首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
非质量硫同位素分馏效应是目前国际上最前沿的稳定同位素地球化学研究领域之一。在简要介绍非质量分馏理论的基础上,对近几年非质量硫同位素分馏效应的最新研究成果进行总结和分析。关于非质量硫同位素分馏的微观来源机制存在较多争议,有待于进一步探索;采用SF6为工作气体是现有硫同位素高精度测定的主要制样技术;非质量硫同位素分馏效应研究为火星大气演化及火星生命痕迹探询、古代大气氧化条件、地球早期硫循环、火山活动对气候的影响等重大地质科学问题的解释开辟了一条独特的新途径。最后对非质量硫同位素分馏领域研究趋势进行了探讨。  相似文献   

2.
在温度为200—420℃,盐度为0—10wt%,填充度为50%的条件下,完成了由NaWO_4·2H_2O+FeCl_2·4H_2O或/和MnCl_2·4H_2O组成的水溶液在带黄金衬套的不锈钢高压釜中合成黑钨矿(钨锰矿或钨铁矿)的氧同位素分馏作用实验研究。我们获得的结果表明,在310℃条件下,黑钨矿和钨锰矿或钨铁矿与水之间氧同位素分馏作用几乎没有什么差别。在高温条件下(>370℃),黑钨矿与水之间氧同位素分馏值趋于相同,而在低温条件下(<870℃),随温度降低分馏值趋于增大。所获黑钨矿-水分馏方程式为: 1000 Inα_(黑钨矿-水)=0.21×10~6T~(-2)-2.91(370±—420℃) 1000 Inα_(黑钨矿-水)=1.03×10~6T~(-2)-4.91(200—370℃±)  相似文献   

3.
实验研究表明,膏盐层可为成矿提供丰富的硫源,而膏盐中的硫只有通过细菌的还原作用生成H_2s,才能与成矿溶液相互作用生成金属硫化物沉淀。细菌还原硫酸盐过程中,发生很强的硫同位素分馏效应,其分馏系数达1.0200以上硫化物的硫同位素组成特点能反映直接硫源物质的硫同位素特点。实验结果还表明,脱硫弧菌生长的最佳条件为pH=7-8.5;P=1-3000大气压;T=28-35℃。  相似文献   

4.
增量方法已成功地应用到硅酸盐矿物、金属氧化物、碳酸盐矿物和硫酸盐矿物氧同位素分馏系数的计算中。本文在对硫化物晶体结构与矿物学特点分析的基础上,通过详细分析前人对硅酸盐矿物和金属氧化物中氧同位素分馏的增量计算方法,将氧化物和硫化物的晶体特征加以对比,提出了计算硫化物中硫同位素分馏的增量计算方法。修正的增量方法根据硫化物的晶体化学结构特征,引入了一个重要的参数,即Madelung常数,用于指示不同结构的硫化物对~(34)S的富集能力。本文利用这一修正的增量方法计算出了0℃到1000℃温度范围内,磁黄铁矿、方铅矿、闪锌矿、黄铜矿、硫镉矿的10~3Inβ和它们之间的分馏系数10~3Inα。并给出这五种矿物间的~(34)S富集顺序:磁黄铁矿>硫镉矿>闪锌矿>黄铜矿>方铅矿。与前人的实验结果对比表明,本次计算结果与实验结果基本吻合。同时,增量计算方法成功地再现了任意硫化物中~(32)S、~(33)S、~(34)S和~(36)S这四种同位素之间确实存在一定的分馏比例关系。这说明尽管增量方法存在一定的局限性,但将其扩展到硫化物间硫同位素分馏的理论计算是可行的。  相似文献   

5.
本文分别以3种不同的可溶性三价铁盐作为Fe~(3+)源物质的强迫水解法和以针铁矿和四方纤铁矿为起始物质的溶液转化法,在90~315℃范围内合成赤铁矿,测定了赤铁矿与水之间的氧同位素分馏。矿物合成实验和氧同位素分析结果显示,在90~225℃范围内,实验获得的赤铁矿与水之间氧同位素分馏为亚稳态分馏,并且不同合成实验方法得到不同的分馏关系,前者相对于后者富集(18)O约为2‰,即:10~31nα_(赤铁矿-水)=1.17±0.02×10~6/T~2-9.14±0.20(强迫水解法);10~31nα_(赤铁矿-水)=1.46±0.18×10~6/T~2-14.52±0.03(溶液转化法)。但温度在315℃以下,无论强迫水解法还是溶液转化法,在实验误差范围内实验测定的分馏值几乎不可区分,并且与增量方法的理论预测相近,表明该温度下获得的赤铁矿与水之间氧同位素分馏代表了赤铁矿-水体系氧同位素平衡分馏。此外,两种不同方法获得了不同的分馏关系,显示低温下赤铁矿-水体系氧同位素分馏不仅依赖于赤铁矿形成的温度,而且取决于赤铁矿的成因机制,因此对应于不同形成环境下的动力学亚稳态平衡,这对解释低温环境中赤铁矿的氧同位素数据具有重要意义。  相似文献   

6.
在t≥600℃的温度条件下,通过硅酸盐和方解石之间的无水交换,用实验测定了石英、钠长石、钙长石、方解石中的乎衡氧同位素分馏.这些体系中的氧同位素交换就象硅酸盐和水之间的交换那么快.分馏系数可概括为的△Q-Cc=×0.8310~6/t~2;△Ab-Cc=-0.57×10~6/t~2;△An-Cc=-1.59×10~6/t~2.从这些方程式很容易得到硅酸盐矿物对的分馏系数。将这些结果与热液实验所得到  相似文献   

7.
温度为180—550℃,盐度(wt.%)分别为0、5、25和40条件下,在高压釜内完成了由硅胶合成石英的氧同位素分馏作用实验研究,目的是了解:①盐同位素效应;②△t值对同位素分馏的影响;③温度与同位素分馏系数的关系。研究资料表明:低温条件下矿物和纯水之间同位素平衡作用不可能发生;影响含氧矿物(初)之间氧同位素平衡速率的因素包括盐度、△t值大小和温度等;我们的研究还表明,盐度对同位素分馏作用同系数无影响,即不存在所谓的“同位素盐效应”。在180—550℃温度范围内,不同盐度条件下获得的石英-水氧同位素分馏实验方程为:10001nα_(石英-水)=3.306×10~5T~(-2)—2.71。  相似文献   

8.
赵瑞 《地质科学》1983,(3):225-231
本文试图在Pinckney及Rafter(1972)工作的基础上讨论闪锌矿和方铅矿同时从铅锌-还原型硫热液系统中晶出时的硫同位素分馏规律。  相似文献   

9.
针铁矿-四方纤铁矿-水体系氧同位素分馏的实验研究   总被引:3,自引:0,他引:3  
针铁矿是非常重要的三价铁氧化物之一,其氧同位素组成对于古环境再造具有很大的价值。以4种不同的铁化合物作为Fe3+离子的源物质,于30~120℃范围内,采用强迫水解方法,在不同同位素组成的水中分别实验合成针铁矿和四方纤铁矿。结果表明,以Fe(NO3)3·9H2O、NH4Fe(SO4)2·12H2O、Fe(SO4)3·7H2O为Fe3+源物质合成的是纯针铁矿,而以FeCl3·6H2O为Fe3+源物质合成的是四方纤铁矿。氧同位素分析显示,在30~120℃范围内实验测定的针铁矿-水体系和四方纤铁矿-水体系氧同位素分馏几乎不可区分,并且满足下列分馏关系:103lnα针铁矿-水=9.59×103/T-26.39103lnα四方纤铁矿-水=8.85×103/T-24.44实验测定的针铁矿-水体系氧同位素分馏不仅与前人实验结果一致,而且与增量方法理论计算相近。由于实验采用不同反应途径得到了一致的分馏结果,因此所测定的针铁矿-水体系氧同位素分馏代表了热力学平衡。  相似文献   

10.
近年来,在相山铀矿田的西部牛头山地区深部发现了铅锌矿化体,其成因机制不明.为探讨牛头山铅锌矿化体物质来源,开展了硫化物原位硫同位素分析研究.根据硫化物矿物之间的充填和包裹关系判断,铅锌矿化体金属硫化物形成的先后顺序是:黄铁矿形成最早,方铅矿和闪锌矿次之,细脉状黄铜矿形成最晚.利用LA-MC-ICP-MS技术对矿化体中几种金属硫化物分别进行了系统的原位硫同位素分析.结果显示:黄铁矿、闪锌矿、方铅矿、细脉状黄铜矿的δ34S值介于-4.8‰~+5.4‰之间,各硫化物矿物之间硫同位素未达到完全平衡分馏,利用黄铁矿δ34S值得到的矿化流体δ34SΣS值(总硫同位素组成)近似为+3.7‰,与共生矿物对(闪锌矿-方铅矿)图解法得到的闪锌矿和方铅矿沉淀时矿化流体的δ34SΣS值(+3.2‰)相近,表明形成牛头山铅锌矿化体的矿化流体δ34SΣS值大约为+3.7‰,为岩浆硫.结合前人的岩浆岩年龄数据,我们判断该铅锌矿化体金属硫化物的硫可能主要来自次火山岩相花岗斑岩岩浆热液.同一薄片中闪锌矿δ34S值高于共生的方铅矿,表明两者硫同位素基本平衡,利用共生矿物对(闪锌矿-方铅矿)硫同位素温度计计算得出平衡温度为197~476℃,与前人通过脉石矿物流体包裹体得到的铅锌矿化流体温度基本一致.相山火山盆地与相邻的北武夷黄岗山、梨子坑等产铅锌矿的火山盆地具有相似的成矿条件及成矿物质来源,使相山火山盆地具有良好的铅锌多金属找矿前景.   相似文献   

11.
石英—锡石—水体系氧同位素分馏作用实验研究   总被引:1,自引:0,他引:1  
张理刚  刘敬秀 《地质与勘探》1990,26(5):31-37,17
本文在400~500℃及250~370℃温度范围内,盐度为0~15wt%,压力约0.3~0.6kbar条件下,分别在水溶液中完成了由硅胶及非晶质SnO_2合成石英-锡石矿物对以及由非晶质SnO_2等合成的锡石与水之间氧同位素分馏的实验研究,获得了石英-锡石-水体系氧同位素分馏作用系数与温度的关系方程:1000lna_(石英-锡石)=3.11×10~6T~(-2)+1.63(400~500℃),1000lna_(石锡-水)=2.60×10~6T~(-2)-9.91(250~370℃±),1000lna_(锡石-水)=0.20×10~6T~(-2)-4.34(370±~500℃).  相似文献   

12.
为探讨会泽铅锌矿田成矿流体总硫同位素组成、成矿温度、硫源及还原硫的形成机制,在分析前人的硫同位素数据基础上对麒麟厂矿床上部原生矿体硫化物(黄铁矿、闪锌矿和方铅矿)及麒麟厂和矿山厂矿床外围新发现的硫酸盐矿物(重晶石)进行了硫同位素研究。结果显示,原生矿体中的硫化物的δ34S变化为8.0‰~17.68‰,成矿流体中硫同位素已达分馏平衡;矿床外围的硫酸盐δ34S变化为17.95‰~24.30‰。利用共生矿物对Pinckney法,估算获得成矿流体的δ34SΣS为14.44‰,与海相硫酸盐的δ34S相近;通过同位素地质温度计,估算获得成矿温度为134~388℃;包裹体测温发现,重晶石为热液成因,暗示成矿流体中的硫可能来自矿区及矿区外围各个地层的海相硫酸盐或是矿区发现的热液重晶石。硫酸盐的还原机制应为热化学还原作用(TSR)。  相似文献   

13.
徐宝龙  郑永飞 《地质学报》1997,71(4):340-349
在15—120℃的低温范围内分别应用氮化镁法、氯化镁法和氧化镁法3种化学合成方法,对水镁石-水体系氧同位素分馏系数进行了实验测定。所有合成样品的晶体结构均由XRD测定,其形貌特征则由SEM确定。应用3种不同合成方法得到了一致的水镁石—水体系氧同位素分馏系数,证明同位素平衡分馏已经达到。在实验温度范围内,水镁石—水体系氧同位素分馏系数主要决定于温度,而溶液的酸碱度、化学组分和陈化时间的影响不明显。由实验数据得到的氧同位素分馏曲线方程为:10~3Inα=1.59×10~6/T~2-14.10(r=0.9921)。结合前人对三水铝石—水体系和针铁矿—水体系氧同位素分馏系数的低温实验测定,可以得到氢氧化物中金属M—OH键的~(18)O富集顺序:Al~(3+)-OH>Fe~(3+)-OH>Mg~(2+)-OH。应用化学合成方法实验测定低温条件下水镁石—水体系氧同位素分馏系数,不仅克服了同位素交换反应实验的一些缺陷(如交换速率缓慢、仪器设备复杂昂贵等),而且可以应用不同的化学合成反应机理来检验同位素平衡是否达到,这为研究低温地球化学过程作用提供了有价值的基本参数。  相似文献   

14.
文石-水体系氧同位素分馏系数的低温实验研究   总被引:3,自引:0,他引:3  
采用缓慢分解法和“两步法”的附晶生长法,在低温(0℃~70℃)下实验合成纯文石型碳酸 钙矿物,以XRD和SEM技术对合成矿物的相组成和形貌进行了鉴定。将XRD与SEM及氧同位素分 析技术相结合,研究了文石的生成速率与氧同位素分馏之间关系。对0℃、25℃和50℃条件 下采用缓慢分解法合成的文石进行SEM观察发现,随着温度升高,矿物生成速率加快,氧同 位素分馏逐渐趋于不平衡,导致50℃条件下获得的文石-水体系氧同位素分馏是一种不平衡 分馏,而0℃和25℃条件下获得的低值代表平衡分馏。将0℃和25℃以下采用缓慢分解法获得 的文石-水体系分馏低值与采用“两步法”的附晶生长法在50℃和70℃条件下获得的文石- 水体系平衡分馏数据相结合,得到0℃~70℃范围内文石-水体系氧同位素平衡分馏方程为 :103lnα=20.41×103T-41.42。这个实验结果不仅与增量方法理论计算结 果一致,而且与前人低温实验获得的文石或文石与方解石混合相碳酸钙-水体系,以及生物 成因文石-水体系的氧同位素分馏结果相近。这是首次根据实验确定的无机成因文石-水体 系热力学平衡氧同位素分馏系数,因此对于无机成因文石在古沉积环境和古气候研究中的应 用具有重要参考价值。  相似文献   

15.
TSR成因H2S的硫同位素分馏特征与机制   总被引:1,自引:1,他引:0  
朱光有  费安国  赵杰  刘策 《岩石学报》2014,30(12):3772-3786
热化学硫酸盐还原反应(TSR)是深层碳酸盐岩油气藏中硫化氢的主要成因机制,目前已在全球发现了50多个TSR成因的大中型含硫化氢天然气田。通过对中国四川盆地含硫化氢气田硫化物的采集与同位素分析,结合全球含硫化氢天然气田硫同位素分析数据,研究了TSR过程中硫同位素的地球化学行为和分馏特征。研究发现,TSR成因的高含硫化氢天然气中,硫化氢与硫酸盐的硫同位素分馏值小于15‰,主要分布范围为2.5‰~13.82‰,平均在10‰。四川盆地海相层系膏岩的硫同位素值分布较宽,并呈现阶梯状变化,而硫化氢的硫同位素则呈现出相似的分布规律,表明各主要含硫化氢气田硫化氢中的硫来自于本层系的硫酸盐,TSR主要发生在各自的储集层中。四川盆地各气田TSR发生的温度条件相似,硫同位素分馏比较接近。TSR过程中硫同位素的分馏过程与硫酸盐本身硫同位素值的高低无关,而与TSR反应程度有关。TSR反应程度越高,硫化氢的硫同位素值与地层硫酸盐的硫同位素越相近。通过系统分析整理全球含硫化氢气田的硫化物硫同位素数据,并结合四川盆地地质条件和油气演化过程,揭示了TSR过程中硫同位素的分馏特征,并绘制出四川盆地和全球各时代硫化氢和石膏的硫同位素分布曲线图,为研究含油气盆地蒸发岩沉积演化和硫化氢成因提供了参考。  相似文献   

16.
藏南扎西康铅锌多金属矿床是特提斯喜马拉雅构造带(TH)东段发现的首个大型铅锌矿床,但其成因备受争议。本文在详细研究矿床地质特征的基础上,对矿硐内具有"同心环带"或"热水蛋"构造的铅锌矿石中的黄铁矿、方铅矿和闪锌矿进行了原位微区硫同位素分析。结果显示:铅锌矿石硫同位素组成变化范围在8.88‰~11.83‰之间,平均为10.50‰,总硫同位素组成(δ34S∑S)约为10.07‰。其中:7个黄铁矿(Py)测点的δ34SPy值为10.29‰~11.14‰,平均为10.70‰;6个闪锌矿(Sp)测点的δ34SSp值为10.78‰~11.83‰,平均为11.49‰;5个方铅矿(Gn)测点的δ34SGn值为8.88‰~9.18‰,平均为9.04‰。总体表现为δ34SSp > δ34SPy > δ34SGn,指示硫同位素未达到分馏平衡。利用方铅矿与闪锌矿矿物对硫同位素温度计计算可得,铅锌成矿温度介于224~280℃之间,平均值为259℃。结合前人研究成果,进一步得出扎西康铅锌多金属矿床主成矿期硫源主要来自日当组(J1r)围岩地层,并可能有少量岩浆硫的混入,属受控于地层-构造-岩浆热液作用的中温热液矿床。  相似文献   

17.
唐家寨铅锌矿床位于湘西龙山—洛塔铅锌矿区的中部。对闪锌矿开展了锶同位素测试分析,通过成矿年龄(372Ma)的校正,得到初始(~(87)Sr/~(86)Sr)i的范围为0.70904~0.71143,平均值为0.70998(n=10),大于矿床形成时的海水Sr同位素,远小于富含有机质的下寒武统石牌组页岩层的Sr同位素,推测成矿流体中的Sr,可能是由具有较低Sr同位素组成的成矿期的海水混染了具有高Sr同位素的下寒武统石牌组页岩层而致。9件闪锌矿和方铅矿样品的δ~(34)SV-CDT值介于14.78‰~17.21‰,平均值为15.84‰,比同期(早奥陶世)海相硫酸盐硫同位素组成的平均值(29.5‰)低13.66‰,符合该矿床成矿温度(100~200℃)条件下硫同位素的分馏效应(10‰~20‰),表明硫化物中还原硫可能主要来源于赋矿地层中海相硫酸盐的热化学还原作用(TSR)。  相似文献   

18.
杨宗文  刘灵 《贵州地质》2014,31(4):252-255266
通过对镇远小溪铅锌区域地质、矿床地质特征的分析,开展了矿床碳、氧、硫同位素及包裹体的地球化学研究及成因探讨。脉石矿物白云石的碳同位素为-0.1‰2.1‰,氧同位素为18.3‰19.2‰,闪锌矿的硫同位素为32‰35‰,同位素分析结果主要落在海相沉积碳酸盐区间范围,分析成矿物质可能与海相碳酸盐岩沉积地层有关;闪锌矿的流体包裹体的均一温度为156 180℃,盐度为9 22.8 wt%Na Cl eq,显示该矿床的成矿流体为低温、中高盐度特征。  相似文献   

19.
郑永飞 《地质科学》1995,30(1):1-11
利用增量方法和同位素交换技术,对角闪石族矿物的氧同位素分馏进行了理论计算和实验测定。理论结果表明,不同化学成分的角闪石之间存在一定的氧同位素分馏,其13O富集顺序为:钠闪石>蓝闪石>铁闪石>阳起石=镁铁门石≥直闪石≥透闪石>普通角闪石>铝直闪石>韭闪石。高温条件下(>500℃),角闪石相对于水亏损18O达1‰至3‰。实验进行在有少量流体存在的条件下,温度为520℃至680℃。所确定的方解石-透闪石氧同位素分馏系数与理论计算值在误差范围内完全一致。理论和实验确定的石英-透闪石分馏曲线均显着低于已知的经验校准曲线,反映了变质岩中含角闪石矿物集合体内部的退化同位素再平衡。  相似文献   

20.
第四讲 硫同位素地球化学(续) (五)硫同位素分镏的动力学效应 前面讲的是硫同位素分馏的热力学效应,它叙述了在达到平衡条件下,各物相间硫同位素的分馏及物理化学环境(温度、氧逸度、酸碱度等等)对硫同位素分馏的影响,本节将讨论在运动过程中,同位素的物理化学性质差异所引起的同位素分馏效应——动力学效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号