首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The procedure presented in this paper has been developed for the design of grouted rock bolts in rock tunnels during preliminary design stage. The proposed approach provides a step-by-step procedure to set up a series of practical guidelines for optimum pattern of rock bolting in a variety of rock mass qualities. For this purpose, a new formula for the estimation of the rock load (support pressure) is recommended. Due to its wide-spread acceptance in the field of rock engineering, the Geological Strength Index (GSI) is adopted in support pressure equation. For poor and very poor rock mass where the GSI < 27, the use of Modified-GSI is, instead, recommended. The supporting action is assumed to be provided by rock bolts carrying a total load defined by the rock load height. The mechanism of bolting is assumed to rely on roof arch forming and suspension principle. Integrated with support pressure function, the bolt density parameter is modified in order to provide an optimized bolt pattern for any shape of tunnel. The modified bolt density can also be used in analysis of a reinforced tunnel in terms of Ground Reaction Curve (GRC) in such a way as to evaluate the reinforced rock mass and the tunnel convergence. By doing so, the effectiveness of the bolting pattern is well evaluated. The proposed approach based on GSI is believed to overcome constrains and limitations of existing empirical bolt design methods based on RMR or Q-system, which are doubtful in poor rock mass usage. The applicability of the proposed method is illustrated by the stability analysis and bolt design of a rail-road tunnel in Turkey.  相似文献   

2.
朱训国  杨庆  栾茂田 《岩土力学》2007,28(Z1):173-177
在弹性状态下,根据锚固体的受力情况建立了锚固体的摩阻力分布模型。根据此模型,结合隧道围岩位移变化函数推导了全长注浆岩石锚杆在围岩变形下的全长受力分布函数。并结合工程实例,分析了锚杆的应力分布特征,得出了注浆岩石锚杆在围岩变形中受力的基本特征。  相似文献   

3.
Roof bolting in underground mining: a state-of-the-art review   总被引:1,自引:1,他引:1  
Conclusions With continuing investigations and developments, roof bolting today can in most cases successfully reinforce the mine roof in underground mining. In order to cope with the increasing use of roof bolts, efforts should be made to maximize the safety and minimize the cost. With regard to mechanical bolting, two important parameters need more advanced improvements and study, namely, optimum design of the shape and type of expansion shell and optimum bolt tension for a specific bolt pattern. For the fully grouted resin bolt, the most critical requirement is to develop a fast-setting, low-cost, intoxic, inflammable grouting material that can be used in the high speed mining cycle. It should be noted that geological conditions such as the strata type, rock properties,in situ stress, and planes of weakness play an important role in the successful application of any roof bolting system. These factors should be specified as accurately and quantitatively as possible in the design of any roof bolting system. Finally, proper and careful installation and continuous monitoring are imperative for the success of any roof bolting system.  相似文献   

4.
This article presents a computer simulation of stress distribution around tunnels and interaction between tunnels using an elasto-plastic model. A finite element method using ANSYS software has been used for the analyses of one and two tunnels at different overburden depths with different separating distances between the tunnels. The results of numerical analyses indicate that stress distribution and stress concentration around the tunnels vary with the overburden depths. It is found that the coefficients of stress concentration for elasto-plastic medium are smaller than those for elastic one by 1.9%. Furthermore, the interaction between the two tunnels rapidly decreases with the increase of separation distance between them. In addition, for quantitatively describing the interaction between the two tunnels, a critical separation distance is introduced. The critical separation distances between the two tunnels at different overburden depths are 8 m, 12 m, and 14 m respectively. This fact is very important and essential for the design of mining tunnels and to ensure safety in tunnel engineering.  相似文献   

5.
This article presents a computer simulation of stress distribution around tunnels and interaction between tunnels using an elasto-plastic model. A finite element method using ANSYS software has been used for the analyses of one and two tunnels at different overburden depths with different separating distances between the tunnels. The results of numerical analyses indicate that stress distribution and stress concentration around the tunnels vary with the overburden depths. It is found that the coefficients of stress concentration for elasto-plastic medium are smaller than those for elastic one by 1.9%. Furthermore, the interaction between the two tunnels rapidly decreases with the increase of separation distance between them. In addition, for quantitatively describing the interaction between the two tunnels, a critical separation distance is introduced. The critical separation distances between the two tunnels at different overburden depths are 8 m, 12 m, and 14 m respectively. This fact is very important and essential for the design of mining tunnels and to ensure safety in tunnel engineering.  相似文献   

6.
Rock bolts are widely used for rock reinforcement in hard-rock mining and civil engineering since a long time. However the use of fully grouted rock bolts and cable bolts is limited in coal mines. In order to improve performance of the rock bolts as a supplementary roof support system for any type of roof condition in coal measured formations, it is necessary to have a good understanding of the behavior of the bolt–grout and grout–rock interactions as well as the mechanism of load transfer in rock bolts.As the performance of grouted bolts depends on bond strength, extensive laboratory pullout as well as pushout tests were conducted in the present investigations with the variations in the bolt diameters, length and cement–water mixing ratios of grout. The load–displacement curves were developed and were verified with the numerical results obtained from finite element analysis using ALGOR software.Numerical models were validated for pushout tests and a detailed analysis was carried out to know the displacement, stress, strain distribution along the bolt.  相似文献   

7.
The interactions between perpendicularly crossing tunnels in the Sydney region are investigated using a full three-dimensional (3D) finite element analysis coupled with elasto-plastic material models. Special attention is paid to the effect of subsequent tunnelling on the support system, i.e. the shotcrete lining and rock bolts, of the existing tunnel. The results of the analysis show that in a region such as Sydney, with relatively high horizontal stresses, installation of the new tunnel causes the shotcrete lining of the existing tunnel to be in tension in the side facing towards the tunnel opening and in compression at the crown and invert. The pre-stressed rock bolts are usually tensioned more in the sections closest to the tunnel opening. For this particular study, if a new tunnel is driven perpendicularly beneath an existing tunnel, significant increases are induced in the bending moments in the shotcrete lining at the lateral sides of the existing tunnel and in the axial forces at its crown and invert. The increase in side bending moments causes further tensile cracking but the crown and invert stresses remain within the thresholds for both compressive failure and tensile cracking for shotcrete lining of typical concrete quality. Moreover, the driving of the new tunnel causes the tensile forces in the existing side rock bolts to increase and those in the existing crown rock bolts to decrease. In contrast, if the new tunnel is driven perpendicularly above the existing tunnel, compressive failure of the existing shotcrete lining is induced at the crown of the deeper tunnel for concrete of typical capacity and a significant tensile force increase of the existing rock bolts around the crown. It is concluded that in order to ensure the stability of the existing tunnel, local thickening is needed at the sides of the existing shotcrete lining if the shallow tunnel is installed first and local thickening is needed at the crown if the deep tunnel is installed first.  相似文献   

8.
软弱围岩隧道取消系统锚杆的现场试验研究   总被引:1,自引:0,他引:1  
在软弱围岩隧道中,提出初期支护结构由钢架+喷射混凝土+钢筋网+锁脚锚杆+纵向连接筋组成,即取消系统锚杆用钢架联结处的锁脚锚杆代替。以包家山隧道为依托工程,采用现场试验的方法,选取2个试验段,进行锁脚锚杆取代系统锚杆后,有、无拱部锚杆的对比试验研究。对比试验的内容包括:隧道初期支护的净空收敛、围岩压力、钢架应力、喷射混凝土应力、锚杆轴力和纵向连接筋应力等。研究结果表明:2个试验段初期支护变形趋于稳定,结构受力安全,说明取消系统锚杆不影响初期支护结构的安全与稳定;拱部锚杆有受拉,也有受压,但受力都不大,最大拉应力仅为钢材极限强度的11.8%,其支护作用不明显;锁脚锚杆大部分受拉,最大值达到191 MPa,钢架支护作用明显,在支护体系中发挥着重要作用。取消系统锚杆减少了施工工序,降低了工程造价,缩短了工序循环时间,有利于及早封闭围岩以形成完整的支护结构。经济价值和社会效益显著。  相似文献   

9.
邢心魁  张坤鹏  闫茂龙  张坚  李迎 《岩土力学》2014,35(8):2157-2162
以相似理论为基础,采用砂土模拟围岩,铁丝模拟锚杆。实测隧道开挖过程中,不同洞周支护力、不同锚杆长度以及锚杆与洞周支护力共同作用下围岩应力分布、稳定性及分区的变化规律。采用有限元模拟不同锚杆长度下围岩的应力分布规律,并基于D-P屈服准则得出围岩塑性区的范围。研究结果表明,采用锚杆与洞周支护力联合支护,更能充分发挥围岩自身的承载能力。锚杆的支护长度应不小于无支护时的松动区外包半径大小。松散围岩条件下,锚杆的长度不宜小于隧洞跨度的1/5,综合支护时洞周支护力大小宜为原岩垂直应力的5%左右。对比试验与有限元模拟结果,有限元模拟所得结果相比于试验较为保守。  相似文献   

10.
煤矿巷道锚杆支护的参数优化   总被引:1,自引:0,他引:1  
戴俊  郭相参 《岩土力学》2009,30(Z1):140-143
目前煤矿巷道锚杆支护设计尚存在不足,造成锚杆锚固能力未能充分发挥,支护材料浪费和支护成本偏高。基于围岩与锚杆共同作用原理,通过锚杆受力监测,对锚杆支护参数进行设计,有助于充分发挥锚杆支护的优越性。针对陕西某煤矿巷道条件,通过计算和锚杆受力监测,调整锚杆参数的方法,进行锚杆支护参数设计,实现锚杆支护的参数优化。应用结果表明利用这一方法能够准确、快速地得到锚杆的支护参数,充分发挥了支护锚杆的承载能力,实现了支护优化。本文工作对改进煤矿巷道支护设计具有一定的实际意义和工程价值。  相似文献   

11.
Summary In order to design roof bolting systems safely and economically, it is essential to understand the flexural behaviour of the immediate roof. Based on the strata sequence, the strata in the immediate roof are divided into three types. The flexural behaviour of the three strata types are investigated in terms of the following effects: roof span, horizontal stress, thickness and Young's modulus of the lowest strata.The suspension reinforcement mechanism is analysed using beam-column theory. The equations for the maximum bending stress, deflection and transferred bolt load for the bolted strata are derived. In the analysis, the bolt load is assumed to be a point load and a horizontal stress is uniformly applied to each stratum. The friction reinforcement mechanism is also investigated. The major function of roof bolting in this case is to create frictional resistance by tensioning the roof bolts so that the individual layers are combined into one single thick layer.A computer program and nomographs are developed for the determination of proper bolting pattern and bolt tension. It is hoped that this development can lead to maximum safety with minimum cost for the design of roof bolting systems in underground coal mines.  相似文献   

12.
以低碳钢片模拟全长黏结锚杆,开展均质岩质边坡离心模型试验,研究了锚杆的应力响应规律。基于试验模型锚杆应力响应规律启发及实际均质边坡变形破坏演变规律,提出仅针对边坡松弛区进行局部强度折减,数值模拟探讨了均质岩质边坡单锚应力监测的较佳位置。结果表明:均质岩质边坡变形破坏起始于坡脚的剪切破坏,且随着边坡变形破坏的开展,靠近坡脚的全长黏结锚杆会较早产生明显的应力响应,锚杆应力增长速率会不断增加;锚杆应力监测点距离边坡潜在滑动面(塑性变形区)越近,锚杆应力响应时间越早,且量值越大;建议在距离坡脚0.25~0.35 H(H为边坡高度)的坡面处布设监测锚杆,但对于具体监测边坡对象,应具体问题具体分析。研究成果可为均质岩质边坡的锚杆监测工作提供一定的参考借鉴。   相似文献   

13.
This paper presents an analytical‐numerical approach to obtain the distribution of stresses and deformations around a reinforced tunnel. The increase in the radial stress of the reinforced tunnel, based on the performance of a bolt, is modeled by a function, which its maximum value is in the vicinity of the bolt periphery and it exponentially decreases in the far distance from the bolt. On the basis of this approach, the shear stiffness between the bolt and the rock mass and the shear stress distribution around the bolt within the rock mass are also analytically obtained. The results are compared with those obtained by the assumption of ‘uniform increase of radial stress’ method, which is made by the previous studies. The analyses show when the bolts' spacing is large, the safety factor must be increased if the ‘uniform increase of radial stress’ method is used for the design. Finally, a procedure is introduced to calculate the non‐equal deformation of the rock mass between the bolts at any radius that can be useful to compute the bending moment in shotcrete layer in New Austrian Tunnelling Method (NATM) approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
深部高地应力岩巷开挖后围岩内出现分区破裂现象,采用传统的原设计方案巷道稳定性差。根据巷道围岩变形破坏的现场监测结果,经过理论分析和支护试验,提出了“提高法向约束、锚杆增韧止裂、协调耦合支护、应力内部转移、分区充填注浆、增强围岩强度”的锚注一体化综合控制方法理念。并提出了相对应的综合支护技术,即首先采用高预紧力超强锚杆及时支护围岩,锚杆的长度和数量分别由监测结果和分区支护能量判据确定;其次采用高强锚索让压梁支护巷道顶板,实现锚杆、锚索的协调耦合支护和围岩应力内部转移;最后采用中空分段螺旋式注浆技术进行滞后加固。最后针对监测巷道采用锚注一体化综合控制方法和技术进行了支护优化设计并进行现场支护试验,监测结果表明,优化支护的巷道稳定性良好。  相似文献   

15.
以埋深为6~13 m的某浅埋人防隧洞为研究对象,应用快速拉格朗日有限差分程序(FLAC)对不同跨距、不同岩性的隧洞顶板在不同荷载作用下的破坏规律及破坏机制进行数值模拟研究,确定了隧洞围岩破坏域,并对拱顶敏感块体进行跟踪分析。研究结果表明:隧洞跨距为2 m且顶板岩层为泥岩时,隧洞顶板有一定的承载能力,当上部荷载达到0.7 MPa时隧洞才破坏;隧洞跨距为3 m且顶板岩层为泥岩时,当上部荷载达到0.33 MPa时,隧洞就已经破坏;隧洞顶板为卵石层时,即使上部不施加荷载,在自重应力的作用下,隧洞亦破坏。该研究对类似的浅埋地下工程围岩稳定性分析具有实际意义。  相似文献   

16.
Unusual circumstances may require that a longwall retreat into or through a previously driven room. The operation can be completed successfully, but there have been a number of spectacular failures. To help determine what factors contribute to such failures, a comprehensive international database of 131 case histories has been compiled. The cases include six failures where major rock falls occurred in front of the shields, and seven even more serious failures involving major overburden weighting. The case studies suggest two types of room failure mechanism. The first is a roof fall type failure caused by loading of the immediate roof at the face as the fender or remnant longwall panel narrows. The second is an overburden weighting type failure caused by the inability of the roof to bridge the recovery room and face area, and affecting rock well above the immediate roof. The data indicate that the roof fall type of failure is less likely when intensive roof reinforcement (bolts, cables and trusses) is employed together with higher-capacity shields. The overburden weighting failures, in contrast, occurred when the roof was weak and little standing support was used. Weighting failures were not greatly affected by the density of roof reinforcement. In one of the overburden weighting cases, in a Pittsburgh coalbed mine, stress cell, convergence, bolt load and extensometer data have been used to analyze the failure in detail.  相似文献   

17.
Summary The selection of rock bolting lengths and spacings for a mine roof or back is relatively straightforward when wedges of rock bound by discrete discontinuities require support, or when the immediate roof can be anchored into a recognizably stable layer or rock mass. When neither of these situations is present the choice of bolt lengths and spacings is more difficult.In this paper a simplified conceptual model is presented which invokes the concept of an ellipticallyshaped zone of loosening above the opening, all, or a portion of which, may require support. The analysis includes the influence of opening span, height,in situ stress state, and rock mass quality as measured by the CSIR Rock Mass Classification.Validation of the model was sought by analysing a number of case histories in the literature.  相似文献   

18.
在岩土工程核算、竣工验收中遇到的锚杆或锚索等深埋一维良导体长度检定时,利用良导体直接充电和旁侧平行成孔(检定孔)电场测量的方式可以精确测量并给出检定结果.理论解析计算和水槽物理模拟试验表明,这种检定方法的测量精度受杆-孔相对距离和平行度的影响小,检定结果受旁侧无关良导体干扰小;在一个检定孔中可以对周围多根检定对象进行长度检测.这种有效的物探检测方法可以推广应用到良导体长度的精确检定中.  相似文献   

19.
孟强  赵洪波  茹忠亮 《岩土力学》2014,35(Z1):437-442
通过采用均匀化方法,研究了圆形隧洞的锚杆支护特性,将高密度支护模式下的岩石和锚杆复合体考虑成均匀、连续、强度参数增强的等效材料,简化了岩石和锚杆间复杂的力学耦合问题。通过定义锚杆密度参数来反映不同支护模式的特性,建立锚杆密度参数与Mohr-Coulomb屈服准则中主要参数之间的关系,推导出等效弹性模量、等效黏聚力和等效内摩擦角的表达式,并分析比较了隧洞在支护前后的位移情况。结合可靠性理论,采用容许极限位移量作为失稳判据,分析了隧洞在支护前后的可靠性指标与破坏概率,结果表明,文中提出的方法简单可靠,锚杆支护对隧洞的位移限制效果明显,可显著提高隧洞的可靠性。  相似文献   

20.
在软弱围岩隧道中掌子面不稳定问题十分常见。掌子面超前锚杆作为一种重要的掌子面支护手段,目前常规采用的间断式布设方案存在锚杆的支护效果会随隧道推进过程中其支护状态的变化而忽强忽弱的问题。针对这一问题,本文提出了一种连续交替式掌子面超前锚杆布设方案。该方案将掌子面上的所有锚杆布设点位均等划分成若干个部分,在隧道推进过程中进行连续逐部分交替布设,使隧道在推进过程中锚杆支护状态更趋均匀稳定。为系统性评价新方案的可行性,以渭武高速木寨岭公路隧道为工程依托,在掌子面锚杆用量处于相同水平的条件下,分别对常规的间断式布设方案以及新提出的连续交替式布设方案进行设计。并进一步借助FLAC3D数值模拟平台,对掌子面超前锚杆采用两种不同布设方案时,对于掌子面变形以及地层变形的控制效果进行对比。结果表明,常规间断式锚杆布设方案对于掌子面变形以及地层变形的控制效果并不稳定,受支护状态变化的影响较大,而新提出的连续交替式布设方案可以在不提高支护成本的前提下,将隧道推进过程中掌子面超前锚杆对于掌子面变形以及地层变形的控制效果维持在稳定水平,且均显著高于常规方案的最低水平,克服了常规布设方案支护效果严重高低不均的缺陷。本研究为掌子面超前锚杆布设提供了一种新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号