首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
Abstract: The Milyang pyrophyllite deposit, which is embedded in the Late Cretaceous Yuchon Group of the Kyongsang Supergroup, is one of the largest hydrothermal clay deposits in the Kyongsang basin, southeast Korea. Host rocks of the deposit are porphyritic andesite lava and minor andesitic lapilli tuff. In the Milyang district, a hydrothermally altered zone is about 2 × 3 km in extent; we can recognize the concentric arrangement of advanced argillic, propylitic, and sericitic alteration zones from the central to peripheral parts of the zone. The Milyang pyrophyllite deposit forms a part of the advanced argillic alteration zone. The Milyang pyrophyllite deposit is subdivided into the following four zones based on mineral assemblages: the pyrophyllite zones 1, 2, 3, and the silicified zone. The pyrophyllite zone 1, which occupies the central part of the deposit, comprises mainly pyrophyllite, kaolinite, and diaspore without quartz. Diaspore nodules often concentrate in beds 40–50 cm thick. Andalusite, dumortierite, and tourmaline locally occur as network veins, crack‐filler, or small spherulitic spots. The Al2O3 content of the ore ranges from 27 to 36 wt%. The pyrophyllite zone 2, which constitutes a major part of the deposit, comprises mainly pyrophyllite, kaolinite, and quartz. The Al2O3 content of the ore ranges from 15 to 24 wt%. The pyro‐phyllite zone 3 is the hematite‐rich marginal facies of the deposit. The silicified zone, which occurs as beds and septa, is mostly composed of quartz with minor pyrophyllite and kaolinite; the SiO2 contents range from 79 to 90 wt%. Comparing chemical compositions of the high‐Al ores with those of unaltered host andesite, the Fe, Ca, alkalis, HFSE, and HREE contents are significantly depleted, whereas S, B, As, Sr, and LREE are enriched. The hydrothermal alteration of the Milyang pyrophyllite deposit can be classified into the following four stages: 1) extensive sericitic and propylitic alteration, 2) medium‐temperature (200–250°C) advanced argillic alteration, 3) high‐temperature (250–350°C or more) advanced argillic alteration, and 4) retrograde low‐temperature alteration. The heat and some volatile components such as B and S would be derived from the Pulguksa Granite intruded underneath the deposit.  相似文献   

2.
Izu Peninsula in central Japan, the northern tip of the Izu‐Bonin arc, hosts numerous epithermal Au–Ag vein deposits of low‐sulfidation style. All have similar vein textures, mineralogy, and alteration. Geochemical data from fluid inclusions in vein quartz, the mineralogy and mineral chemistry of alteration, and stable isotope data indicate that auriferous hydrothermal activity occurred under subaerial conditions. The K–Ar ages of auriferous vein minerals are <1.5 Ma, indicating that the mineralization took place after extensive submarine volcanism for the host rocks. These observations suggest that Au–Ag mineralization was synchronous with the development of an extensional regime of the Izu block after its collision with the Honshu arc after 1.5 Ma. This collision resulted in the shifting of the Izu block far from the trench to the rear position, and the subduction of the Izu block along the Suruga trough to the west and along the Sagami trough to the east. The reararc position of the Izu block and double subduction resulted in crustal extension, upwelling of asthenospheric mantle, and tholeiitic magmatism reflected by mafic dyke swarms and subsequent monogenetic volcanic activity in the Izu peninsula. The timing of the Au mineralization in the Izu Peninsula during the beginning of lithospheric extension is similar to that of the Sado Au–Ag deposit on Sado island in the Japan Sea. Two mineralization events coincide with extensive tholeiitic mafic volcanism and injections of dyke swarms related to the back‐arc opening of the Japan Sea. The geological setting of the Au–Ag mineralization in Izu and Sado is also similar to that of the epithermal Au–Ag deposits in northern Nevada, where mineralization was contemporaneous with crustal extension and tholeiitic mafic magmatism derived from the asthenospheric mantle. This study suggests that epithermal Au mineralization at shallow crustal depths is a product of large‐scale lithospheric evolution.  相似文献   

3.
A widespread, intense hydrothermal alteration zone has developed in the Cretaceous Saplica volcanics as a result of the intrusion of Late Cretaceous-Paleocene granitoids. The propylitic, phyllitic (sericitic), and argillic alteration along with hematite, silica polymorphs, and two types of tourmaline mineralization developed under a wide range of Eh and pH conditions.

Alunite, kaolinite, and silica are abundant in the argillic alteration, whereas sericite dominates in the phyllic alteration. Most of the major alunite deposits are located along the periphery of the Saplica volcanic rocks and in addition contain alunite, kaolinite + quartz ± opal ± cristobalite. Illite and pyrite, barite, and gypsum also occur in small amounts.

Major and trace elements are concentrated in, or were leached from, the volcanic rocks, depending upon the alteration types. In general, Al + K and Mg + Ca + Fe were enriched in the alunitic + sericitic and propylitic alteration types, respectively. On the other hand, Ca, Mg, and Fe were leached during argillic alteration, and Fe was concentrated in hematite formation. Strong leaching of Na was determined for alteration types. Silica generally decreased in argillitic (kaolinitic and alunitic) alteration zones. Most trace elements were mobile during hydrothermal alteration. Y, Sc, Mo, Cr, Co, Ni, and Zn tend to be mobile in acid aqueous systems, and thus are nearly absent in these alunitic alteration zones. In the surrounding kaolinitic envelope, these elements are present at background (average) or slightly higher concentrations. Rb and Sr contents are high in the alunitic and kaolinitic zones. Barium is highest near the alunite zone because of the relative insolubility of barite in acidic solutions. Pb and Cu contents increase in the propylitic zone. Such hydrothermal alteration zones can be used effectively in the exploration and evaluation of mineral resources of the eastern Black Sea region.  相似文献   

4.
Geology of the Gasa Island (Gasado), Korea, consists mainly of tuffaceous rocks, rhyolite and andesitic rocks related to Cretaceous volcanic activity. These rocks are hydrothermally altered, and are classified into the following four alteration zones based on the alteration mineral assemblages: advanced argillic alteration (alunite‐pyrophyllite‐kaolinite‐pyrite); sericitic alteration (sericite‐kaolinite‐quartz); propylitic alteration (quartz‐chlorite‐carbonate‐pyrite); and silicified zones. Alunite in the advanced argillic zone occurred in two types; a massive or disseminated type and a vein type. Most of the massive or disseminated alunites are ≥50 μm in size, whereas the size of vein alunites is <20–30 μm. Alunite grain size is greater in the central part of disseminated or massive alunite, while it is smaller toward the margins. The gold content of each alteration zone is 21–2900 ppb, 15–88 ppb, 57–1730 ppb, and 2–231 ppb, respectively. The gold content of quartz veins developed in the alteration zones is 39–715 ppb. Gold is enriched in the minerals and rocks around faults and fissures, and is strongly concentrated in the advanced argillic alteration zone around faults. Hydrothermal solutions traveling along the fracture systems might be responsible for the comparatively high gold content in the study area. δ34S of alunites occurring in the advanced argillic alteration zone range from +16.5 to +3.9‰, although most are in a comparatively narrow range from +8.6 to +5.2‰. There is no difference between disseminated or massive and vein alunites. The δ34S of pyrites in the advanced argillic alteration zone are from +4.8 to ?2.9‰. Oxygen and hydrogen isotope values of alunites are from +8.5 to 0‰ and from ?59.6 to ?97.3‰, respectively. With an assumed temperature of 200°C, δD and δ18O of hydrothermal solutions calculated for alunites are from ?53.6 to ?91.3‰, and from ?2.4 to ?8.1 for massive or disseminated alunites and from ?6.6 to ?10.9‰ for vein alunites, respectively. These data suggest that meteoric water dominated during the alunite formation. Isotopic data, geological setting, mineralogy, size of alunite and pure alunite composition (K end member) indicate that alunites of the study area were formed in the steam‐heated environment of acid sulfate alteration.  相似文献   

5.
Abstract: Neogene magmatism in the Muka mine area in the Kitami metallogenic province was characterized on the basis of K-Ar age data by felsic–to–mafic terrestrial extrusive and intrusive volcanism from Late Miocene to Early Pliocene. The geology of the Muka mine area comprises the Upper Cretaceous-Paleocene Yubetsu Group, consisting primarily of sandstone and shale; Upper Miocene Ikutahara Formation, consisting of clastic and felsic volcaniclastic rocks and Kane-hana Lava (rhyolite) of 7. 5 Ma; Upper Miocene Yahagi Formation, consisting of clastics, felsic volcaniclastics and rhyolite lavas; Late Miocene andesite and rhyolite dikes (Chidanosawa Rhyolite of 7. 2 Ma and Hon-Mukagawa Andesite of 6. 6 Ma); Lower Pliocene Hakugindai Lava (basalt: 4. 0 Ma); and Quaternary System. The volcanism consists of earlier Late Miocene felsic extrusive activity during the sedimentation of the Ikutahara Formation, later Late Miocene felsic extrusive and intrusive activities during the sedimentation of the Yahagi Formation and intermediate intrusive activity after the sedimentation of the Yahagi Formation and Early Pliocene mafic extrusive activity. The Muka gold-silver ore deposit occurs primarily in the felsic volcaniclastic rocks and Kanehana Lava of the Ikutahara Formation and in Hon-Mukagawa Andesite. These wall–rocks, the clastic rocks of the Ikutahara Formation and the clastic and felsic volcaniclastic rocks of the Yahagi Formation were affected to various extents by hydrothermal alteration. The hydrother-mal alteration can be divided into two stages (early and late) based on the modes of occurrence and mineral assemblages. Early hydrothermal alteration is characterized by regional and vein-related alterations associated with epithermal gold-silver mineralization in a near-neutral hydrothermal system. Regional alteration can be subdivided into a zeolite zone (mordenite+adularia±heulandite–clinoptilolite series mineral±smectite±quartz°Cristobalite±opal–CT) and a smectite zone (smec–tite±quartz±opal–CT). Vein-related alteration can be subdivided into a K-feldspar zone (quartz+adularia±illite±interstratified illite/smectite±pyrite), an illite zone (quartz+illite°Chlorite±interstratified illite/smectite±smectite±pyrite) and an interstratified illite/smectite zone (quartz+interstratified illite/smectite±smectite±pyrite). The adularization age of 6. 8 Ma in the K-feldspar zone that developed in Kanehana Lava hosting ore veins coincides well with the epithermal gold-silver mineralization age of 6. 6 Ma. Late hydrothermal alteration is characterized by a kaolinite zone (kaolinite±dickite±alunite±quartz°Cristobalite± tridymite±pyrite) in an acid hydrothermal system, and cuts early alteration zones such as the K-feldspar zone. Other modes of occurrence of acid alteration are a 7Å halloysite-kaolinite vein in the hydrothermal explosion breccia dike and smectite–kaoli–nite veins along joint planes of Kanehana Lava. The style of the gold-silver deposit associated with early near-neutral hydrothermal alteration is a low-sulfidation epithermal type. The low-sulfidation epithermal gold-silver mineralization of 6. 6 Ma in the vicinity of the Muka ore deposit was essentially accompanied by felsic volcanic activity during the sedimentation of the Yahagi Formation, and was closely related both temporally and spatially to the felsic intrusive activity of Chidanosawa Rhyolite of 7. 2 Ma. The related hydrother-mal activity of the gold-silver mineralization took place at intervals of approximately 0. 4–0. 6 Ma after the volcanic activity related to the mineralization.  相似文献   

6.
The Hongtoushan Volcanogenic Massive Sulphide Deposit (VMSD) occurs in the Hunbei granite-greenstone terrane, Liaoning Province, NE China. Rocks in the mining area have been metamorphosed around 3.0–2.8 Ga to upper amphibolite facies at temperatures between 600°C and 650°C. Cordierite-anthophyllite gneiss (CAG) in the Hongtoushan mining area, which occurs hundreds of meters below the ore horizon, corresponds to the metamorphosed semi-conformable alteration zone of the VMSD hydrothermal system, whereas the one immediately below the main ore layer represents the metamorphosed pipe-like alteration zone. Whole-rock oxygen isotope signatures were well preserved in both types of CAGs, although the mineral components have been entirely changed during regional metamorphism. Therefore, whole-rock oxygen isotopes can be used to estimate the formation temperature of both types of alteration zone. Calculations show that the semi-conformable and pipe-like alteration zones for the Hongtoushan submarine hydrothermal system were formed at 290–360°C and 285–320°C, respectively, whereas estimates for the former were slightly higher than that of the latter, indicating that the semi-conformable alteration zone represents the deep part of the Hongtoushan seafloor hydrothermal system, while the pipe-like alteration zone represents the discharge conduits for metal-rich fluids, which is closer to the seafloor.  相似文献   

7.
In the Izu–Bonin Arc, hydrothermal activities have been reported from volcanoes along present‐day volcanic front, a rear arc volcano and a back‐arc rift basin as well as a remnant arc structure now isolated from the Quaternary arc. It is widely known that characteristics of hydrothermal activity (mineralogy, chemistry of fluid etc.) vary depending upon its tectonic setting. The Izu–Bonin Arc has experienced repeated back‐arc or intra‐arc rifting and spreading and resumption of arc volcanism. These characteristics make this arc system a suitable place to study the tectonic control on hydrothermal activity. The purpose of the present paper is, therefore, to summarize volcanotectonic setting and history of the Izu–Bonin Arc in relation to the hydrothermal activity. The volcanotectonic history of the Izu–Bonin Arc can be divided into five stages: (i) first arc volcanism (boninite, high‐Mg andesite), 48–46 Ma; (ii) second arc volcanism (tholeiitic, calc‐alkaline), 44–29 Ma; (iii) first spreading of back‐arc basin (Shikoku Basin), 25–15 Ma; (iv) third arc volcanism (tholeiitic, calc‐alkaline), 13–3 Ma; and (v) rifting in the back‐arc and tholeiitic volcanism along the volcanic front, 3–0 Ma. Magmas erupted in each stage of arc evolution show different chemical characteristics from each other, mainly due to the change in composition of slab‐derived component and possibly mantle depletion caused by melt extraction during back‐arc spreading and prolonged arc volcanism. In the volcanotectonic context summarized here, hydrothermal activity recognized in the Izu–Bonin Arc can be classified into four groups: (i) present‐day hydrothermal activity at the volcanic front; (ii) active hydrothermal activity in the back arc; (iii) fossil hydrothermal activity in the back‐arc volcanoes; and (iv) fossil hydrothermal activity in the remnant arc. Currently hydrothermal activities occur in three different settings: submarine caldera and stratocones along the volcanic front; a back‐arc rift basin; and a rear arc caldera. In contrast, hydrothermal activities found in the back‐arc seamount chains were associated with rear arc volcanism in Neogene after cessation of back‐arc spreading of the Shikoku Basin. Finally, sulfide mineralization associated with boninitic volcanism in the Eocene presumably took place during forearc spreading in the initial stage of the arc. This type of activity appears to be limited during this stage of arc evolution.  相似文献   

8.
The Early Cretaceous Duolong gold‐rich porphyry copper deposit is a newly discovered deposit with proven 5.38 Mt Cu resources of 0.72% Cu and 41 t gold of 0.23 g t?1 in northern Tibet. Granodiorite porphyry and quartz diorite porphyrite are the main ore‐bearing porphyries. A wide range of hydrothermal alteration associated with these porphyries is divided into potassic, argillic and propylitic zones from the ore‐bearing porphyry center outward and upward. In the hydrothermal alteration zones, secondary albite (91.5–99.7% Ab) occurs along the rim of plagioclase phenocryst and fissures. Secondary K‐feldspar (75.1–96.9% Or) replaces plagioclase phenocryst and matrix or occurs in veinlets. Biotite occurs mainly as matrix and veinlet in addition to phenocryst in the potassic zone. The biotite are Mg‐rich and formed under a highly oxidized condition at temperatures ranging from 400°C to 430°C. All the biotites are absent in F, and have high Cl content (0.19–0.26%), with log (XCl/XOH) values of ?2.74 to ?2.88 and IV (Cl) values of ?3.48 to ?3.35, suggesting a significant role of chloride complexes (CuCl2 and AuCl2) in transporting and precipitating copper and gold. Chlorites are present in all alteration zones and correspond mainly to pycnochlorite. They have similar Fe/(Fe+Mg), Mn/(Mn+Mg) ratios, and a formation temperature range of 280–360°C. However, the formation temperature of chlorite in the quartz‐gypsum‐carbonate‐chlorite vein is between 190°C and 220°C, indicating that it may have resulted from a later stage of hydrothermal activity. Fe3+/Fe2+ ratios of chlorites have negative correlation with AlIV, suggesting oxygen fugacity of fluids increases with decreasing temperature. Apatite mineral inclusions in the biotite phenocrysts show high SO3 content (0.44–0.82%) and high Cl content (1–1.37%), indicating the host magma had a high oxidation state and was enriched in S and Cl. The highest Cl content of apatite in the propylitic zone may have resulted from pressure decrease, and the lowest Cl content of apatite in the argillic zone may have been caused by a low Cl content in the fluids. The low concentration of SO3 content in the hydrothermal apatite compared to the magmatic one may have resulted from the decrease of oxygen fugacity and S content in the hydrothermal fluid, which are caused by the abundant precipitation of magnetite.  相似文献   

9.
Abstract. The Pantingan Gold System (PGS) is a vein-type epithermal prospect exposed within the summit caldera of Mount Mariveles, Bagac, Bataan (Luzon), Philippines. It consists of nine major veins, eight of which trend NW-WNW and distributed in an en echelon array. The eastern tips of these veins appear to terminate near the NE-NNE trending Vein 1, which is located in the easternmost portion of the prospect. Metal assay results on vein and wall rock samples indicate concentrations of 0.01 to 1.1 g/ton Au, trace to 34 g/ton Ag and 0.003 to 0.02 % Cu. Andesite lava flow deposits host the PGS. Potassium-Argon isotopic dating of these andesites yields anarrow age range of 0.88± 0.13 to 1.13 ± 0.17 Ma. The surface exposures of the veins (up to 5 m wide) are encountered at different levels between 590–740 masl. These commonly display a massive texture although banding prominently occurs in Vein 1. The veins consist of gray to cream-colored crystalline and chalcedonic quartz and amorphous silica. Pyrite is the most ubiquitous sulfide mineral. It occurs either as fine-grained disseminations and aggregates in quartz or as infillings in vugs. Calcite, marcasite and bornite are also occasionally noted in the deposit. The prospect shows silicic, argillic, propylitic and advanced argillic alteration zones. Silicic and argillic alterations are confined in the immediate wall rocks of the quartz veins. Argillic alteration grades to a propylitic zone farther away from the veins. The advanced argillic alteration zone, indicated by a suite of acidic clay minerals that include kaolin-ite, dickite, pyrophyllite and alunite, might have been imprinted during the late stages of gold deposition. As a whole, the PGS displays geological and mineralogical features typical of gold mineralization in a low sulfidation, epithermal environment. It is also representative of a young, tectonically undisturbed gold deposit.  相似文献   

10.
Abstract: The Onsen acid‐sulphate type of mineralization is located in the Desmos caldera, Manus back‐arc basin. Hydrothermal precipitates, fresh and altered basaltic andesite collected from the Desmos caldera were studied to determine mineralization and mobility of elements under seawater dominated condition of hydrothermal alteration. The mineralization is characterized by three stages of advanced argillic alteration. Alteration stage I is characterized by coarse subhedral pyrophyllite with disseminated anhedral pyrite and enargite which were formed in the temperature range of 260–340°C. Alteration stage II which overprinted alteration stage I was formed in the temperature range of 270–310°C and is characterized by euhedral pyrite, quartz, natroalunite, cristobalite and mixed layer minerals of smectite and mica with 14–15 Å XRD peak. Alteration stage III is characterized by amorphous silica, native sulphur, covellite, marcasite and euhedral pyrite, which has overprinted alteration stages I and II. Relative to the fresh basaltic andesite samples, the rims and cores of the partly altered basaltic andesite samples have very low major, minor and rare earth elements content except for SiO2 which is much higher (58–78 wt%) than SiO2 content of the fresh basaltic andesite (55 wt%). REE patterns of the partly altered basaltic andesite specimens are variably depleted in LREE and have pronounced negative Eu anomalies. Normalization of major, minor and REE content of the partly altered basaltic andesites to the fresh basaltic andesite indicates that all the elements except for SiO2 in the partly altered basaltic andesite are strongly lost (e.g. Al2O3 = ‐8.3 to ‐10.9 g/100cm3, Ba = ‐2.2 to ‐5.6 mg/100cm3, La = ‐130 to ‐200 μg/100cm3) during the alteration process. Abnormal depletion of MgO, total Fe as Fe2O3, LREE especially Eu and enrichment of SiO2 in the altered basaltic andesites from the Desmos caldera seafloor is caused by interaction of hot acidic hydrothermal fluid, which originates from a mixing of magmatic fluid and seawater.  相似文献   

11.
Abstract: Hydrothermal systems related to magmatic intrusions in the Jozankei-Zenibako district, southwest Hokkaido are examined, based on field observations, K-Ar ages, and alteration mineral assemblages. The study reveals five major magmat–ic–hydrothermal systems of Late Miocene in age, comprising Ogawa (9. 7 Ma), Jozankei (9. 5–9. 0 Ma), Otarunaigawa (8. 7 Ma), Asarigawa (8. 8 and 6. 7 Ma) and Hariusu (6. 7 Ma). The Ogawa system is related to granodiorite, and the Jozankei, Otarunaigawa and Asarigawa systems are related to quartz porphyry.
The Ogawa system includes potassic, sericitic, propylitic and advanced argillic alteration as well as base-metal mineralization, represented by the Toyotomi deposit. The Jozankei and Otarunaigawa systems lack significant potassic alteration, and are accompanied by sericitic and propylitic alteration. The Otarunaigawa system is associated with base-metal mineralization at Toyohiro and Inatoyo. The Asarigawa and Hariusu systems include advanced argillic and argillic alteration, as well as iron sulfide deposits. The presence of potassic alteration only in the Ogawa system is ascribed to deeper emplacement (˜3 km from the surface) of the intrusive magma. These systems formed in terrestrial environments that existed from ca. 11 Ma to 8. 5 Ma and after 7. 5 Ma in the district.
Age–data compilation shows that the major advanced argillic alteration events in southwest Hokkaido, including those in the Jozankei-Zenibako district, formed during the periods from 9. 7–6. 5 Ma and 3. 5–1. 5 Ma. These periods correspond to the timing of normal subduction of the Pacific plate beneath the Northeast Japan arc. Normal, in contrast to oblique, plate subduction is characterized by andesitic, polygenetic volcanism and associated advanced argillic alteration.  相似文献   

12.
A rhyolitic hyaloclastite from Ponza Island, Italy, was hydrothermally altered, producing four distinct alteration zones based on X-ray diffraction mineralogy and field textures: (1) nonpervasive argillic zone; (2) propylitic zone; (3) silicic zone; and (4) sericitic zone. The unaltered hyaloclastite is volcanic breccia with clasts of vesiculated obsidian in a matrix of predominantly pumice lapilli. Incomplete alteration of the hyaloclastite resulted in the nonpervasive argillic zone, characterized by smectite and disordered opal-CT. The other three zones exhibit more complete alteration of the hyaloclastite. The propylitic zone is characterized by mixed-layer illite-smectite (I-S) with 10 to 85% I, mordenite, opal-C, and authigenic K-feldspar (akspar). The silicic zone is characterized by I-S with ≥90% I, pure illite, quartz, akspar, and occasional albite. The sericitic zone consists primarily of I-S with ≥66% I, pure illite, quartz, and minor akspar and pyrite. K/Ar dates of I-S indicate hydrothermal alteration occurred at 3.38 ± 0.08 Ma.Oxygen isotope compositions of I-S systematically decrease from zones 1 to 4. In the argillic zone, smectite has δ18O values of 21.7 to 22.0‰ and I-S from the propylitic, silicic, and sericitic zones ranges from 14.5 to 16.3‰, 12.5 to 14.0‰, and 8.6 to 11.9‰, respectively. δ18O values for quartz from the silicic and sericitic zones range from 12.6 to 15.9‰. By use of isotope fractionation equations and data from authigenic quartz-hosted primary fluid inclusions, alteration temperatures ranged from 50 to 65°C for the argillic zone, 85 to 125°C for the propylitic zone, 110 to 210°C for the silicic zone, and 145 to 225°C for the sericitic zone. Fluid inclusion data and calculated δ18Owater values indicate that hydrothermal fluids were seawater dominated.Mass-transfer calculations indicate that hydrothermal alteration proceeded in a relatively open chemical system and alteration in the sericitic zone involved the most extensive loss of chemical species, especially Si. Systematic gains in Mg occur in all alteration zones as a result of I-S clay mineral formation, and systematic losses of Na, Ca, and K occur in most zones. With the exception of Ca, calculations of mass transfer associated with hydrothermal alteration on Ponza agree with chemical fluxes observed in laboratory experiments involving hydrothermal reactions of rhyolite and seawater. The anomalous Ca loss at Ponza may be due to hydrothermal formation of anhydrite and later low-temperature dissolution. On the basis of Mg enrichments derived from circulating seawater, we estimate the following minimum water/rock ratios: 9, 3, 6, and 9 for the argillic, propylitic, silicic, and sericitic zones, respectively. Hydrothermal fluid pH for the propylitic and silicic zones was neutral to slightly basic and relatively acidic for the sericitic zone as a result of condensation of carbonic and perhaps other acids.  相似文献   

13.
The Pongkor gold–silver mine is situated at the northeastern flank of the Bayah dome, which is a product of volcanism in the Sunda–Banda Arc. The hydrothermal alteration minerals in the Ciurug–Cikoret area are typical of those formed from acid to near‐neutral pH thermal waters. On the surface, illite/smectite mixed layer mineral (I/Sm), smectite and kaolinite, and spotting illite, I/Sm and K‐feldspar alteration occur at the top of the mineralized zone. Silicification, K‐feldspar and I/Sm zones are commonly formed in the wall rock, and gradually grade outwards into a propylitic zone. The mineralization of precious metal ore zone is constrained by fluid temperatures between 180 and 220°C, and with low salinity (<0.2 wt% NaCl equivalent) and boiling condition. The minimum depth of vein formation below the paleo‐water table is approximately 90–130 m for the hydrostatic column. Hydrogen and oxygen isotope data for quartz and calcite show relatively homogeneous fluid composition (?53 to ?68‰δD and ?5.7 to +0.3‰δ18O H2O). There is no specific trend in the data with respect to the mineralization stages and elevation, which suggests that the ore‐forming fluids did not significantly change spatially during the vein formation. The stable isotope data indicate mixing between the hydrothermal fluids and meteoric water and interaction between the hydrothermal fluids and the host rock.  相似文献   

14.
Gold mineralization in the Velvet District occurs in an eastward dipping sequence of late Tertiary rhyolitic ash-flow tuffs, flows, and tuffaceous sediments in northwestern Nevada. Minor gold and silver concentrations are associated with irregular zones of brecciation, argillic alteration, and quartz veining along north-northeast trending normal faults. Reaction of mineralizing fluids with wallrock produced an argillic alteration assemblage of illite, mixed-layer clays, smectite, and kaolinite. Illite alteration and highest gold concentrations appear to be associated with zones of high water/rock ratios. Kaolinite, smectite, alunite, and opal are postulated to have formed during a steam-dominated episode of alteration.Fluid inclusion studies indicate that the quartz veins were deposited in the temperature range 230 to 280°C from fluids which had salinities equivalent to 0.2–0.8 weight percent NaCl. δ 18O of quartz veins varies from ?2.5 to +6.7 ‰ and indicates that the ore fluid must have been Tertiary meteroric water. Stable isotope data appear to define a zone of concentrated fluid flow and potential subsurface mineralization in the southeastern part of the district. Fluid inclusion and isotope studies can be used in combination with more standard geochemical, geophysical, and geological information to provide site-specific targets for epithermal metal concentrations.  相似文献   

15.
This paper discusses the mineralogy, whole-rock geochemistry and elemental mass balance of the hydrothermal alteration zones within the Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia. The hydrothermal alteration and mineralisation developed in four stages, namely (i) the early stage consisting of a central copper-gold-bearing biotite (potassic), proximal actinolite (inner propylitic) and the distal chlorite-epidote (outer propylitic) zones; (ii) the transitional stage represented by the chlorite-sericite (intermediate argillic) zone; (iii) the late stages distinguished into the sericite-paragonite (argillic) and pyrophyllite-andalusite (advanced argillic) zones; and (iv) the very late stage typified by the illite-sericite zone. In general, major elements (particularly Ca, Mg, Na and K) and some minor and rare earth elements decrease from the least altered rocks towards the late alteration zones as a consequence of the breakdown of Ca-bearing hornblende, biotite and plagioclase. Chemical discrimination by means of millicationic R1-R2 diagram indicates that R1 [4Si − 11(Na + K) − 2(Fe + Ti)] increases while R2[6Ca + 2Mg + Al] decreases with increasing alteration intensity, from least-altered, through early, transitional, to late alteration zones. Rare earth elements-chondrite (C1) normalised patterns also exhibit the depletion of the elements through the subsequent alteration zones. These results are consistent with the elemental mass balance calculation using the isocon method which shows that the degree of mass and volume depletion systematically increases during alteration. A decrease of the elements as well as mass and volume from early, through transitional to late alteration stages may imply a general decrease of the element activities in hydrothermal fluids during the formation of the alteration zones.  相似文献   

16.
Natural analogues provide an approach to characterize and test the long‐term modelling of a repository performance. This article presents geochemical information about the alteration conditions of the Nopal I uranium deposit, Mexico, an analogue for the proposed Yucca Mountain radioactive waste repository. Mineralization and hydrothermal alteration of volcanic tuffs are contemporaneous, according to petrographic observations. Trace element geochemistry (U, Th, REE) provides evidence for local mobilization of uranium under oxidizing conditions and further precipitation under reducing conditions. O‐ and H‐isotope geochemistry of kaolinite, smectite, opal and calcite suggests that argillic alteration proceeded at shallow depth with meteoric water at 25–75 °C, a low‐temperature context, unusual for volcanic‐hosted uranium deposits. This temperature range is compatible with some post‐closure evolution models of the proposed Yucca Mountain repository.  相似文献   

17.
马塔比矿床位于印度尼西亚北苏门答腊省,是印度尼西亚近年确认的一处世界级高硫浅成低温热液型金-银矿床。文章在梳理前人研究的基础上,对其成矿地质特征与找矿标志进行了总结,以丰富该类型矿床实例,指导找矿实践。该矿床金银矿化呈现典型的高硫型浅成低温热液系统蚀变分带特征,由内而外依次发育硅化带、高级泥化带、泥化带、青磐岩化带。赋矿英安岩的锆石U-Pb 定年结果为(3.8±0.5)Ma,热液变质成因明矾石的Ar-Ar 坪年龄分别为(3.3±0.11)Ma 和(2.14±0.10)Ma,表明成岩与成矿间隔时间较短,且可能存在两期高级泥化蚀变作用。成矿作用既有岩浆热液又有大气水的参与,后期地表风化作用使金和银进一步富集。马塔比矿床具有高硫型浅成低温热液矿床的典型特征,总结其找矿标志包括构造环境标志、岩性标志、蚀变标志和化探标志。  相似文献   

18.
The Duolong district is located in the south Qiangtang terrane of Tibet and is the most significant ore cluster within the Bangongco-Nujiang metallogenic belt. Duolong contains one giant, three large and two medium to small-sized porphyry (±epithermal ± breccia) copper deposits and several other mineralized porphyry bodies. All deposits are closely associated with early Cretaceous (123–115 Ma) intermediate-felsic intrusions. Naruo is a poorly studied porphyry-breccia copper deposit in the north of the Duolong district. Hydrothermal alteration surrounding the ore-bearing granodiorite at Naruo is characterized by an inner potassic zone and an outer propylitic zone, overlapped locally by minor phyllic and argillic alteration assemblages. A detailed paragenetic study has identified five distinct hydrothermal veins (M, A, B, C, D) within the porphyry system. Hydrothermal B veins are strongly related to copper mineralization. Strong propylitic alteration is also observed throughout the hydrothermal breccias identified at Naruo. Sandstone breccia, diorite-bearing breccia and granodiorite-bearing breccia were identified according to the distribution and composition of clasts. U-Pb zircon dating has determined the ages of the ore-bearing granodiorite (121.6 ± 1.3 Ma) and a barren intrusion (115.5 ± 1.1 Ma) within the porphyry system, diorite clasts (122.3 ± 0.9 Ma) and later diorite matrix (120.5 ± 1.0 Ma) in the hydrothermal breccia system, suggesting that with the exception of the late barren intrusion, they all belong to the same mineralizing event at Duolong. The geological and geochemical evidence presented in this study suggest that the porphyry and breccia systems may have originated from the same magma source, but are now spatially independent.  相似文献   

19.
The Bilimoia deposit (2.23 Mt, 24 g/t Au), located in the eastern Central Mobile Belt of mainland Papua New Guinea, is composed of fault‐hosted, NW–NNW‐trending Irumafimpa–Kora and Judd–Upper Kora Au‐quartz veins hosted by Middle–Late Triassic basement that was metamorphosed to medium‐grade greenschist facies between Middle–Late Triassic and Early–Middle Jurassic. Mineralizing fluids were introduced during crustal thickening, rapid uplift, change of plate motions from oblique to orthogonal compression, active faulting and S3 and S4 events in an S1–S4 deformation sequence. The Bilimoia deposit is spatially and temporally related to I‐type, early intermediate to felsic and late mafic intrusions emplaced in Late Miocene (9–7 Ma). Hydrothermal alteration and associated mineralization is divided into 10 main paragenetic stages: (1) chlorite–epidote‐selvaged quartz–calcite–specularite vein; (2) local quartz–illite–pyrite alteration; (3) quartz–sericite–mariposite–fuchsite–pyrite wall‐rock alteration that delimits the bounding shears; (4) finely banded, colloform‐, crustiform‐ and cockade‐textured and drusy quartz ± early wolframite ± late adularia; (5) hematite; (6) pyrite; (7) quartz ± amethyst‐base metal sulfides; (8) quartz–chalcopyrite–bornite–Sn and Cu sulfides–Au tellurides and Te ± Bi ± Ag ± Cu ± Pb phases; (9) Fe ± Mn carbonates; and (10) supergene overprint. Fluid inclusions in stage 4 are characterized by low salinity (0.9–5.4 wt% NaCl equivalent), aqueous–carbonic fluids with total homogenization temperatures ranging from 210 to 330°C. Some of the inclusions that homogenized between 285 and 330°C host coexisting liquid‐ and vapor‐rich (including carbonic) phases, suggesting phase separation. Fluid inclusions in quartz intergrown with wolframite have low salinity (0.9–1.2 wt% NaCl equivalent), aqueous–carbonic fluids at 240–260°C, defining the latter’s depositional conditions. The ore fluids were derived from oxidized magmatic source initially contaminated by reduced basement rocks. Wall‐rock alteration and involvement of circulating meteoric waters were dominant during the first three stages and early part of stage 4. Stage 5 hematite was deposited as a result of stage 4 phase separation or entrainment of oxygenated groundwater. Gold is associated with Te‐ and Bi‐bearing minerals and mostly precipitated as gold‐tellurides during stage 8. Gold deposition occurred below 350°C due to a change in the sulfidation and oxidation state of the fluids, depressurization and decreasing temperature and activities of sulfur and tellurium. Bisulfides are considered to be the main Au‐transporting complexes. The Bilimoia deposit has affinities that are similar to many gold systems termed epizonal orogenic and intrusion‐related. The current data allow us to classify the Bilimoia deposit as a fault‐controlled, metamorphic‐hosted, intrusion‐related mesothermal to low sulfidation epithermal quartz–Au–Te–Bi vein system.  相似文献   

20.
Altered and mineralised rocks at Peak Hill, are confined to a 300–500 m wide, north-south striking, steeply dipping, shear zone that is flanked by the Mingelo Volcanics along its western side, and Cotton Formation siltstones along its eastern side. This shear zone is defined by extensive zones of cataclasite and strongly foliated micaceous schists in marked contrast to the largely undeformed nature of the adjacent rocks. Advanced argillic assemblages (quartz-kaolinite-pyrite ± alunite ± illite) occur throughout the core of the Peak Hill deposit. Propylitic assemblages, including albite, quartz, interlayered chlorite-smectite, illite and ankerite, and a narrow discontinuous zone of argillic (quartz-illite-pyrite) alteration are developed in the Mingelo Volcanics along the western side of the deposit. Propylitic, argillic and advanced argillic assemblages are overprinted by an internally zoned phase of phyllosilicate alteration that grades inwards from a peripheral sericite-clay-chlorite assemblage, through phyllic assemblages (muscovite/illite-pyrite ± paragonite) to a pyrophyllite-pyrite ± diaspore ± andalusite altered core. Au-Cu mineralisation is hosted by barite-pyrite veins that cut the advanced argillic assemblage, but pre-date the phyllosilicate-dominated alteration. Native Au (lacking Ag), calaverite, Te-rich tennantite-tetrahedrite (goldfieldite), chalcopyrite, covellite and chalcocite occur in the barite-pyrite veins. No ore-bearing minerals were detected in any of the alteration assemblages. The total gold content of the Peak Hill deposit is currently 720 K ounces and this includes 100 K ounces of unmined reserves. Within the shear zone phyllosilicate minerals are developed in strain shadows and partly define the stretching lineation associated with dip-slip movement. The zonation within the phyllosilicate assemblages mimics the geometry of bends in the shear zone and minor internal structures. These textures indicate that the phyllosilicate alteration developed synchronous with movement on the shear zone. Earlier advanced argillic alteration and mineralisation are developed in rocks derived from both sides of the shear zone. Hydrothermal activity associated with the earlier advanced argillic alteration was therefore either synchronous with juxtaposition of these distinct rock units, or occurred during a later phase of movement on the shear zone. Cross-cutting fibrous textures in the auriferous barite-pyrite veins indicate that repeated fracturing of the advanced argillic altered rocks accompanied development of successive generations of auriferous veins. Concentrations of auriferous veins are localised in steeply plunging shoots that are oriented parallel to the stretching lineation in the shear zone. These features all indicate movement on the host shear zone accompanied each phase of hydrothermal activity in the Peak Hill deposit. The location, alteration zonation and distribution of mineralised veins within the deposit are intimately controlled by deformation on the host shear zone synchronous with hydrothermal activity. The development of high-sulphidation hydrothermal systems synchronous with deformation along brittle-ductile shear zones is a predictable consequence of intrusive activity during deformation in areas characterised by a high geothermal gradient. The close relationship between tectonism and hydrothermal activity indicates that these deposits are likely to be located in the vicinity of regional-scale shear zones. Deposits are likely to be aligned parallel to the regional-scale structural “grain” and restricted to areas of conspicuous deformation as is the case at Peak Hill (and Temora, NSW). Aluminous alteration zones concentrated in the vicinity of regional-scale structures in the Carolina Slate Belt may be a further example of this style of hydrothermal activity. Received: 30 September 1996 / Accepted: 28 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号