首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
为掌握不同蓄水阶段温室气体通量强度,揭示水生生态系统在水库蓄水后的重建过程,选择2004年(蓄水后第1年)、2008年(蓄水后第5年)为典型年,结合同期主要环境参量,比较研究了三峡典型支流澎溪河回水区水柱表层CO2分压p(CO2)及其扩散通量FCO2特征。研究发现,2004年澎溪河双江大桥处水柱表层p(CO2)、FCO2年均值分别为(101.9±7.5)Pa、(13.99±1.58)mmol/(m2·d),2008年相应为(129.1±16.4)Pa、(19.92±3.55)mmol/(m2·d)。水位上升淹没土地带来更多有机质降解,可能引起了p(CO2)和FCO2的总体升高;蓄水过程水域生态系统逐渐完善,浮游植物生长对p(CO2)和FCO2的影响逐渐显现。  相似文献   

2.
造山带超高压变质流体中气体组成及成藏条件初探   总被引:3,自引:1,他引:3  
传统的油气地质研究和勘探开发几乎都是集中在盆地,而造山带作为板(陆)块的碰撞、会聚带,为无机成因气形成和释放的有利场所,是天然气地质理论研究的一个新领域。本文利用激光拉曼探针技术对大别造山带超高压变质岩中流体包裹体进行了成分分析,结果表明超高压变质流体中不仅含有CO2(>50%)、H2、N2、H2S等,还有高含量的幔源烃类气(CH4等,含量最高达23.6mol%)。同时,超高压变质带中还发育有浅层碳酸盐岩及其它含碳岩石经动力变质作用可形成大量的CO2气。大别超高压变质带中具有无机成因气成藏的可能条件,带内广泛发育的推覆构造、韧性断层及糜棱岩可以作为无机成因气成藏的圈、盖和保存条件。本文成果可为油气地质研究和勘探开发提供新的思路、方向和领域。  相似文献   

3.
由于广泛而强烈的岩浆作用,我国东部的松辽、渤海湾、莺歌海以及西部的塔里木等盆地中都有富CO2深部流体的活动。富CO2深部流体与碳酸盐岩相互作用可用Duan and Li(2008)所建立的CO2-H2O-CaCO3-NaCl体系的热力学模型来进行模拟计算。计算结果表明,富CO2深部流体在自深部向浅部运移过程中对CaCO3的溶解度会逐渐增加,到达一定深度后溶解度达到最大值,再向浅部溶解度开始逐渐降低; 也就是深部流体具有深部溶蚀碳酸盐岩-浅部沉淀碳酸盐矿物的规律。与浅部地层中的流体发生混合会使流体的CO2含量和盐度降低,会导致CaCO3的沉淀充填; 深部流体进入开启性断裂/裂缝体系中时,由于压力的降低,也会发生CaCO3的沉淀充填。深部流体的CO2含量、盐度、温度和压力的变化影响着实际的溶蚀-充填过程。塔中地区钻井也揭示了深部下奥陶统碳酸盐岩中发育有丰富的溶蚀孔隙,而在相对浅部的奥陶系灰岩和志留系砂岩中见有大量方解石的充填,这是富CO2流体深部溶蚀-浅部充填的一个较好的实例。基于理论和实际分析,本文认为在岩浆火山作用广泛发育的塔里木等盆地中下古生界深部优质碳酸盐岩储层存在的可能性。  相似文献   

4.
张正伟  杨晓勇 《地质科学》1998,33(4):475-482
伏牛山东麓主要发育中低温热液型和构造蚀变岩型金矿,矿床分布受区域剪切带控制。两类金矿床各自赋存的围岩不同,且其流体包裹体中的盐度、密度、Na+/K+比值及氢、氧同位素组成显示出较大的差异,表明围岩及成矿流体性质对成矿起联合控制作用。根据包裹体同位素分析,推测成矿物质来源于变质水且有岩浆水和雨水的混入。结合单矿物电子探针测定结果,计算了围岩成岩、变质及成矿的温度、压力和沉淀条件。同时确定了富CO2包裹体的泡腾包裹体群、液相成分的高硫富HCO3-、气相成分中高CO2及CO2/H2O比值等特点是寻找此类金矿床的重要包裹体标志。  相似文献   

5.
CO2作为岩溶作用的驱动力,在岩溶作用中起着关键作用。岩溶区特有的地上地下二元结构表明,洞穴系统作为地下空间的窗口,对其CO2及δ13CCO2研究是十分必要的。本研究对贵州绥阳麻黄洞上覆土壤空气CO2、洞穴内部和外部大气参数以及CO2浓度和δ13CCO2进行了为期12个月的监测,监测结果表明:(1)麻黄洞洞穴空气和上覆土壤空气CO2与δ13CCO2均呈现出明显的时空变化规律,表现出雨季CO2浓度高、δ13CCO2偏轻,旱季CO2浓度低、δ13CCO2偏重的特征。(2)土壤CO2是内源性CO...  相似文献   

6.
新疆东准噶尔卡拉麦里地区以金水泉、双泉、南明水、苏吉泉东等为代表的金矿床,构成了一套与晚古生代碰撞造山有关的金成矿系统。矿床夹持于区域性的卡拉麦里深大断裂和清水—苏吉泉大断裂之间,矿化受次级脆-韧性断层控制,以中等至陡倾斜的含金石英脉和破碎蚀变岩的形式产于晚古生代浅变质火山沉积岩中。流体包裹体、H-O-S-Pb同位素和热液锆石U-Pb年代学研究表明,成矿流体具中高温(集中于240~330 ℃)、低盐度(<6% NaCleq)、富CO2的变质流体特征,成矿物质来自赋矿的火山沉积岩系,流体不混溶(相分离)和水-岩反应(围岩硫化作用)是导致金沉淀的主要机制,成矿深度变化于7~15 km之间,成矿时代约为314 Ma。晚石炭世至早二叠世,研究区的构造体制由挤压向走滑或走滑伸展转换,构造应力的释放导致深部变质脱水形成的低盐度CO2-H2O-NaCl±CH4含金流体,沿走向NW至近EW向的走滑剪切断裂向地壳浅部流动,并在脆-韧性过渡带或脆性变形带的次级断裂中形成含金石英脉及蚀变岩型金矿石。  相似文献   

7.
张舟  张宏福 《地球科学》2012,37(1):156-162
CO2地质封存是控制全球CO2净排放量的有效手段.自然界存在大量基性、超基性岩石的碳酸盐风化作用, 与CO2反应生成稳定的碳酸盐矿物.影响基性、超基性岩石与CO2反应速率的因素有温度、压力、pH值、流体流动速率以及与矿物接触的表面积等.矿物在反应过程中放热可以使碳酸盐化体系进入自我加热的良性循环, 同时控制流体的流动速率可以保持最佳温度并使反应速率最大化.蛇绿岩中的橄榄岩、大陆玄武岩和深海玄武岩在地球表层广泛分布, 可贮存大量CO2.目前研究表明此方法在技术上可行, 经济成本上有优势.因此, 基性、超基性岩石具有封存CO2的巨大潜力, 可以作为地质封存CO2的新途径.   相似文献   

8.
近年来的油气勘探表明, 含硅热液是碳酸盐岩层系中一种重要的溶蚀性流体, 查明其与碳酸盐岩的水-岩反应机理是揭示“硅化碳酸盐岩”储层发育机制并实现储层分布预测的基础和关键问题之一。文章采用熔融毛细硅管和水热反应釜为反应腔,开展了200~375℃范围内方解石和含硅流体的水岩反应实验。利用原位拉曼光谱技术在线描述反应过程中体系组成的变化,对于淬火后的固相样品,则采用扫描电镜—能谱分析进行形貌观测和成分鉴定。首先,查明了含硅流体与方解石脱碳反应发生的温度条件。方解石和含硅流体在275℃以上反应形成CO2,固相为非硅灰石的钙硅酸盐,其结构有待进一步揭示。该结果表明单纯的硅质组分难以在储层温度条件下与灰岩发生反应;其次,提出高盐度、富CO2流体作用是造成灰岩溶蚀的重要因素;最后, CO2的存在能够促进硅质(含石英)沉淀。在上述实验认识的基础上,结合前人研究结果探讨了塔里木盆地顺托果勒地区“硅化碳酸盐岩”储层的发育机制。含硅热液沿深大断裂上移,途径震旦系—下奥陶统白云岩层系,其中的硅质组分将与白云石反应形成富镁硅酸盐和CO2。CO2是重要的酸性组分,有利于鹰山组碳酸盐的溶蚀和孔隙的保存。流体温度和压力的降低以及CO2的存在促进了石英沉淀,并形成了大量的石英晶间孔隙。  相似文献   

9.
二元气驱技术(CO2/N2-ECBM)已成为煤层气增产的重要手段,明确CO2/N2在煤层中的竞争吸附规律以及对煤层物性的影响具有重大意义。利用分子模拟软件Materials Studio建立延川南煤层气实际区块温度、压力条件下的煤分子模型。基于巨正则蒙特卡洛(GCMC)方法研究CO2/N2交替驱替煤层气技术中各注入阶段对CH4吸附的影响,明确CO2、N2对煤层孔渗物性的影响规律。结果表明:在CO2注入阶段,煤层中甲烷迅速解吸;煤中气体吸附总量上升,煤基质膨胀效应增强,导致煤的孔隙体积降低。而转N2注入后,由于N2分压作用使得CH4、CO2吸附量呈现出不同程度的降低;当ωN2CO2≤0.6时煤分子中气体总吸附量迅速降低,而当N2饱和吸附后气体总吸附量保持稳定。煤层孔渗物性随着气体吸附总量呈现出迅速增大后趋于平缓的趋势。此外,ωN2CO2>0.6后N2吸附率迅速降低,这会使得产出气中CH4纯度较低,导致后期提纯成本大大增加。因此,当ωN2CO2=0.6左右时,CH4解吸量为最大值,煤孔隙率较高,最有利于煤层气的开发。   相似文献   

10.
三峡澎溪河水域CO2与CH4年总通量估算   总被引:1,自引:0,他引:1       下载免费PDF全文
李哲  白镭  蒋滔  郭劲松  刘静 《水科学进展》2013,24(4):551-559
以2010年6月~2011年5月三峡澎溪河回水区CO2与CH4通量监测数据为基础,参考澎溪河高阳平湖水域全年4次的24 h昼夜连续跟踪观测结果,对每月各采样点的日通量值进行估算。提出了水下地形划分法和环境因素控制法,将各采样点日通量数据外延至整个回水区水域,并估算了澎溪河回水区水域CO2与CH4年总通量值。研究期间,澎溪河回水区全年各采样点CO2通量均值为(3.05±0.46)mmol/(m2·h);CH4为(0.050 1±0.009 6)mmol/(m2·h)。以水下地形法为基础,该水域全年CO2和CH4总通量分别为40 060.5 t和540.9 t;以环境因素控制法为基础,全年CO2与CH4总通量分别为39 073.0 t和467.2 t。以环境要素控制法为参考,该水域CO2全年平均释放强度为43.26 mmol/(m2·d),在全球水库数据序列中处于中等略偏高水平,CH4全年平均释放强度为1.42 mmol/(m2·d),在全球水库序列中处于中等水平。  相似文献   

11.
Abstract The Siluro-Devonian Waits River Formation of north-east Vermont was deformed, intruded by plutons and regionally metamorphosed during the Devonian Acadian Orogeny. Five metamorphic zones were mapped based on the mineralogy of carbonate rocks. From low to high grade, these are: (1) ankerite-albite, (2) ankerite-oligoclase, (3) biotite, (4) amphibole and (5) diopside zones. Pressure was near 4.5kbar and temperature varied from c. 450° C in the ankerite-albite zone to c. 525° C in the diopside zone. Fluid composition for all metamorphic zones was estimated from mineral equilibria. Average calculated χco2[= CO2/(CO2+ H2O)] of fluid in equilibrium with the marls increases with increasing grade from 0.05 in the ankerite-oligoclase zone, to 0.25 in the biotite zone and to 0.44 in the amphibole zone. In the diopside zone, χCO2 decreases to 0.06. Model prograde metamorphic reactions were derived from measured modes, mineral chemistry, and whole-rock chemistry. Prograde reactions involved decarbonation with an evolved volatile mixture of χCO2 > 0.50. The χCO2 of fluid in equilibrium with rocks from all zones, however, was generally <0.40. This difference attests to the infiltration of a reactive H2O-rich fluid during metamorphism. Metamorphosed carbonate rocks from the formation suggests that both heat flow and pervasive infiltration of a reactive H2O-rich fluid drove mineral reactions during metamorphism. Average time-integrated volume fluxes (cm3 fluid/cm2 rock), calculated from the standard equation for coupled fluid flow and reaction in porous media, are (1) ankerite-oligoclase zone: c. 1 × 104; (2) biotite zone: c. 3 × 104; (3) amphibole zone: c. 10 × 104; and diopside zone: c. 60 × 104. The increase in calculated flux with increasing grade is at least in part the result of internal production of volatiles from prograde reactions in pelitic schists and metacarbonate rocks within the Waits River Formation. The mapped pattern of time-integrated fluxes indicates that the Strafford-Willoughby Arch and the numerous igneous intrusions in the field area focused fluid flow during metamorphism. Many rock specimens in the diopside zone experienced extreme alkali depletion and also record low χCO2. Metamorphic fluids in equilibrium with diopside zone rocks may therefore represent a mixture of acid, H2O-rich fluids given off by the crystallizing magmas, and CO2-H2O fluids produced by devolatilization reactions in the host marls. Higher fluxes and different fluid compositions recorded near the plutons suggest that pluton-driven hydrothermal cells were local highs in the larger regional metamorphic hydrothermal system.  相似文献   

12.
The mineralogy and O-isotope geochemistry of siliceous limestones from the Ritter Range pendant constrain the geometry and amount of fluid flow during contact metamorphism associated with emplacement of a pluton of the Sierra Nevada Batholith. Wollastonite (Wo) replaces calcite (Cal) + quartz (Qtz) on a layer-by-layer basis in homoclinal beds that strike NW and dip almost vertically. At the peak of metamorphism (P≈ 1500 bars, T≈ 600 °C) fluid in equilibrium with Cal, Qtz, and Wo has composition XCO2=0.28, requiring that the Wo-forming reaction was driven by infiltration of reactive H2O-rich fluid. The spatial distribution of Wo and Cal + Qtz records that peak metamorphic fluid flow was layer-parallel, upward. Bounds on the prograde time-integrated fluid flux associated with formation of Wo are set by: (1) the overlap in O-isotope composition between Wo-bearing and Wo-free rocks (>245 mol fluid/cm2 rock); (2) the amount of fluid that would drive the Wo-reaction front upward to the present level of exposure from a point at depth where Cal, Qtz, and Wo would be in equilibrium with pure CO2 (<1615 mol/cm2). Back-reaction of Wo to Cal + Qtz records an additional time-integrated retrograde fluid flux of ≈ 200–1000 mol/cm2. The direction and amount of flow inferred from mineralogical and isotopic data agree with the results of the hydrologic model for metamorphic fluid flow in the area of Hanson et al. (1993). Fingers of Wo-bearing rock that extend farthest from the fluid source along contacts between limestone and more siliceous rocks point to strong control of flow geometry at the 0.1–100 m scale exerted by premetamorphic structures. Studies that neglect structural control at this scale may fail to predict correctly fundamental aspects of contact metamorphic fluid flow. Received: 27 January 1997 / Accepted: 2 October 1997  相似文献   

13.
The methamorphic history of the Patapedia thermal zone, Gaspé, Quebec, is re-evaluated in the light of results obtained from a study of fluid inclusions contained in quartz phenocrysts of felsic dyke rocks. The thermal zone is characterised by calc-silicate bodies that have outwardly telescoping prograde metamorphic isograds and display extensive retrograde metamorphism with associated copper mineralization. Three distinct fluid inclusion types are recognized: a low to moderate salinity, high density aqueous fluid (Type I); a low density CO2 fluid (Type II); and a high salinity, high density aqueous fluid (Type III). Fluid inclusion Types I and II predominate whereas Type III inclusions form <10% of the fluid inclusion population. All three fluid types are interpreted to have been present during prograde metamorphism. Temperatures and pressures of metamorphism estimated from fluid inclusion microthermometry and isochore calculations are 450°–500° C and 700–1000 bars, respectively. A model is proposed in which the metamorphism at Patapedia was caused by heat transferred from a low to moderate salinity fluid of partly orthomagmatic origin (Type I inclusions). During the early stages, and particularly in the deeper parts of the system, CO2 produced by metamorphism was completely miscible in the aqueous hydrothermal fluid and locally resulted in high XCO2 fluids. On cooling and/or migrating to higher levels these latter fluids exsolved high salinity aqueous fluids represented by the Type III inclusions. Most of the metamorphism, however, took place at temperature-pressure conditions consistent with the immiscibility of CO2 and the hydrothermal fluid and was consequently accompanied by the release of large volumes of CO2 vapour which is represented by Type II inclusions. The final stage of the history of the Patapedia aureole was marked by retrograde metamorphism and copper mineralization of a calcite-free calc-silicate hornfels in the presence of a low XCO2 fluid.  相似文献   

14.
 Siliceous dolomites and limestones contain abundant retrograde minerals produced by hydration-carbonation reactions as the aureole cooled. Marbles that contained periclase at the peak of metamorphism bear secondary brucite, dolomite, and serpentine; forsterite-dolomite marbles have retrograde tremolite and serpentine; wollastonite limestones contain secondary calcite and quartz; and wollastonite-free limestones have retrograde tremolite. Secondary tremolite never appears in marbles where brucite has replaced periclase or in wollastonite-bearing limestones. A model for infiltration of siliceous carbonates by CO2-H2O fluid that assumes (a) vertical upwardly-directed flow, (b) fluid flux proportional to cooling rate, and (c) flow and reaction under conditions of local equilibrium between peak temperatures and ≈400 °C, reproduces the modes of altered carbonate rocks, observed reaction textures, and the incompatibility between tremolite and brucite and between tremolite and wollastonite. Except for samples from a dolomite xenolith, retrograde time-integrated flux recorded by reaction progress is on the order of 1000 mol fluid/cm2 rock. Local focusing of flow near the contact is indicated by samples from the xenolith that record values an order of magnitude greater. Formation of periclase, forsterite, and wollastonite at the peak of metamorphism also required infiltration with prograde time-integrated flux approximately 100–1000 mol/cm2. The comparatively small values of prograde and retrograde time-integrated flux are consistent with lack of stable isotope alteration of the carbonates and with the success of conductive thermal models in reproducing peak metamorphic temperatures recorded by mineral equilibria. Although isobaric univariant assemblages are ubiquitous in the carbonates, most formed during retrograde metamorphism. Isobaric univariant assemblages observed in metacarbonates from contact aureoles may not record physical conditions at the peak of metamorphism as is commonly assumed. Received: 19 September 1995 / Accepted: 14 March 1996  相似文献   

15.
Fluid compositions and bedding‐scale patterns of fluid flow during contact metamorphism of the Weeks Formation in the Notch Peak aureole, Utah, were determined from mineralogy and stable isotope compositions. The Weeks Formation contains calc‐silicate and nearly pure carbonate layers that are interbedded on centimetre to decimetre scales. The prograde metamorphic sequence is characterized by the appearance of phlogopite, diopside, and wollastonite. By accounting for the solution properties of Fe, it is shown that the tremolite stability field was very narrow and perhaps absent in the prograde sequence. Unshifted oxygen and carbon isotopic ratios in calcite and silicate minerals at all grades, except above the wollastonite isograd, show that there was little to no infiltration of disequilibrium fluids. The fluid composition is poorly constrained, but X(CO2)fluid must have been >0.1, as indicated by the absence of talc, and has probably increased with progress of decarbonation reactions. The occurrence of scapolite and oxidation of graphite in calc‐silicate beds of the upper diopside zone provide the first evidence for limited infiltration of external aqueous fluids. Significantly larger amounts of aqueous fluid infiltrated the wollastonite zone. The aqueous fluids are recorded by the presence of vesuvianite, large decreases in δ18O values of silicate minerals from c. 16‰ in the diopside zone to c. 10‰ in the wollastonite zone, and extensive oxidation of graphite. The carbonate beds interacted with the fluids only along margins where graphite was destroyed, calcite coarsened, and isotopic ratios shifted. The wollastonite isograd represents a boundary between a high aqueous fluid‐flux region on its higher‐grade side and a low fluid‐flux region on its lower‐grade side. Preferential flow of aqueous fluids within the wollastonite zone was promoted by permeability created by the wollastonite‐forming reaction and the natural tendency of fluids to flow upward and down‐temperature near the intrusion‐wall rock contact.  相似文献   

16.
Mineral equilibria modeling involving solid solution calculations has been combined with mineral assemblage information from the alteration zones associated with gold mineralization to determine the T and X CO2 conditions for the formation of the Magdala gold deposit at Stawell, Victoria, Australia. Economic gold mineralization is primarily hosted within the stilpnomelane alteration zone of the Stawell Facies that is adjacent to the Magdala Basalt. Evolution of the Magdala gold deposit involved at least three fluid infiltration events: (1) a CO2-bearing fluid during the D2 deformation event produced carbonate spots throughout the chlorite zone; (2) a CO2–S–K-bearing fluid, accompanied the D3–4ab deformation and produced a muscovite zone and siderite rims on ankerite; and (3) a CO2–K–S–Au-bearing fluid during the D4c deformation event produced the stilpnomelane zone of the Stawell Facies, the proximal and distal alteration zones within the Magdala Basalt, and the main economic gold mineralization. Mineral equilibria modeling constrains the temperature of formation of the Magdala deposit to T = 345–390°C at 3kbar, substantially lower than indicated by other previous classical thermobarometry methods. Furthermore, this method has allowed the characterization of the mineralizing fluid and constrained its composition to X CO2 < 0.08 at 3kbar. The timing and composition of the mineralizing fluids are similar to that of metamorphic fluid generated from devolatilization of a greenstone pile with peak of metamorphism occurring earlier and at deeper levels in the crust.  相似文献   

17.
Whole-rock major element chemical analyses of progressively metamorphosed impure carbonate rocks and pelitic schists, collected from the same metamorphic terrain, reveal similarities and differences in the chemical response of these rock types to the metamorphic event. Relative to a constant aluminum reference frame, both schist and carbonate exhibit no detectable change in their contents of Fe, Mg, Ti, Si, and Ca with change in metamorphic grade. Carbonate rocks become progressively depleted in K and Na with increasing grade of metamorphism, while schists exhibit no statistically significant change in their contents of K and Na. Both rock types become depleted in volatiles (principally CO2 and H2O) with increasing grade.Whole-rock chemical data permit two mechanisms for migration of K and Na from the carbonate rocks during metamorphism: (a) diffusion of alkalis from carbonate to adjacent schist; (b) transport of alkalis by through-flowing metamorphic fluid (infiltration). Mineral equilibria in schist and metacarbonate rock from the same outcrops allow calculation of the affinity for cation exchange between the two rock types during metamorphism. Measured affinities indicate that if mass transport of K and Na occurred by diffusion, chemical potential gradients would have driven the alkalis from schist into carbonate rock. Because diffusion cannot produce the observed chemical trends in the metacarbonates, K and Na are believed to have been removed during metamorphism by infiltration.The disparity in chemical behavior between the pelitic schists and metacarbonate rocks may be a result of enhanced fluid flow through the carbonates. The carbonate rocks may have acted as metamorphic aquifers; the greater flow of fluid through them would then have had a correspondingly greater effect on their whole-rock chemistry.  相似文献   

18.
Calculated phase equilibria involving minerals and H2O–CO2–NaCl fluid lead to predictions of how infiltration of rock by H2O–NaCl fluids with X NaCl in the range 0–0.3 (0–58 wt% NaCl) drives the reactions calcite + quartz = wollastonite + CO2 and dolomite = periclase + calcite + CO2. Calculations focus on metamorphism in four aureoles that together are representative of the normal PT conditions and processes of infiltration-driven contact metamorphic reactions. The effect of salinity on the spatial extent of oxygen isotope alteration was also computed. The time-integrated input fluid flux (q°) that displaces the mineral reaction front an increment of distance along the flow path always increases with increasing X NaCl. For input fluids with salinity up to approximately five times that of seawater (X NaCl ≤ 0.05), values of q° required to explain the spatial extent of decarbonation reaction are no more than 1.1–1.5 times that computed assuming the input fluid was pure H2O. For more saline fluids, values of q° may be up to 1.4–7.9 times that for pure H2O. Except for reaction in the presence of halite and vapor (V), infiltration of H2O–NaCl fluids expands the region of oxygen isotope alteration relative to the size of the region of mineral reaction. The expansion is significant only for saline fluids with X NaCl ≥ ~0.1. Immiscible fluid phase separation and differential loss of the liquid (L) or V phase from the mineral reaction site increases the amount of reactive fluid required to advance the mineral reaction front compared to conditions under which equilibration of minerals and fluid is attained with no loss of L or V. Decarbonation reactions driven by infiltration of fluids with even modest seawater-like salinity can explain the occurrence of salt-saturated fluid and solid halide inclusions in contact metamorphosed carbonate rocks.  相似文献   

19.
This contribution addresses contact metamorphism and fluid flow in calcareous rocks of the Neoproterozoic Shaler Supergroup on Victoria Island, Arctic Canada. These processes occurred due to intrusion of gabbroic sills and dykes at c. 720 Ma during the Franklin magmatic event, which was associated with the break‐up of Rodinia. The intrusive sheets (sills and dykes) are a few metres to ~50 m thick. Metasedimentary rocks were examined in three locations with very good exposures of vertical dykes feeding horizontal sills, the Northern Feeder Dyke (NFD) complex, the Southern Feeder Dyke (SFD) complex and the Uhuk Massif. In the NFD and SFD complexes, protoliths were limestones and dolostones with minor silicates, and at the Uhuk Massif, the protoliths were silty dolostones. At the time of magma emplacement, these locations were at depths of 1–4 km. The widths of contact aureoles are only several decametres wide, commensurate with thicknesses of the dykes and sills. Splays of tremolite mark incipient metamorphism. Highest grade rocks in the NFD and SFD complexes contain the prograde assemblage diopside + phlogopite whereas at Uhuk they contain the assemblage vesuvianite + garnet + diopside. The assemblages are successfully modelled with TX(CO2)fluid pseudosections that suggest achievement of CO2‐rich fluid compositions due to early decarbonation reactions, followed by influx of aqueous fluids after peak metamorphism. Rapid heating of host rocks and short near‐peak temperature intervals are demonstrated by the prevalent morphology of diopside as radial splays of acicular crystals that appear to pseudomorph tremolite and by incomplete recrystallization of calcite in marbles. Calcsilicates in the roof of one sill at Uhuk experienced metasomatic influx of Fe that is evidenced by nearly pure andradite rims on grossular garnet. Vesuvianite, which overgrew the grossular portions of garnet, also contains ferric iron. Vesuvianite was partially consumed during retrograde growth of serpentine and andradite. The occurrence of serpentine in high‐grade portions of aureoles is consistent with eventual levelling‐off of temperatures between 350 and 400 °C, an inference that is supported by modelled conductive heat transfer from the cooling magma sheets. Focused fluid flow near intrusion‐wall rock contacts is demonstrated by narrow zones of anomalously low δ13C and δ18O values of carbonate minerals. Although the up to 5‰ decrease of both δ13C and δ18O values from sedimentary values is much smaller than is typical for calcsilicate aureoles around large plutons, it is greater than what could have been achieved by decarbonation alone. The decrease in δ13C is attributed to fluid‐mediated exchange with organic low‐13C carbon that is dispersed through the unmetamorphosed rocks and the decrease in δ18O is attributed to fluid‐mediated isotopic exchange with the gabbroic intrusive sheets. This study shows that when gabbroic sills and dykes intrude a sedimentary basin, (i) contact aureoles are likely to be narrow, only on the scale of several decametres; (ii) short high‐temperature regimes prevent achievement of equilibrium metamorphic textures; and (iii) TX(CO2)fluid paths in calcareous contact aureoles are likely to be complex, reflecting a transition from prograde decarbonation reactions to influx of aqueous fluids during cooling.  相似文献   

20.
The production of large volumes of fluid from metabasic rocks, particularly in greenstone terranes heated across the greenschist–amphibolite facies transition, is widely accepted yet poorly characterized. The presence of carbonate minerals in such rocks, commonly as a consequence of sea‐floor alteration, has a strong influence, via fluid‐rock buffering, on the mineral equilibria evolution and fluid composition. Mineral equilibria modelling of metabasic rocks in the system Na2O‐CaO‐FeO‐MgO‐Al2O3‐SiO2‐CO2‐H2O (NCaFMASCH) is used to constrain the stability of common metabasic assemblages. Calculated buffering paths on TXCO2 pseudosections, illustrate the evolution of greenstone terranes during heating across the greenschist‐amphibolite transition. The calculated paths constrain the volume and the composition of fluid produced by devolatilization and buffering. The calculated amount and composition of fluid produced are shown to vary depending on PT conditions, the proportion of carbonate minerals and the XCO2 of the rocks prior to prograde metamorphism. In rocks with an initially low proportion of carbonate minerals, the greenschist to amphibolite facies transition is the primary period of fluid production, producing fluid with a low XCO2. Rocks with greater initial proportions of carbonate minerals experience a second fluid production event at temperatures above the greenschist to amphibolite facies transition, producing a more CO2‐rich fluid (XCO2 = 0.2–0.3). Rocks may achieve these higher proportions of carbonate minerals either via more extensive seafloor alteration or via infiltration of fluids. Fluid produced via devolatilization of rocks at deeper crustal levels may infiltrate and react with overlying lower temperature rocks, resulting in external buffering of those rocks to higher XCO2 and proportions of carbonate minerals. Subsequent heating and devolatilization of these overlying rocks results in buffering paths that produce large proportions of fluid at XCO2 = 0.2–0.3. The production of fluid of this composition is of importance to models of gold transport in Archean greenstone gold deposits occurring within extensive fluid alteration haloes, as these haloes represent the influx of fluid of XCO2 = 0.2–0.3 into the upper crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号