首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Vanadium has multiple oxidation states in silicate melts and minerals, a property that also promotes fractionation of its isotopes. As a result, vanadium isotopes vary during magmatic differentiation, and can be powerful indicators of redox processes at high temperatures if their partitioning behaviour can be determined. To quantify the partitioning and isotope fractionation factor of V between magnetite and melt, piston cylinder experiments were performed in which magnetite and a hydrous, haplogranitic melt were equilibrated at 800 °C and 0.5 GPa over a range of oxygen fugacities (\({f_{{{\text{O}}_{\text{2}}}}}\)), bracketing those of terrestrial magmas. Magnetite is isotopically light with respect to the coexisting melt, a tendency ascribed to the VI-fold V3+ and V4+ in magnetite, and a mixture of IV- and VI-fold V5+ and V4+ in the melt. The magnitude of the fractionation factor systematically increases with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\) relative to the Fayalite–Magnetite–Quartz buffer (FMQ), from ?51Vmag-gl = ? 0.63?±?0.09‰ at FMQ ? 1 to ? 0.92?±?0.11‰ (SD) at ≈?FMQ?+?5, reflecting constant V3+/V4+ in magnetite but increasing V5+/V4+ in the melt with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\). These first mineral-melt measurements of V isotope fractionation factors underline the importance of both oxidation state and co-ordination environment in controlling isotopic fractionation. The fractionation factors determined experimentally are in excellent agreement with those needed to explain natural isotope variations in magmatic suites. Furthermore, these experiments provide a useful framework in which to interpret vanadium isotope variations in natural rocks and magnetites, and may be used as a potential fingerprint the redox state of the magma from which they crystallise.  相似文献   

2.
We present the results of electrochemical measurements of the intrinsic oxygen fugacity of olivine separates representing seven rock types from the central part and southwestern termination of the Yoko–Dovyren mafic—ultramafic massif. The \({f_{{O_2}}}\) values were determined using a high-temperature solid-electrolyte double-cell assembly developed at the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences. A total of 59 experiments were performed (from 7 to 16 for each sample) at the atmospheric pressure and within the temperature range of 800–1050°C at the 30–50°C increment. The results were interpreted using the calculated log \({f_{{O_2}}}\) – 1/T(K) and log \({f_{{O_2}}}\)T(°C) dependences. It was shown that the subsolidus temperature range of the rocks (below ~1050°C) is characterized by lowest intrinsic oxygen fugacity of olivine, which is 1–4 log units below the QFM buffer. For the solidus temperatures of ~1100°C, the more oxidized conditions ranging approximately from QFM to ~QFM-3 were measured. Extrapolating the log \({f_{{O_2}}}\)T°C dependences to the temperatures of the original magmas (~1200–1300°C) produces the maximum scatter in oxygen fugacities from ~QFM+2.5 to QFM-1. The estimated range of redox conditions for the Dovyren magma crystallization lies between the QFM and ~QFM-2.5 buffer equilibria. This is consistent with the complete absence of primary magmatic titanomagnetite and the presence of ilmenite in the Dovyren rocks.  相似文献   

3.
The incorporation mechanisms and diffusional loss of hydrogen in garnet have been experimentally investigated. A suite of gem-quality hydrous spessartine- and grossular-rich garnets were analysed by Fourier transform infrared spectroscopy (FTIR) and by ion microprobe (SHRIMP-SI) to determine the calibration coefficients for quantification of FTIR data. The excellent agreement between measured absorption and OH/O indicates that the same molar extinction coefficient can be used for spessartine and grossular. The coefficient of 14400 l mol??1 cm??2 proposed by Maldener et al. (Phys Chem Miner 30:337–344, 2003) seems the most appropriate for both minerals. A grossular with 6.4% andradite and 1.6% almandine containing 834 ppm H2O, and an almost pure spessartine with 282 ppm H2O, were selected for diffusion experiments. 1.5-mm cubes of garnets were heated between 12 h and 10 days at 1 atm under various temperature (750–1050 °C) and oxygen fugacity (\({f_{{{\text{O}}_2}}}\)) conditions, (ΔQFM +?15.2 to ??3.0). Diffusion profiles were acquired from sections through the cubes using FTIR, with a deconvolution algorithm developed to assess peak-specific behaviour. Different families of peaks have been identified based on their diffusive behaviour, representing hydrogen incorporated in different H-bearing defects. A dominant, fast, strongly \({f_{{{\text{O}}_2}}}\)-dependent oxidation-related diffusion mechanism is proposed \(\left( {\{ {{\text{M}}^{2+}}+{{\text{H}}^+}\} +\frac{1}{4}{{\text{O}}_2}={{\text{M}}^{3+}}+\frac{1}{2}{{\text{H}}_2}{\text{O}}} \right)\) (M=Fe, Mn) with a relatively low activation energy (158?±?19 kJ mol??1). This diffusion mechanism is likely restricted by availability of ferrous iron in grossular. At low oxygen fugacity, this diffusion mechanism is shut off and the diffusivity decreased by more than three orders of magnitude. A second, slower hydrogen diffusion mechanism has been observed in minor bands, where charge balance might be maintained by diffusion of cation vacancies, with much higher activation energy (≈?200–270 kJ mol??1). Spessartine shows clear differences in peak retentivity suggesting that up to four different H sites might exist. This opens exciting opportunities to use hydrogen diffusion in garnet as speedometer. However, it is essential to constrain the main diffusion mechanisms and the oxygen fugacity in the rocks investigated to obtain timescales for metamorphic or igneous processes.  相似文献   

4.
The behavior of nickel in the Earth’s mantle is controlled by sulfide melt–olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe–Ni composition of molten sulfide in the Earth’s upper mantle via sulfide melt–olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt \(X_{{{\text{Ni}}}}^{{{\text{Sulfide}}}}=\frac{{{\text{Ni}}}}{{{\text{Ni}}+{\text{Fe}}}}\) (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of \({f_{{{\text{O}}_{\text{2}}}}}\) on Fe–Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31–46, 1995), “zero time” experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0?±?1.0 log units more reduced than the fayalite–magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ ??1 or more oxidized (suite 4). For the reduced (suites 1–3) experiments, Fe–Ni distribution coefficients \(K_{{\text{D}}}^{{}}=\frac{{(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}/X_{{{\text{Fe}}}}^{{{\text{sulfide}}}})}}{{(X_{{{\text{Ni}}}}^{{{\text{olivine}}}}/X_{{{\text{Fe}}}}^{{{\text{olivine}}}})}}\) are small, averaging 10.0?±?5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of KD (21.1–25.2). Compared to previous determinations at 100 kPa, values of KD from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem attributable to differences in temperature and pressure between experimental studies. It may be related in part to the effects of metal/sulfur ratio in sulfide melt. Application of these results to the composition of molten sulfide in peridotite indicates that compositions are intermediate in composition (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.4–0.6) in the shallow mantle at 50 km, becomes more Ni rich with depth as the O content of the melt diminishes, reaching a maximum (0.6–0.7) at depths near 80–120 km, and then becomes more Fe rich in the deeper mantle where conditions are more reduced, approaching (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.28)?>?140 km depth. Because Ni-rich sulfide in the shallow upper mantle melts at lower temperature than more Fe-rich compositions, mantle sulfide is likely molten in much of the deep continental lithosphere, including regions of diamond formation.  相似文献   

5.
The water-saturated phase relations have been determined for a primitive magnesian andesite (57 wt% SiO2, 9 wt% MgO) from the Mt. Shasta, CA region over the pressure range 200–800 MPa, temperature range of 915–1,070 °C, and oxygen fugacities varying from the nickel–nickel oxide (NNO) buffer to three log units above NNO (NNO+3). The phase diagram of a primitive basaltic andesite (52 wt% SiO2, 10.5 wt% MgO) also from the Mt. Shasta region (Grove et al. in Contrib Miner Petrol 145:515–533; 2003) has been supplemented with additional experimental data at 500 MPa. Hydrous phase relations for these compositions allow a comparison of the dramatic effects of dissolved H2O on the crystallization sequence. Liquidus mineral phase stability and appearance temperatures vary sensitively in response to variation in pressure and H2O content, and this information is used to calibrate magmatic barometers-hygrometers for primitive arc magmas. H2O-saturated experiments on both compositions reveal the strong dependence of amphibole stability on the partial pressure of H2O. A narrow stability field is identified where olivine and amphibole are coexisting phases in the primitive andesite composition above 500 MPa and at least until 800 MPa, between 975–1,025 °C. With increasing H2O pressure (\({P}_{\text {H}_2{\rm O}}\)), the temperature difference between the liquidus and amphibole appearance decreases, causing a change in chemical composition of the first amphibole to crystallize. An empirical calibration is proposed for an amphibole first appearance barometer-hygrometer that uses Mg# of the amphibole and \(f_{\text {O}_2}\):
$$ P_{\text{H}_{2}{\rm O}}({\rm MPa})=\left[{\frac{{\rm Mg\#}}{52.7}}-0.014 * \Updelta {\rm NNO}\right]^{15.12} $$
This barometer gives a minimum \({P}_{\text{H}_{2}{\rm O}}\) recorded by the first appearance of amphibole in primitive arc basaltic andesite and andesite. We apply this barometer to amphibole antecrysts erupted in mixed andesite and dacite lavas from the Mt. Shasta, CA stratocone. Both high H2O pressures (500–900 MPa) and high pre-eruptive magmatic H2O contents (10–14 wt% H2O) are indicated for the primitive end members of magma mixing that are preserved in the Shasta lavas. We also use these new experimental data to explore and evaluate the empirical hornblende barometer of Larocque and Canil (2010).
  相似文献   

6.
An eddy-resolving coupled ocean sea-ice modelling is carried out in the Southern Ocean region (9\(^{\circ }\)–78\(^{\circ }\)E; 51\(^{\circ }\)–71\(^{\circ }\)S) using the MITgcm. The model domain incorporates the Indian Antarctic stations, Maitri (11.7\({^{\circ }}\)E; 70.7\({^{\circ }}\)S) and Bharati (76.1\({^{\circ }}\)E; 69.4\({^{\circ }}\)S). The realistic simulation of the surface variables, namely, sea surface temperature (SST), sea surface salinity (SSS), surface currents, sea ice concentration (SIC) and sea ice thickness (SIT) is presented for the period of 1997–2012. The horizontal resolution of the model varies between 6 and 10 km. The highest vertical resolution of 5 m is taken near the surface, which gradually increases with increasing depths. The seasonal variability of the SST, SSS, SIC and currents is compared with the available observations in the region of study. It is found that the SIC of the model domain is increasing at a rate of 0.09% per month (nearly 1% per year), whereas, the SIC near Maitri and Bharati regions is increasing at a rate of 0.14 and 0.03% per month, respectively. The variability of the drift of the sea-ice is also estimated over the period of simulation. It is also found that the sea ice volume of the region increases at the rate of 0.0004 \(\hbox {km}^{3}\) per month (nearly 0.005 \(\hbox {km}^{3}\) per year). Further, it is revealed that the accumulation of sea ice around Bharati station is more as compared to Maitri station.  相似文献   

7.
A method has been developed to control ammonium fugacity, \(f_{{\text{NH}}_{3}}\), at elevated temperatures and pressures. The method uses an internal nitrogen buffer, the assemblage Cr + CrN, in conjunction with a traditional external hydrogen buffer. In this manner, all gas fugacities in the system N-O-H can be calculated.The Cr + CrN buffer has been applied to study equilibria between buddingtonite (ammonium feldspar), ammonium muscovite, sillimanite, and quartz at a constant gas pressure of 2,000 bars. Two of the five relevant reactions were measured experimentally; from these data, it is possible to calculate isothermal sections at 500, 600, and 700° C.Below 600° C, ammonium muscovite is stable even at extremely low levels of \(f_{{\text{NH}}_{3}}\), while buddingtonite requires \(f_{{\text{NH}}_{3}}\;\geqq\;10^4\) bars. Release of NH3 during progressive metamorphism can be achieved by three processes: thermal decomposition, dehydration, and cation exchange. Within the crust, \(f_{{\text{NH}}_{3}}\) predominates over \(f_{{\text{N}}_{2}}\) by several orders of magnitude; but on the surface, nitrogen released as NH3 by metamorphism will be oxidized to N2. Biological materials provide important intermediate storage for nitrogen compounds during the nitrogen cycle.  相似文献   

8.
The specific heat capacity (C p) of six variably hydrated (~3.5 wt% H2O) iron-bearing Etna trachybasaltic glasses and liquids has been measured using differential scanning calorimetry from room temperature across the glass transition region. These data are compared to heat capacity measurements on thirteen melt compositions in the iron-free anorthite (An)–diopside (Di) system over a similar range of H2O contents. These data extend considerably the published C p measurements for hydrous melts and glasses. The results for the Etna trachybasalts show nonlinear variations in, both, the heat capacity of the glass at the onset of the glass transition (i.e., C p g ) and the fully relaxed liquid (i.e., C p l ) with increasing H2O content. Similarly, the “configurational heat capacity” (i.e., C p c  = C p l  ? C p g ) varies nonlinearly with H2O content. The An–Di hydrous compositions investigated show similar trends, with C p values varying as a function of melt composition and H2O content. The results show that values in hydrous C p g , C p l and C p c in the depolymerized glasses and liquids are substantially different from those observed for more polymerized hydrous albitic, leucogranitic, trachytic and phonolitic multicomponent compositions previously investigated. Polymerized melts have lower C p l and C p c and higher C p g with respect to more depolymerized compositions. The covariation between C p values and the degree of polymerization in glasses and melts is well described in terms of SMhydrous and NBO/T hydrous. Values of C p c increase sharply with increasing depolymerization up to SMhydrous ~ 30–35 mol% (NBO/T hydrous ~ 0.5) and then stabilize to an almost constant value. The partial molar heat capacity of H2O for both glasses (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{g}} \)) and liquids (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \)) appears to be independent of composition and, assuming ideal mixing, we obtain a value for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) of 79 J mol?1 K?1. However, we note that a range of values for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) (i.e., ~78–87 J mol?1 K?1) proposed by previous workers will reproduce the extended data to within experimental uncertainty. Our analysis suggests that more data are required in order to ascribe a compositional dependence (i.e., nonideal mixing) to \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \).  相似文献   

9.
The paper presents results of testing currently used models proposed to describe Cr-spinel–melt equilibrium: models of the MELTS family by M.S. Ghiorso with colleagues, the SPINMELT program by A.A. Ariskin and G.S. Nikolaev, and the “MELT–CHROMITE spinel calculator” by А.А. Pustovetov and R.L. Roeder. The new calibration of the SPINMELT model presented in this publication enables calculating a sixcomponent (Mg, Fe2+, Cr, Al, Fe3+, and Ti) composition of Cr-spinel and the \(T - {f_{{o_2}}}\) parameters of its stability on the liquidus of basaltic melts under pressures up to 15 kbar. The model is based on results of 392 runs from 43 experimental studies, including systems of normal alkalinity at \({f_{{o_2}}}\) ≤ QFM + 2. The experimental dataset (which was extended compared to that used for the previous calibration) allowed us not only to estimate the pressure effect, but also apply the model to aluminous and hydrous systems. Tests of the SPINMELT-2.0 model show that the errors of the calculated temperature of the spinel–melt equilibrium increase with pressure from 16°C at 1 atm to 50°C at 15 kbar. Experimental spinel compositions are reproduced by the model accurate to < 3 at % Al and Cr, and no worse 1 at % for the other cations.  相似文献   

10.
We report new experimental data of Cu diffusivity in granite porphyry melts with 0.01 and 3.9 wt% H2O at 0.15–1.0 GPa and 973–1523 K. A diffusion couple method was used for the nominally anhydrous granitic melt, whereas a Cu diffusion-in method using Pt95Cu5 as the source of Cu was applied to the hydrous granitic melt. The diffusion couple experiments also generate Cu diffusion-out profiles due to Cu loss to Pt capsule walls. Cu diffusivities were extracted from error function fits of the Cu concentration profiles measured by LA-ICP-MS. At 1 GPa, we obtain \({D_{{\text{Cu, dry, 1 GPa}}}}=\exp \left[ {( - {\text{13.89}} \pm {\text{0.42}}) - \frac{{{\text{12878}} \pm {\text{540}}}}{T}} \right],\) and \({D_{{\text{Cu, 3}}{\text{.9 wt\% }}{{\text{H}}_{\text{2}}}{\text{O}},{\text{ 1 GPa}}}}=\exp \left[ {( - 16.31 \pm 1.30) - \frac{{{\text{8148}} \pm {\text{1670}}}}{T}} \right],\) where D is Cu diffusivity in m2/s and T is temperature in K. The above expressions are in good agreement with a recent study on Cu diffusion in rhyolitic melt using the approach of Cu2S dissolution. The observed pressure effect over 0.15–1.0 GPa can be described by an activation volume of 5.9 cm3/mol for Cu diffusion. Comparison of Cu diffusivity to alkali diffusivity and its variation with melt composition implies fourfold-coordinated Cu+ in silicate melts. Our experimental results indicate that in the formation of porphyry Cu deposits, the diffusive transport of magmatic Cu to sulfide liquids or fluid bubbles is highly efficient. The obtained Cu diffusivity data can also be used to assess whether equilibrium Cu partitioning can be reached within certain experimental durations.  相似文献   

11.
In the present study, measurements of surface ozone (\(\hbox {O}_{3}\)) and its precursors (NO and \(\hbox {NO}_{2}\)) were carried out at a sub-urban site of Agra (\(27{^{\circ }}10'\hbox {N}\), \(78{^{\circ }}05'\hbox {E}\)), India during May 2012–May 2013. During the study period, average concentrations of \(\hbox {O}_{3}\), NO, and \(\hbox {NO}_{2}\) were \(39.6 \pm 25.3\), \(0.8 \pm 0.8\) and \(9.1 \pm 6.6 \, \hbox {ppb}\), respectively. \(\hbox {O}_{3}\) showed distinct seasonal variation in peak value of diurnal variation: summer \({>}\) post-monsoon \({>}\) winter \({>}\) monsoon. However, \(\hbox {NO}_{2}\) showed highest levels in winter and lowest in monsoon. The average positive rate of change of \(\hbox {O}_{3}\) (08:00–11:00 hr) was highest in April (16.3 ppb/hr) and lowest in August (1.1 ppb/hr), while average negative rate of change of \(\hbox {O}_{3}\) (17:00–19:00 hr) was highest in December (–13.2 ppb/hr) and lowest in July (–1.1 ppb/hr). An attempt was made to identify the \(\hbox {VOC--NO}_{\mathrm{x}}\) sensitivity of the site using \(\hbox {O}_{3}/\hbox {HNO}_{3}\) ratio as photochemical indicator. Most of the days this ratio was above the threshold value (12–16), which suggests \(\hbox {NO}_{\mathrm{x}}\) sensitivity of the site. The episodic event of ozone was characterized through meteorological parameters and precursors concentration. Fine particles (\(\hbox {PM}_{2.5}\)) cause loss of ozone through heterogeneous reactions on their surface and reduction in solar radiation. In the study, statistical analyses were used to estimate the amount of ozone loss.  相似文献   

12.
Seismic source parameters of small to moderate sized intraplate earthquakes that occurred during 2002–2009 in the tectonic blocks of Kachchh Rift Basin (KRB) and the Saurashtra Horst (SH), in the stable continental region of western peninsular India, are studied through spectral analysis of shear waves. The data of aftershock sequence of the 2001 Bhuj earthquake (\(M_{w}\) 7.7) in the KRB and the 2007 Talala earthquake (\(M_{w}\) 5.0) in the SH are used for this study. In the SH, the seismic moment (\(M_{o})\), corner frequency \((f_{c})\), stress drop (\(\varDelta \sigma \)) and source radius (r) vary from \(7.8\times 10^{11}\) to \(4.0\times \)10\(^{16}\) N-m, 1.0–8.9 Hz, 4.8–10.2 MPa and 195–1480 m, respectively. While in the KRB, these parameters vary from \(M_{o} \sim 1.24 \,\times \, 10^{11}\) to \(4.1 \times 10^{16}\) N-m, \(f_{c }\sim \) 1.6 to 13.1 Hz, \(\varDelta \sigma \sim 0.06\) to 16.62 MPa and \(r \sim 100\) to 840 m. The kappa (K) value in the KRB (0.025–0.03) is slightly larger than that in the SH region (0.02), probably due to thick sedimentary layers. The estimated stress drops of earthquakes in the KRB are relatively higher than those in SH, due to large crustal stress concentration associated with mafic/ultramafic rocks at the hypocentral depths. The results also suggest that the stress drop value of intraplate earthquakes is larger than the interplate earthquakes. In addition, it is observed that the strike-slip events in the SH have lower stress drops, compared to the thrust and strike-slip events.  相似文献   

13.
In determining the physical and mechanical parameters of clay, it is sometimes necessary to determine them indirectly from other parameters since they cannot be measured directly from laboratory or field tests. In order to determine the effect of temperature on the behavior of clay, an indirect approach is used here by analyzing the changes of mass (\(\Delta m\)), density (\(\rho\)), porosity (\(\phi\)), P-wave velocity (\({v_p}\)), thermal conductivity (\(\lambda\)), specific heat capacity (c), resistivity (R) and uniaxial compressive strength (f) of clay from eastern China for a temperature range between 20 and 800 °C. The results indicate that temperature has a significant effect on these parameters. Comparisons between \(\Delta m\) and \(\rho\), \(\Delta m\) and \({v_p}\), \(\rho\) and \({v_p}\), \(\phi\) and \(\lambda\), \({v_p}\) and f, R and f show a linear change among these parameters,whereas the relationships among \(\Delta m\) and \(\phi\), \(\phi\) and \({v_p}\), \(\phi\) and R, \({v_p}\) and \(\lambda\), \(\phi\) and f are exponential. It is difficult to obtain these relationships by using regression analysis with high levels of accuracy. Further refinement is therefore required.  相似文献   

14.
We report the results of experiments designed to separate the effects of temperature and pressure from liquid composition on the partitioning of Ni between olivine and liquid, \(D_{\text{Ni}}^{\text{ol/liq}}\). Experiments were performed from 1300 to 1600 °C and 1 atm to 3.0 GPa, using mid-ocean ridge basalt (MORB) glass surrounded by powdered olivine in graphite–Pt double capsules at high pressure and powdered MORB in crucibles fabricated from single crystals of San Carlos olivine at one atmosphere. In these experiments, pressure and temperature were varied in such a way that we produced a series of liquids, each with an approximately constant composition (~12, ~15, and ~21 wt% MgO). Previously, we used a similar approach to show that \(D_{\text{Ni}}^{\text{ol/liq}}\) for a liquid with ~18 wt% MgO is a strong function of temperature. Combining the new data presented here with our previous results allows us to separate the effects of temperature from composition. We fit our data based on a Ni–Mg exchange reaction, which yields \(\ln \left( {D_{\text{Ni}}^{\text{molar}} } \right) = \frac{{ -\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } }}{RT} + \frac{{\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } }}{R} - \ln \left( {\frac{{X_{\text{MgO}}^{\text{liq}} }}{{X_{{{\text{MgSi}}_{ 0. 5} {\text{O}}_{ 2} }}^{\text{ol}} }}} \right).\) Each subset of constant composition experiments displays roughly the same temperature dependence of \(D_{\text{Ni}}^{\text{ol/liq}}\) (i.e.,\(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\)) as previously reported for liquids with ~18 wt% MgO. Fitting new data presented here (15 experiments) in conjunction with our 13 previously published experiments (those with ~18 wt% MgO in the silicate liquid) to the above expression gives \(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = 3641 ± 396 (K) and \(\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = ? 1.597 ± 0.229. Adding data from the literature yields \(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = 4505 ± 196 (K) and \(\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = ? 2.075 ± 0.120, a set of coefficients that leads to a predictive equation for \(D_{\text{Ni}}^{\text{ol/liq}}\) applicable to a wide range of melt compositions. We use the results of our work to model the melting of peridotite beneath lithosphere of varying thickness and show that: (1) a positive correlation between NiO in magnesian olivine phenocrysts and lithospheric thickness is expected given a temperature-dependent \(D_{\text{Ni}}^{\text{ol/liq}} ,\) and (2) the magnitude of the slope for natural samples is consistent with our experimentally determined temperature dependence. Alternative processes to generate the positive correlation between NiO in magnesian olivines and lithospheric thickness, such as the melting of olivine-free pyroxenite, are possible, but they are not required to explain the observed correlation of NiO concentration in initially crystallizing olivine with lithospheric thickness.  相似文献   

15.
The textures of minerals in volcanic and plutonic rocks testify to a complexity of processes in their formation that is at odds with simple geochemical models of igneous differentiation. Zoning in plagioclase feldspar is a case in point. Very slow diffusion of the major components in plagioclase means that textural evidence for complex magmatic evolution is preserved, almost without modification. Consequently, plagioclase affords considerable insight into the processes by which magmas accumulate in the crust prior to their eventual eruption or solidification. Here, we use the example of the 1980–1986 eruptions of Mount St. Helens to explore the causes of textural complexity in plagioclase and associated trapped melt inclusions. Textures of individual crystals are consistent with multiple heating and cooling events; changes in total pressure (P) or volatile pressure ( $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O ) are less easy to assess from textures alone. We show that by allying textural and chemical analyses of plagioclase and melt inclusions, including volatiles (H2O, CO2) and slow-diffusing trace elements (Sr, Ba), to published experimental studies of Mount St. Helens magmas, it is possible to disambiguate the roles of pressure and temperature to reconstruct magmatic evolutionary pathways through temperature–pressure–melt fraction (T $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O F) space. Our modeled crystals indicate that (1) crystallization starts at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  > 300 MPa, consistent with prior estimates from melt inclusion volatile contents, (2) crystal cores grow at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  = 200–280 MPa at F = 0.65–0.7, (3) crystals are transferred to $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  = 100–130 MPa (often accompanied by 10–20 °C of heating), where they grow albitic rims of varying thicknesses, and (4) the last stage of crystallization occurs after minor heating at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  ~ 100 MPa to produce characteristic rim compositions of An50. We hypothesize that modeled $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O decreases in excess of ~50 MPa most likely represent upward transport through the magmatic system. Small variations in modeled $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O , in contrast, can be effected by fluxing the reservoir with CO2-rich vapors that are either released from deeper in the system or transported with the recharge magma. Temperature fluctuations of 20–40 °C, on the other hand, are an inevitable consequence of incremental, or pulsed, assembly of crustal magma bodies wherein each pulse interacts with ancestral, stored magmas. We venture that this “petrological cannibalism” accounts for much of the plagioclase zoning and textural complexity seen not only at Mount St. Helens but also at arc magmas generally. More broadly we suggest that the magma reservoir below Mount St. Helens is dominated by crystal mush and fed by frequent inputs of hotter, but compositionally similar, magma, coupled with episodes of magma ascent from one storage region to another. This view both accords with other independent constraints on the subvolcanic system at Mount St. Helens and supports an emerging view of many active magmatic systems as dominantly super-solidus, rather than subliquidus, bodies.  相似文献   

16.
River, rain and spring water samples from a region covered in “Shirasu” ignimbrite were collected on Kyushu Island, Japan. The analytical results were subjected to multivariate statistical analysis and stoichiometric calculation to understand the geographical distribution of chemical components in water and to extract geochemical underlying factors. The multivariate statistical analysis showed that the river-water chemistry is only slightly influenced by hot springs or polluted waters, but is highly controlled by weathering of ignimbrite. On the basis of the stoichiometric calculation based on water–rock interaction, the water chemistry was successfully estimated by a simple equation:\({\left[ {{\text{Si}}} \right]}{\text{ = 2}}{\left[ {{\text{Na}}^{{\text{ + }}} } \right]}{\text{ + }}{\left[ {{\text{Mg}}^{{{\text{2 + }}}} } \right]}\) in the upstream area, complemented by \({\left[ {{\text{Si}}} \right]}{\text{ = }}{\left[ {{\text{Na}}^{{\text{ + }}} } \right]}{\text{ - 3}}{\left[ {{\text{K}}^{{\text{ + }}} } \right]}{\text{ + }}{\left[ {{\text{Mg}}^{{{\text{2 + }}}} } \right]}{\text{ - 2}}{\left[ {{\text{Ca}}^{{{\text{2 + }}}} } \right]}\) in the downstream area.  相似文献   

17.
We discuss the experimental results of silicon and oxygen self-diffusion coefficients in forsterite and iron-bearing olivine from the perspective of defect chemistry. Silicon diffusion is dominated by VO ··-associated VSi″″, whereas oxygen diffusion is dominated by hopping of VO ·· under anhydrous conditions, and by (OH)O · under hydrous conditions. By considering the charge neutrality condition of [(OH)O ·] = 2[VMe″] in hydrous forsterite and iron-bearing olivine, we get D Si ∝ (\(C_{{{\text{H}}_{2} {\text{O}}}}\))1/3 and D O ∝ (\(C_{{{\text{H}}_{2} {\text{O}}}}\))0, which explains the experimental results of water effects on oxygen and silicon self-diffusion rates (Fei et al. in Nature 498:213–215, 2013; J Geophys Res 119:7598–7606, 2014). The \(C_{{{\text{H}}_{2} {\text{O}}}}\) dependence of creep rate in the Earth’s mantle should be close to that given by Si and O self-diffusion coefficients obtained under water unsaturated conditions.  相似文献   

18.
Petrography and mineralogy of four calc-alkaline granitoid plutons Agarpur, Sindurpur, Raghunathpur and Sarpahari located from west to east of northern Purulia of Chhotanagpur Gneissic Complex, eastern India, are investigated. The plutons, as a whole, are composed of varying proportions of Qtz–Pl–Kfs–Bt–Hbl±Px–Ttn–Mag–Ap–Zrn±Ep. The composition of biotite is consistent with those of calc-alkaline granitoids. Hornblende–plagioclase thermometry, aluminium-in-hornblende barometry and the assemblage sphene–magnetite–quartz were used to determine the P, T and \(f_{\mathrm{O}_2}\) during the crystallisation of the parent magmas in different plutons. The plutons are crystallised under varying pressures (6.2–2.4 kbar) and a wide range of temperatures (896–\(718{^{\circ }}\hbox {C}\)) from highly oxidised magmas (log \(f_{\mathrm{O}_2}\) \(-11.2\) to \(-15.4\) bar). The water content of the magma of different plutons varied from 5.0 to 6.5 wt%, consistent with the calc-alkaline nature of the magma. Calc-alkaline nature, high oxygen fugacity and high \(\hbox {H}_{2}\hbox {O}_{{\mathrm{melt}}}\) suggest that these plutons were emplaced in subduction zone environment. The depths of emplacement of these plutons seem to increase from west to east. Petrologic compositions of these granitoids continuously change from enderbite (opx-tonalite: Sarpahari) in the east to monzogranite (Raghunathpur) to syenogranite (Sindurpur) to alkali feldspar granite (Agarpur) in the west. The water contents of the parental magmas of different plutons also increase systematically from east to west. No substantial increase in the depth of emplacement is found in these plutons lying south and north of the major shear zone passing through the study area suggesting the strike-slip nature of the east–west shear zone.  相似文献   

19.
The solubility of chromium in chlorite as a function of pressure, temperature, and bulk composition was investigated in the system Cr2O3–MgO–Al2O3–SiO2–H2O, and its effect on phase relations evaluated. Three different compositions with X Cr = Cr/(Cr + Al) = 0.075, 0.25, and 0.5 respectively, were investigated at 1.5–6.5 GPa, 650–900 °C. Cr-chlorite only occurs in the bulk composition with X Cr = 0.075; otherwise, spinel and garnet are the major aluminous phases. In the experiments, Cr-chlorite coexists with enstatite up to 3.5 GPa, 800–850 °C, and with forsterite, pyrope, and spinel at higher pressure. At P > 5 GPa other hydrates occur: a Cr-bearing phase-HAPY (Mg2.2Al1.5Cr0.1Si1.1O6(OH)2) is stable in assemblage with pyrope, forsterite, and spinel; Mg-sursassite coexists at 6.0 GPa, 650 °C with forsterite and spinel and a new Cr-bearing phase, named 11.5 Å phase (Mg:Al:Si = 6.3:1.2:2.4) after the first diffraction peak observed in high-resolution X-ray diffraction pattern. Cr affects the stability of chlorite by shifting its breakdown reactions toward higher temperature, but Cr solubility at high pressure is reduced compared with the solubility observed in low-pressure occurrences in hydrothermal environments. Chromium partitions generally according to \(X_{\text{Cr}}^{\text{spinel}}\) ? \(X_{\text{Cr}}^{\text{opx}}\) > \(X_{\text{Cr}}^{\text{chlorite}}\) ≥ \(X_{\text{Cr}}^{\text{HAPY}}\) > \(X_{\text{Cr}}^{\text{garnet}}\). At 5 GPa, 750 °C (bulk with X Cr = 0.075) equilibrium values are \(X_{\text{Cr}}^{\text{spinel}}\) = 0.27, \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.08, \(X_{\text{Cr}}^{\text{garnet}}\) = 0.05; at 5.4 GPa, 720 °C \(X_{\text{Cr}}^{\text{spinel}}\) = 0.33, \(X_{\text{Cr}}^{\text{HAPY}}\) = 0.06, and \(X_{\text{Cr}}^{\text{garnet}}\) = 0.04; and at 3.5 GPa, 850 °C \(X_{\text{Cr}}^{\text{opx}}\) = 0.12 and \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.07. Results on Cr–Al partitioning between spinel and garnet suggest that at low temperature the spinel- to garnet-peridotite transition has a negative slope of 0.5 GPa/100 °C. The formation of phase-HAPY, in assemblage with garnet and spinel, at pressures above chlorite breakdown, provides a viable mechanism to promote H2O transport in metasomatized ultramafic mélanges of subduction channels.  相似文献   

20.
In order to evaluate the effect of trace and minor elements (e.g., P, Y, and the REEs) on the high-temperature solubility of Ti in zircon (zrc), we conducted 31 experiments on a series of synthetic and natural granitic compositions [enriched in TiO2 and ZrO2; Al/(Na + K) molar ~1.2] at a pressure of 10 kbar and temperatures of ~1,400 to 1,200 °C. Thirty of the experiments produced zircon-saturated glasses, of which 22 are also saturated in rutile (rt). In seven experiments, quenched glasses coexist with quartz (qtz). SiO2 contents of the quenched liquids range from 68.5 to 82.3 wt% (volatile free), and water concentrations are 0.4–7.0 wt%. TiO2 contents of the rutile-saturated quenched melts are positively correlated with run temperature. Glass ZrO2 concentrations (0.2–1.2 wt%; volatile free) also show a broad positive correlation with run temperature and, at a given T, are strongly correlated with the parameter (Na + K + 2Ca)/(Si·Al) (all in cation fractions). Mole fraction of ZrO2 in rutile $ \left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) $ in the quartz-saturated runs coupled with other 10-kbar qtz-saturated experimental data from the literature (total temperature range of ~1,400 to 675 °C) yields the following temperature-dependent expression: $ {\text{ln}}\left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) + {\text{ln}}\left( {a_{{{\text{SiO}}_{2} }} } \right) = 2.638(149) - 9969(190)/T({\text{K}}) $ , where silica activity $ a_{{{\text{SiO}}_{2} }} $ in either the coexisting silica polymorph or a silica-undersaturated melt is referenced to α-quartz at the P and T of each experiment and the best-fit coefficients and their uncertainties (values in parentheses) reflect uncertainties in T and $ \mathop X\nolimits_{{{\text{ZrO}}_{2} }}^{\text{rt}} $ . NanoSIMS measurements of Ti in zircon overgrowths in the experiments yield values of ~100 to 800 ppm; Ti concentrations in zircon are positively correlated with temperature. Coupled with values for $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ for each experiment, zircon Ti concentrations (ppm) can be related to temperature over the range of ~1,400 to 1,200 °C by the expression: $ \ln \left( {\text{Ti ppm}} \right)^{\text{zrc}} + \ln \left( {a_{{{\text{SiO}}_{2} }} } \right) - \ln \left( {a_{{{\text{TiO}}_{2} }} } \right) = 13.84\left( {71} \right) - 12590\left( {1124} \right)/T\left( {\text{K}} \right) $ . After accounting for differences in $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ , Ti contents of zircon from experiments run with bulk compositions based on the natural granite overlap with the concentrations measured on zircon from experiments using the synthetic bulk compositions. Coupled with data from the literature, this suggests that at T ≥ 1,100 °C, natural levels of minor and trace elements in “granitic” melts do not appear to influence the solubility of Ti in zircon. Whether this is true at magmatic temperatures of crustal hydrous silica-rich liquids (e.g., 800–700 °C) remains to be demonstrated. Finally, measured $ D_{\text{Ti}}^{{{\text{zrc}}/{\text{melt}}}} $ values (calculated on a weight basis) from the experiments presented here are 0.007–0.01, relatively independent of temperature, and broadly consistent with values determined from natural zircon and silica-rich glass pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号