首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
广西南部晚古生代放射虫组合及其地质意义   总被引:46,自引:4,他引:46       下载免费PDF全文
吴浩若  邝国敦 《地质科学》1994,29(4):339-345
广西南部钦州、玉林一带硅质岩系中丰富的放射虫化石,可区分出晚泥盆世、早石炭世和二叠纪的11个放射虫组合。晚泥盆世-早石炭世的组合可与北美和西欧对比。二叠纪组合与以日本为代表的环太平洋放射虫组合和西西里、滇西等地的古特提斯放射虫组合一致,表明了古特提斯与原太平洋之间的联系。  相似文献   

2.
异珊瑚化石始发现于早泥盆世 ,早石炭世为鼎盛时期 ,至早二叠世末全部绝灭。本研究将异珊瑚划分为 4个化石组合 ,并对异珊瑚的起源、分布及迁移规律及生态环境等进行了讨论。化石组合由老至新分别为 :早泥盆世 Tetraphyllia组合 ;晚泥盆世 Oligophylloides-H eterophyllia组合 ;早石炭世 Pentaphyllia-H exaphyllia-Radiciphyllia 组合 ;早二叠世 Dichophyllia-H eterophyllia-H exaphylloides组合。并指出异珊瑚属于热带—亚热带至暖温带的生物类群 ,起源中心可能为中国华南板块  相似文献   

3.
贵阳乌当上古生界的海侵—海退层序   总被引:1,自引:1,他引:1  
毛家仁 《现代地质》2005,19(1):119-126
在位于上扬子古陆边缘的贵阳乌当泥盆纪至石炭纪剖面上, 泥盆系包括蟒山群碎屑岩和高坡场组白云岩, 其中可以识别出 5个三级层序; 石炭系至二叠系船山统包括祥摆组、旧司组、上司组、摆佐组、黄龙组、马平组和梁山组,其中祥摆组和梁山组为含煤碎屑岩系地层, 其余各组为碳酸盐岩地层, 可以划分出 5个三级层序。与贵州南部至广西一带较为完整的泥盆系和石炭系相对比(泥盆系包含 13个三级层序,石炭系至二叠系船山统包含 6个三级层序 ), 贵阳乌当剖面以较薄的地层厚度和较多的三级层序的缺失为特征, 成为间断大于沉积的典型地层代表, 这是由于古陆边缘海退作用的沉积响应大于海侵作用所致。石炭纪与二叠纪过渡时期的大幅度慢速海侵作用改变了这种局面, 同邻区一样研究区域也进入了大片海域发育的时期, 所以阳新统和乐平统的层序大致与贵州南部至广西一带相近, 这是由于与相应的三级海平面上升相关的大幅度慢速海侵作用的结果。  相似文献   

4.
通过对甘新交界地区 3条石炭系和二叠系代表剖面的观察 ,结合多年调查东疆地层的资料积累 ,认为 :1)因绿条山组岩性组合及所含生物群与东疆的东古鲁巴斯套组相同 ,甘新交界地区绿条山组分布区是北塔山地层小区石炭系的南延部分 ,应从黑鹰山地层小区分出 ,甘新交界地区的中南部普遍缺失杜内期沉积 ;  2 )阿齐山—康古尔—雅满苏火山岛弧带与博格达—哈尔里克火山岛弧带的构造造山历程不同 ,彼此的兴衰转换存在一定的时间差 ;  3)甘肃北山石炭纪生物群与天山一级地层区的生物群相似 ,具有特提斯区系和西伯利亚—北美区系相互交会、混生的过渡性质 ;  4 )来自兴蒙海槽的早二叠世海侵 ,未波及北疆地区 ,而是经由北山、红柳河谷地 ,终止于库姆塔格沙垄以东的狭小区域 ,根据雅满苏西大沟阿瑟尔期类化石的发现 ,推断至今从未发现早二叠世类化石的北山 ,主要原因是调查程度较低 ;  5 )在金窝子金矿、2 10金矿及 2 30矿脉附近找到许多早二叠世生物化石 ,对仅根据一个同位素年龄数据 ( 36 1.1Ma)建立的“金窝子组”提出质疑 ,否定区内存在泥盆纪地层 ,认为金窝子金矿围岩地层的时代是早二叠世 ,不是晚泥盆世。  相似文献   

5.
The research on Paleozoic tectonics and endogenic metallogeny in the Tianshan-Altay region of Central Asia is an important and significant project. The Altay region, as a collision zone of the Early Paleozoic(500–397 Ma), and the Tianshan region, as a collision zone of the early period in the Late Paleozoic(Late Devonian-Early Carboniferous, 385–323 Ma), are all the result of nearly N-S trending shortening and collision(according to recent magnetic orientation). In the Late Devonian-Early Carboniferous period(385–323 Ma), regional NW trending faults displayed features of dextral strike-slip motion in the Altay and Junggar regions. In the Tianshan region, nearly EW-trending regional faults are motions of the thrusts. However, in the Late Carboniferous-Early Permian period(323–260 Ma), influenced by the long-distance effect induced from the Ural collision zone, those areas suffered weaker eastward compression, the existing NW trending faults converted into sinistral strike-slip in the Altay and Junggar regions, and the existing nearly E-W trending faults transferred into dextral strike-slip faults in the Tianshan region. The Rocks of those regions in the Late Carboniferous-Early Permian period(323–260 Ma) were moderately ruptured to a certain tension-shear, and thus formed a number of world famous giant endogenic metal ore deposits in the Tianshan-Altay region. As to the Central Asian continent, the most powerful collision period may not coincide with the most favorable endogenic metallogenic period. It should be treated to "the orogenic metallogeny hypothesis" with caution in that region.  相似文献   

6.
笔者认为东准噶尔地区曾是古新疆克拉通的一部分,只是到了泥盆纪才演化成大洋。值得特别提出的是,大洋消失之后,经历了残留海盆阶段才开始碰撞造山。碰撞期后的岩浆作用和板内裂陷作用在该区特别发育,而且形成相关的内生金属矿产。以大型内陆盆地沉降和山脉隆升为特征的陆内造山作用标志着大陆克拉通化的最终完成。成矿期与构造演化密切相关,自老而新划分了6个成矿期。  相似文献   

7.
笔者认为东准噶尔地区曾是古新疆克拉通的一部分,只是到了泥盆纪才演化成大洋。值得特别提出的是,大洋消失之后,经历了残留海盆阶段才开始碰撞造山。碰撞期后的岩浆作用和板内裂陷作用在该区特别发育,而且形成相关的内生金属矿产。以大型内陆盆地沉降和山脉隆升为特征的陆内造山作用标志着大陆克拉通化的最终完成。成矿期与构造演化密切相关,自老而新划分了6个成矿期。  相似文献   

8.
Detrital zircon U/Pb ages provide new insights into the provenance of Upper Devonian–Permian clastic rocks of Bel’kovsky Island, within the New Siberian Islands archipelago. Based on these new data, we demonstrate that Upper Devonian–Carboniferous turbidites of Bel’kovsky Island were derived from Grenvillian, Sveconorwegian, and Timanian sources similar to those that fed Devonian–Carboniferous deposits of the Severnaya Zemlya archipelago and Wrangel Island and were probably located within Laurentia–Baltica. Detrital zircon ages from the lower Permian deposits of Bel’kovsky Island suggest a drastic change in provenance and show a strong affinity with the Uralian Orogen. Two possible models to interpret this shift in provenance are proposed. The first involves movement of these continental blocks from the continental margin of Laurentia–Baltica towards the Uralian Orogen during the late Carboniferous to Permian, while the second argues for long sediment transport across the Barents shelf.  相似文献   

9.
The West Junggar lies in the southwest part of the Central Asian Orogenic Belt (CAOB) and consists of Palaeozoic ophiolitic mélanges, island arcs, and accretionary complexes. The Barleik ophiolitic mélange comprises several serpentinite-matrix strips along a NE-striking fault at Barleik Mountain in the southern West Junggar. Several small late Cambrian (509–503 Ma) diorite-trondhjemite plutons cross-cut the ophiolitic mélange. These igneous bodies are deformed and display island arc calc-alkaline affinities. Both the mélange and island arc plutons are uncomfortably covered by Devonian shallow-marine and terrestrial volcano-sedimentary rocks and Carboniferous volcano-sedimentary rocks. Detrital zircons (n = 104) from the Devonian sandstone yield a single age population of 452–517 million years, with a peak age of 474 million years. The Devonian–Carboniferous strata are invaded by an early Carboniferous (327 Ma) granodiorite, late Carboniferous (315–311 Ma) granodiorites, and an early Permian (277 Ma) K-feldspar granite. The early Carboniferous pluton is coeval with subduction-related volcano-sedimentary strata in the central West Junggar, whereas the late Carboniferous–early Permian intrusives are contemporary with widespread post-collisional magmatism in the West Junggar and adjacent regions. They are typically undeformed or only slightly deformed.

Our data reveal that island arc calc-alkaline magmatism occurred at least from middle Cambrian to Late Ordovician time as constrained by igneous and detrital zircon ages. After accretion to another tectonic unit to the south, the ophiolitic mélange and island arc were exposed, eroded, and uncomfortably overlain by the Devonian shallow-marine and terrestrial volcano-sedimentary strata. The early Carboniferous arc-related magmatism might reflect subduction of the Junggar Ocean in the central Junggar. Before the late Carboniferous, the oceanic basins apparently closed in this area. These different tectonic units were stitched together by widespread post-collisional plutons in the West Junggar during the late Carboniferous–Permian. Our data from the southern West Junggar and those from the central and northern West Junggar and surroundings consistently indicate that the southwest part of the CAOB was finally amalgamated before the Permian.  相似文献   

10.
The Dniepr–Donets Basin (DDB) is a Late Devonian rift structure located within the East-European Craton. Numerical heat flow models for 13 wells calibrated with new maturity data were used to evaluate temporal and lateral heat flow variations in the northwestern part of the basin.The numerical models suggest that heat flow was relatively high during Late Carboniferous and/or Permian times. The relatively high heat flow is probably related to an Early Permian re-activation of tectonic activity. Reconstructed Early Permian heat flow values along the axial zone of the rift are about 60 mW/m2 and increase to 90 mW/m2 along the northern basin margin. These values are higher than those expected from tectonic models considering a single Late Devonian rifting phase. The calibration data are not sensitive to variations in the Devonian/Carboniferous heat flow. Therefore, the models do not allow deciding whether heat flows remained high after the Devonian rifting, or whether the reconstructed Permian heat flows represent a separate heating event.Analysis of the vitrinite reflectance data suggest that the northeastern Dniepr–Donets Basin is characterised by a low Mesozoic heat flow (30–35 mW/m2), whereas the present-day heat flow is about 45 mW/m2.  相似文献   

11.
锆石U?Pb定年结果表明,内蒙古西部苦楚乌拉—英巴地区花岗岩包括晚泥盆世二长花岗岩((371±2)Ma)、中二叠世钾长花岗岩((271±1)~(270±1)Ma)和早白垩世二长花岗岩((133±1)Ma)。结合前人资料,将研究区晚古生代以来的酸性岩浆活动分为4期:晚泥盆世(~371 Ma)、晚石炭世(313~311 Ma)、早—中二叠世(282~270 Ma)和早白垩世(133~130 Ma)。地球化学组成上,晚泥盆世二长花岗岩属于非典型的S型花岗岩,反映了一种后碰撞的构造背景,一方面说明珠斯楞—杭乌苏构造带在石炭纪之前已经开始出现岩浆活动,另一方面可能也恰好反映了哈萨克斯坦+塔里木+华北板块与西伯利亚板块拼合时间的下限;中二叠世钾长花岗岩则属A型花岗岩,反映了地壳伸展减薄的构造背景,与同时期区域强烈的拉张构造背景具有良好的对应关系;早白垩世二长花岗岩与晚泥盆世二长花岗岩具有相似的地球化学特征,同样反映了一种后碰撞的构造背景,与同时期区域后碰撞的拉张构造背景一致。  相似文献   

12.
The Astrakhan Arch region contains one of the largest sub-salt structures of the Pricaspian basin, where perspectives for hydrocarbon generation and accumulation in the Devonian to Carboniferous deposits are considered to be high. The paper addresses the problem of structural and geothermal evolution of the region deformed by salt movements. Initially, we developed a model of the regional structural evolution along a geological profile using the volume-balancing and back-stripping methods and geological constraints on the sedimentation, erosion, and paleo-water depths. Then we developed geothermal models (along the study profile) associated with the regional structural evolution. The models were constrained by the temperatures measured in four deep boreholes along the profile. We show that the present temperatures and heat flux are influenced by the presence of salt diapirs. Since the Early Carboniferous and till Middle Permian times, the temperatures predicted by the models vary significantly due to the regional transgression and the presence of seawater. The temperature of Devonian–Carboniferous carbonates increases since the Late Permian (time of post-salt deposition) and attains its maximum values in the SW-part of the profile. If the model assumptions concerning the constant vertical and zero lateral heat fluxes are valid, we can conclude that hydrocarbons are most likely to be generated in the SW-part of the region for the post-Early Permian time.  相似文献   

13.
柴达木盆地北缘石炭系顶、底界线再认识   总被引:9,自引:0,他引:9  
根据近年来确定的国际年代地层界线标准讨论了柴达木盆地北缘石炭系的顶、底界线。把石炭系的底界置于陆相沉积的阿木尼克组和海相沉积的穿山沟组之间。认为阿木尼克组可以与泥盆、石炭纪之交的全球性海退事件层对比 ,穿山沟组底界是这个海退事件层之上的海进面 ,相当于三级层序初始海泛面。把石炭、二叠系界线置于扎布萨尕秀组上段类Pseudoschwagerina组合带或Sphaeroschwagerina带之底部。这个界线大体相当于以牙形石Streptognathodusisolatus首现为标志确定的二叠系底界。  相似文献   

14.
玉勒肯哈腊苏斑岩铜(钼)矿主要赋存于闪长玢岩中,少量在北塔山组火山岩及似斑状石英二长岩中。矿化呈细脉状、细脉-浸染状和浸染状。成矿过程经历了斑岩期、剪切变形期和表生期。矿区发育韧性剪切变形带,中泥盆统北塔山组、下石炭统姜巴斯套组、岩体及矿体均发生了剪切变形作用。沿剪切面发育黑云母和白云母新生矿物。白云母的坪年龄和等时线年龄分别为283.8±1.5Ma和285.4±3.1Ma,黑云母的坪年龄和等时线年龄分别为277.0±2.0Ma和277.0±4.0Ma,在误差范围内基本一致,限定矿区韧性剪切变形时间在早二叠世(284~277Ma),与区域额尔齐斯-玛因鄂博断裂活动时间一致。主要成矿作用形成于斑岩期,成矿时代为中泥盆世(374Ma),早二叠世的韧性剪切变形作用只对铜(钼)矿化进行改造。  相似文献   

15.
In this paper we discuss the timing of final closure of the Paleo-Asian Ocean based on the field investigations of the Carboniferous–Permian stratigraphic sequences and sedimentary environments in southeastern Inner Mongolia combined with the geology of its neighboring areas. Studies show that during the Carboniferous–Permian in the eastern segment of the Tianshan-Hinggan Orogenic System, there was a giant ENE–NE-trending littoral-neritic to continental sedimentary basin, starting in the west from Ejinqi eastwards through southeastern Inner Mongolia into Jilin and Heilongjiang. The distribution of the Lower Carboniferous in the vast area is sparse. The Late Carboniferous or Permian volcanic-sedimentary rocks always unconformably overlie the Devonian or older units. The Upper Carboniferous–Middle Permian is dominated by littoral-neritic deposits and the Upper Permian, by continental deposits. The Late Carboniferous–Permian has no trace of subduction-collision orogeny, implying the basin gradually disappeared by shrinking and shallowing. In addition, it is of interest to note that the Ondor Sum and Hegenshan ophiolitic mélanges were formed in the pre-Late Silurian and pre-Late Devonian respectively, and the Solonker ophiolitic mélange formed in the pre-Late Carboniferous. All the evidence indicates that the eastern segment of the Paleo-Asian Ocean had closed before the Late Carboniferous, and most likely before the latest Devonian (Famennian).  相似文献   

16.
黑龙江多宝山古生代海盆闭合的岩石学证据   总被引:2,自引:0,他引:2  
综合研究黑龙江多宝山地区古生代沉积地层、生物化石,通过分析侵入岩岩石地球化学及其锆石U--Pb 同位素测年资料,表明该地区早奥陶世至晚泥盆世早期为海相沉积地层,晚泥盆世晚期为海陆交互相沉积地层,早石炭世为陆相河湖沉积地层。多宝山海盆东南侧出露一套年龄为( 300 ± 3 ~ 357 ± 4) Ma 的花岗岩,其中正长、二长花岗质糜棱岩为后造山花岗岩,碱长花岗岩为造山后A 型花岗岩。表明多宝山海盆于晚泥盆世开始闭合,至早石炭世为陆相河湖沉积,晚石炭世-早二叠世为抬升剥蚀阶段。表现为多宝山地区于早石炭世开始造山,晚石炭世晚期或延至早二叠世发生造山后伸展作用。  相似文献   

17.
秦岭沉积岩容矿金矿类型控矿条件与找矿方向   总被引:2,自引:2,他引:0  
秦岭地区沉岩包括扬子地台北缘志留纪裂陷沉积到晚古生代被动大陆边缘断陷-拗陷盆地沉积和二叠纪裂陷沉积。现有勘查资料表明秦岭地区沉积岩容矿金矿大多集中在泥盆系和三叠系,少量分布在志留系,石炭系和二叠系。  相似文献   

18.
238 marine carbonate samples were collected from seven sedimentary sections ofthe entire late Palaeozoic (Permian, Carboniferous and Devonian) in the Upper Yangtze Plat-form, southwest China. Based on the absence of cathodoluminescence and very low Mn (gener-ally<50 ppm) contents of the samples, it is thought that they contain information on the orig-inal sea water geochemistry. The results of isotopic analyses of these samples are presented interms of δ~(13)C and ~(87)Sr/~(86)Sr ratios versus geological time. The strontium data, consistent withother similar data based on samples from North America, Europe, Africa and other areas inAsia, support the notion of a global consistency in strontium isotope composition of marinecarbonates. The strontium data exhibit three intervals of relatively low ~(87)Sr/~(86)Sr ratios in thelate Middle Devonian to early Late Devonian, Early Carboniferous and Early Permian, corre-sponding to global eustatic high sea level stands. The lowest ~(87)Sr/~(86)Sr ratio recorded in theLate Permian was probably caused by substantial basalt eruptions in the Upper Yangtze Plat-form at the time. Three corresponding periods of relatively high δ~(13)C values at roughly the samethe intervals were caused by a relatively high rate of accumulation of organic carbon duringsea level rises at these times. The deposition of coal was probably responsible for the increaseof sea water δ~(13)C at other times. The δ~(13)C values drop dramatically near theDevonian/Carboniferous, Carboniferous/Permian and Permian/Triassic boundaries, con-sistent with other similar data, which further support the notion that geological time boundariesare associated with mass extinction and subsequent rejuvenation.  相似文献   

19.

Devonian and Carboniferous (Yarrol terrane) rocks, Early Permian strata, and Permian‐(?)Triassic plutons outcrop in the Stanage Bay region of the northern New England Fold Belt. The Early‐(?)Middle Devonian Mt Holly Formation consists mainly of coarse volcaniclastic rocks of intermediate‐silicic provenance, and mafic, intermediate and silicic volcanics. Limestone is abundant in the Duke Island, along with a significant component of quartz sandstone on Hunter Island. Most Carboniferous rocks can be placed in two units, the late Tournaisian‐Namurian Campwyn Volcanics, composed of coarse volcaniclastic sedimentary rocks, silicic ash flow tuff and widespread oolitic limestone, and the conformably overlying Neerkol Formation dominated by volcaniclastic sandstone and siltstone with uncommon pebble conglomerate and scattered silicic ash fall tuff. Strata of uncertain stratigraphic affinity are mapped as ‘undifferentiated Carboniferous’. The Early Permian Youlambie Conglomerate unconformably overlies Carboniferous rocks. It consists of mudstone, sandstone and conglomerate, the last containing clasts of Carboniferous sedimentary rocks, diverse volcanics and rare granitic rocks. Intrusive bodies include the altered and variably strained Tynemouth Diorite of possible Devonian age, and a quartz monzonite mass of likely Late Permian or Triassic age.

The rocks of the Yarrol terrane accumulated in shallow (Mt Holly, Campwyn) and deeper (Neerkol) marine conditions proximal to an active magmatic arc which was probably of continental margin type. The Youlambie Conglomerate was deposited unconformably above the Yarrol terrane in a rift basin. Late Permian regional deformation, which involved east‐west horizontal shortening achieved by folding, cleavage formation and east‐over‐west thrusting, increases in intensity towards the east.  相似文献   

20.
本文基于对楚-萨雷苏盆地热兹卡兹甘地区的构造运动、相应动力学机制、沉积地层的研究,对楚-萨雷苏盆地盆地上古生界沉积演化做了阐述,提出了热兹卡兹甘地区晚古生代经历了早中泥盆世火山盆地—晚泥盆世(成盆初期)滨海冲积平原、局限台地—早石炭世(海侵期)台地、台缘斜坡、陆棚—中晚石炭世(海退期)海陆交互相三角洲—早二叠世(干旱气候期)干盐湖—晚二叠世盐湖的沉积演化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号