–albite–cryoliteand silica–topaz–cryolite ternaries and the haplogranite-cryolitebinary at greater than 960°C and 0· 1–100 MPa.With increasing Al2O3 in the system and increasing aluminum/alkalication ratio, the two-liquid gap contracts and migrates fromthe silica liquidus to the cryolite liquidus. The gap does notextend to subaluminous and peraluminous melt compositions. Forall alkali feldspar–quartz-bearing systems, the miscibilitygap remains located on the cryolite liquidus and is thus inaccessibleto differentiating granitic and rhyolitic melts. In peralkalinesystems, the magmatic differentiation is terminated at the albite–quartz–cryoliteeutectic at 770°C, 100 MPa, 5 wt % F and cation Al/Na =0· 75. The addition of topaz, however, significantlylowers melting temperatures and allows strong fluorine enrichmentin subaluminous compositions. At 100 MPa, the binary topaz–cryoliteeutectic is located at 770°C, 39 wt % F, cation Al/Na 0·95, and the ternary quartz–topaz–cryolite eutecticis found at 740°C, 32 wt % F, 30 wt % SiO2 and cation Al/Na 0· 95. Such location of both eutectics enables fractionationpaths of subaluminous quartz-saturated systems to produce fluorine-rich,SiO2-depleted and nepheline-normative residual liquids. KEY WORDS: silicate melt; granite; rhyolite; fluorine; liquid immiscibility  相似文献   

17.
Hafnium isotope and incompatible trace element data are presentedfor a suite of mid-ocean ridge basalts (MORB) from 13 to 47°Eon the Southwest Indian Ridge (SWIR), one of the slowest spreadingand most isotopically heterogeneous mid-ocean ridges. Variationsin Nd–Hf isotope compositions and Lu/Hf ratios clearlydistinguish an Atlantic–Pacific-type MORB source, presentwest of 26°E, characterized by relatively low Hf valuesfor a given Nd relative to the regression line through all Nd–Hfisotope data for oceanic basalts (termed the ‘Nd–Hfmantle array line’; the deviation from this line is termedHf) and low Lu/Hf ratios, from an Indian Ocean-type MORB signature,present east of 32°E, characterized by relatively high Hfvalues and Lu/Hf ratios. Additionally, two localized, isotopicallyanomalous areas, at 13–15°E and 39–41°E,are characterized by distinctly low negative and high positiveHf values, respectively. The low Hf MORB from 13 to 15°Eappear to reflect contamination by HIMU-type mantle from thenearby Bouvet mantle plume, whereas the trace element and isotopiccompositions of MORB from 39 to 41°E are most consistentwith contamination by metasomatized Archean continental lithosphericmantle. Relatively small source-melt fractionation of Lu/Hfrelative to Sm/Nd, compared with MORB from faster-spreadingridges, argues against a significant role for garnet pyroxenitein the generation of most central SWIR MORB. Correlations betweenHf and Sr and Pb isotopic and trace element ratios clearly delineatea high-Hf ‘Indian Ocean mantle component’ that canexplain the isotope composition of most Indian Ocean MORB asmixtures between this component and a heterogeneous Atlantic–Pacific-typeMORB source. The Hf, Nd and Sr isotope compositions of IndianOcean MORB appear to be most consistent with the hypothesisthat this component represents fragments of subduction-modifiedlithospheric mantle beneath Proterozoic orogenic belts thatfoundered into the nascent Indian Ocean upper mantle duringthe Mesozoic breakup of Gondwana. KEY WORDS: mid-ocean ridge basalt; isotopes; incompatible elements; Indian Ocean  相似文献   

18.
We document compositions of minerals and melts from 3 GPa partialmelting experiments on two carbonate-bearing natural lherzolitebulk compositions (PERC: MixKLB-1 + 2·5 wt% CO2; PERC3:MixKLB-1 + 1 wt% CO2) and discuss the compositions of partialmelts in relation to the genesis of alkalic to highly alkalicocean island basalts (OIB). Near-solidus (PERC: 1075–1105°C;PERC3: 1050°C) carbonatitic partial melts with <10 wt%SiO2 and 40 wt% CO2 evolve continuously to carbonated silicatemelts with >25 wt% SiO2 and <25 wt% CO2 between 1325 and1350°C in the presence of residual olivine, orthopyroxene,clinopyroxene, and garnet. The first appearance of CO2-bearingsilicate melt at 3 GPa is 150°C cooler than the solidusof CO2-free peridotite. The compositions of carbonated silicatepartial melts between 1350 and 1600°C vary in the rangeof 28–46 wt% SiO2, 1·6–0·5 wt% TiO2,12–10 wt% FeO*, and 19–29 wt% MgO for PERC, and42–48 wt% SiO2, 1·9–0·5 wt% TiO2,10·5–8·4 wt% FeO*, and 15–26 wt% MgOfor PERC3. The CaO/Al2O3 weight ratio of silicate melts rangesfrom 2·7 to 1·1 for PERC and from 1·7 to1·0 for PERC3. The SiO2 contents of carbonated silicatemelts in equilibrium with residual peridotite diminish significantlywith increasing dissolved CO2 in the melt, whereas the CaO contentsincrease markedly. Equilibrium constants for Fe*–Mg exchangebetween carbonated silicate liquid and olivine span a rangesimilar to those for CO2-free liquids at 3 GPa, but diminishslightly with increasing dissolved CO2 in the melt. The carbonatedsilicate partial melts of PERC3 at <20% melting and partialmelts of PERC at 15–33% melting have SiO2 and Al2O3 contents,and CaO/Al2O3 values, similar to those of melilititic to basaniticalkali OIB, but compared with the natural lavas they are moreenriched in CaO and they lack the strong enrichments in TiO2characteristic of highly alkalic OIB. If a primitive mantlesource is assumed, the TiO2 contents of alkalic OIB, combinedwith bulk peridotite/melt partition coefficients of TiO2 determinedin this study and in volatile-free studies of peridotite partialmelting, can be used to estimate that melilitites, nephelinites,and basanites from oceanic islands are produced from 0–6%partial melting. The SiO2 and CaO contents of such small-degreepartial melts of peridotite with small amounts of total CO2can be estimated from the SiO2–CO2 and CaO–CO2 correlationsobserved in our higher-degree partial melting experiments. Thesesuggest that many compositional features of highly alkalic OIBmay be produced by 1–5% partial melting of a fertile peridotitesource with 0·1–0·25 wt% CO2. Owing to verydeep solidi of carbonated mantle lithologies, generation ofcarbonated silicate melts in OIB source regions probably happensby reaction between peridotite and/or eclogite and migratingcarbonatitic melts produced at greater depths. KEY WORDS: alkali basalts; carbonated peridotite; experimental petrology; ocean island basalts; partial melting  相似文献   

19.
The <80 ka basalts–basanites of the Potrillo VolcanicField (PVF) form scattered scoria cones, lava flows and maarsadjacent to the New Mexico–Mexico border. MgO ranges upto 12·5%; lavas with MgO < 10·7% have fractionatedboth olivine and clinopyroxene. Cumulate fragments are commonin the lavas, as are subhedral megacrysts of aluminous clinopyroxene(with pleonaste inclusions) and kaersutitic amphibole. REE modellingindicates that these megacrysts could be in equilibrium withthe PVF melts at 1·6–1·7 GPa pressure. Thelavas fall into two geochemical groups: the Main Series (85%of lavas) have major- and trace-element abundances and ratiosclosely resembling those of worldwide ocean-island alkali basaltsand basanites (OIB); the Low-K Series (15%) differ principallyby having relatively low K2O and Rb contents. Otherwise, theyare chemically indistinguishable from the Main Series lavas.Sr- and Nd-isotopic ratios in the two series are identical andvary by scarcely more than analytical error, averaging 87Sr/86Sr= 0·70308 (SD = 0·00004) and 143Nd/144Nd = 0·512952(SD=0·000025). Such compositions would be expected ifboth series originated from the same mantle source, with Low-Kmelts generated when amphibole remained in the residuum. ThreePVF lavas have very low Os contents (<14 ppt) and appearto have become contaminated by crustal Os. One Main Series picritehas 209 ppt Os and has a Os value of +13·6, typical forOIB. This contrasts with published 187Os/188Os ratios for KilbourneHole peridotite mantle xenoliths, which give mostly negativeOs values and show that Proterozoic lithospheric mantle formsa thick Mechanical Boundary Layer (MBL) that extends to 70 kmdepth beneath the PVF area. The calculated mean primary magma,in equilibrium with Fo89, has Na2O and FeO contents that givea lherzolite decompression melting trajectory from 2·8GPa (95 km depth) to 2·2 GPa (70 km depth). Inverse modellingof REE abundances in Main Series Mg-rich lavas is successfulfor a model invoking decompression melting of convecting sub-lithosphericlherzolite mantle (Nd = 6·4; Tp 1400°C) between90 and 70 km. Nevertheless, such a one-stage model cannot accountfor the genesis of the Low-K Series because amphibole wouldnot be stable within convecting mantle at Tf 1400°C. Thesemagmas can only be accommodated by a three-stage model thatenvisages a Thermal Boundary Layer (TBL) freezing conductivelyonto the 70 km base of the Proterozoic MBL during the 20 Myrtectonomagmatic quiescence before PVF eruptions. As it grew,this was veined by hydrous small-fraction melts from below.The geologically recent arrival of hotter-than-ambient (Tp 1400°C) convecting mantle beneath the Potrillo area re-meltedthe TBL and caused the magmatism. KEY WORDS: western USA; picrites; Sr–Nd–Os isotopes; petrogenetic modelling; thermal boundary layer  相似文献   

20.
Rates of magmatic processes in a cooling magma chamber wereinvestigated for alkali basalt and trachytic andesite lavaserupted sequentially from Rishiri Volcano, northern Japan, bydating of these lavas using 238U–230Th radioactive disequilibriumand 14C dating methods, in combination with theoretical analyses.We obtained the eruption age of the basaltic lavas to be 29·3± 0·6 ka by 14C dating of charcoals. The eruptionage of the andesitic lavas was estimated to be 20·2 ±3·1 ka, utilizing a whole-rock isochron formed by U–Thfractionation as a result of degassing after lava emplacement.Because these two lavas represent a series of magmas producedby assimilation and fractional crystallization in the same magmachamber, the difference of the ages (i.e. 9 kyr) is a timescaleof magmatic evolution. The thermal and chemical evolution ofthe Rishiri magma chamber was modeled using mass and energybalance constraints, as well as quantitative information obtainedfrom petrological and geochemical observations on the lavas.Using the timescale of 9 kyr, the thickness of the magma chamberis estimated to have been about 1·7 km. The model calculationsshow that, in the early stage of the evolution, the magma cooledat a relatively high rate (>0·1°C/year), and thecooling rate decreased with time. Convective heat flux fromthe main magma body exceeded 2 W/m2 when the magma was basaltic,and the intensity diminished exponentially with magmatic evolution.Volume flux of crustal materials to the magma chamber and rateof convective melt exchange (compositional convection) betweenthe main magma and mush melt also decreased with time, from 0·1 m/year to 10–3 m/year, and from 1 m/yearto 10–2 m/year, respectively, as the magmas evolved frombasaltic to andesitic compositions. Although the mechanism ofthe cooling (i.e. thermal convection and/or compositional convection)of the main magma could not be constrained uniquely by the model,it is suggested that compositional convection was not effectivein cooling the main magma, and the magma chamber is consideredto have been cooled by thermal convection, in addition to heatconduction. KEY WORDS: convection; magma chamber; heat and mass transport; timescale; U-series disequilibria  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号