首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recrystallization of perthites in granulite facies (T = 700–730 °C, P = 0.65–0.8 GPa) shear zones in mangerite-charnockite rocks from Lofoten (Norway) is localized along intracrystalline bands parallel to fractures. Fracturing preferentially occurred along the cleavage planes (010) and (001). EBSD analysis of perthite porphyroclasts indicates a very low degree of internal misorientation (within 5°) and the lack of recovery features. Recrystallized grains show coarsening with increasing width of the bands, and chemical changes with respect to the host grains. Crystallographic orientation of the new grains does not show a host-control relation to the parent perthite grains. In summary, the microstructure and CPO data consistently indicate intragranular recrystallization by nucleation and growth from fractured grains. Perthite porphyroclasts are surrounded by a matrix of recrystallized plagioclase + K-feldspar ± amphibole ± biotite. There is extensive evidence of syndeformational nucleation of new phases and of phase boundary migration in the matrix, with plagioclase grains forming bulges and protrusions towards K-feldspar. The spatial distribution of K-feldspar and plagioclase in the recrystallized matrix is characterized by the predominance of phase boundaries over grain boundaries. All these observations are consistent with diffusion creep as the dominant deformation mechanism in the matrix, associated with grain boundary sliding. Accordingly, recrystallized plagioclase and K-feldspar show a very weak crystallographic preferred orientation, which is interpreted in terms of oriented growth during diffusion creep. Fracturing of perthites promoted extensive grain size reduction, recrystallization, fluid infiltration, and operation of grain-size sensitive creep, resulting in strain localization.  相似文献   

2.
When grains of a sediment sample are separated by sieving into a number of size classes, the weight of the grains belonging to a particular size-class is called the weight frequency of that class. That the weight frequencies cannot be used as simple frequencies for the calculation of the mean and standard deviation of size of grains is well known. A method is developed in this paper for estimating these two as well as a third parameter, named shape parameter, by minimizing a quadratic form that arises naturally as an analogue of the 2 statistic. Two fully worked out numerical examples, with simulated data, are presented to illustrate the method. A computer program in FORTRAN language is also appended. Comparative study shows that the quicker conventional method used by geologists may produce reasonably good estimates of standard deviation when the sample size is large, but the estimates of mean may show large deviations.  相似文献   

3.
斜长石是自然界最常见的造岩矿物,一般认为它是完全类质同象系列的典型代表。然而近代研究发现,斜长石在地质体中出现的概率是不均等的,呈不连续的众数分布。在斜长石的X射线衍射、电子衍射、光学性质以及红外吸收光谱所记录的相关曲线上,出现反映结构变化的不连续点,这些不连续点与上述稳定斜长石(呈众数者)的成分点一致。另外,斜长石的非布拉格“卫星”衍射等都说明斜长石超结构对斜长石的稳定性起着重要的制约作用。本文以大量的实际资料,把斜长石的内部结构和斜长石各种物理化学性质联系起来,讨论各种斜长石成分的分布规律,并提出低结构态斜长石分类。  相似文献   

4.
Experimentally deformed Maryland diabase has been examined using the transmission electron microscope in order to determine the mechanisms of deformation operative over a range of temperatures and pressures and thereby aid in the interpretation of polyphase flow data. Deformation mechanisms within the plagioclase and clinopyroxene of the diabase have been compared to those within monomineralic aggregates of these phases deformed at the same conditions. Both phases deform by microfracturing, mechanical twinning, and intracrystalline slip.Data for the monomineralic aggregates show that plagioclase is stronger than clinopyroxene at <800°C, but weaker at ≥ 800°C, for a pressure of 15 kbar and strain rate of 10?6/sec. Observations of the diabase are consistent with this result: at < 800°C, the plagioclase and pyroxene grains are about equally strained, whereas at ≥ 800°C, almost all of the sample strain is accommodated by the plagioclase, the more continuous phase.  相似文献   

5.
Osmium, ruthenium, iridium and uranium contents were determined in eight ortho pyroxene, seven plagioclase, and three chromite mineral separates from the eastern Bushveld Complex. Neutron activation analysis was used to measure the platinum metals, and uranium was determined by a fission track technique. The platinum metals were found to be present within each minéral in the proportions Os:Ru:Ir = 1:7:1, while the concentrations of these metals in the minerals are in the ratios orthopyroxene:plagioclase:chromite = 1:16:700. The concentration of uranium was found to range from 11 to 66 ppb (parts per billion) and not to vary significantly from mineral to mineral. The data for the platinum metals are consistent with a model in which the eastern Bushveld Complex was formed by the fractional crystallization of two separately injected magmas. A computer fit of this model to these data indicates that the initial concentrations of Os, Ru and Ir in the first magma were 0.24, 2.0 and 0.21 ppb and in the second magma were 0.16, 1.1 and 0.18 ppb, respectively. The fit also yields the distribution coefficients for the partitioning between the liquid and cumulus orthopyroxene, cumulus plagioclase and cumulus chromite. These coefficients (mineral/liquid) for osmium are 4.5, 66 and 2700; for ruthenium, they are 5, 65 and 2700; and for iridium, they are 4, 60 and 1600. To make this fit, it was necessary to hypothesize the existence of two types of chromite: one type with a large distribution coefficient, presumably formed as a cumulus phase at high temperature, and another, more prevalent type with a smaller distribution coefficient, which may have been formed by postcumulus growth at a lower temperature. This hypothesis is supported by data for coexisting chromite-silicate pairs, which indicate that the chromite grains expelled these platinum metals as they cooled.  相似文献   

6.
Two types of garnet porphyroblast occur in the Schneeberg Complex of the Italian Alps. Type 1 porphyroblasts form ellipsoidal pods with a centre consisting of unstrained quartz, decussate mica and small garnet grains, and a margin containing large garnet grains. Orientation contrast imaging using the scanning electron microscope shows that the larger marginal garnet grains comprise a number of orientation subdomains. Individual garnet grains without subdomains are small (< 50 µm), faceted and idioblastic, and have simple zoning profiles with Ca‐rich cores and Ca‐poor rims. Subdomains of larger garnet grains are similar in size to the individual, small garnet grains. Type 2 porphyroblasts comprise only ellipsoidal garnet, with small subdomains in the centre and larger subdomains at the margin. Each subdomain has its own Ca high, Ca dropping towards subdomain boundaries. Garnet grains, with or without subdomains, all have the same Ca‐poor composition at rims in contact with other minerals. The compositional zonation patterns are best explained by simultaneous, multiple nucleation, followed by growth and amalgamation of individual garnet grains. The range of individual garnet and garnet subdomain sizes can be explained by a faster growth rate at the porphyroblast margin than in the centre. The difference between Type 1 and Type 2 porphyroblasts is probably related to the growth rate differential across the porphyroblast. Electron backscatter diffraction shows that small, individual garnet grains are randomly oriented. Large marginal garnet grains and subdomain‐bearing garnet grains have a strong preferred orientation, clustering around a single garnet orientation. Misorientations across subdomain boundaries are small and misorientation axes are randomly oriented with respect to crystallographic orientations. The only explanation that fits the observational data is that individual garnet grains rotated towards coincident orientations once they came into contact with each other. This process was driven by the reduction of subdomain boundary energy associated with misorientation loss. Rotation of garnet grains was accommodated by diffusion in the subdomain boundary and diffusional creep and rigid body rotation of other minerals (quartz and mica) around the garnet. An analytical model, in which the kinetics of garnet rotation are controlled by the rheology of surrounding quartz, suggests that, at the conditions of metamorphism, the rotation required to give a strong preferred orientation can occur on a similar time‐scale to that of porphyroblast growth.  相似文献   

7.
Plagioclases and K-feldspars in the sandstones and mudrocks of the Cretaceous non-marine Gyeongsang Basin, Korea, were partially to completely albitized. The preservation of fresh plagioclase grains in early micrite-cemented sandstones suggests the diagenetic origin of albite. Albitization textures in mudrocks were examined using backscattered electron images. In contrast to completely albitized plagioclase grains in sandstones, those in mudrocks are mostly partially albitized. It suggests that mudrocks can be more useful for a provenance study than sandstones by preserving detrital minerals better. K-feldspar is unaltered to partially albitized in both sandstones and mudrocks. In mudrocks albitization starts preferentially along microfractures, cleavages and grain margins. Albitization along grain margins seems to be a characteristic feature in mudrocks where development of microfractures in silt-sized feldspar grains by physical compaction is limited by clayey matrix as well as by overpressure. The extent of albitization in mudrocks is mainly controlled by composition of the detrital plagioclase. Mudrocks containing calcic plagioclase grains tend to be more extensively albitized than those containing sodic varieties.  相似文献   

8.
There are many observations in naturally deformed rocks on the effects of mineral reactions on deformation, but few experimental data. In order to study the effects of chemical disequilibrium on deformation we have investigated the hydration reaction plagioclase + H2OM more albitic plagioclase + zoisite + kyanite + quartz. We utilized fine-grained (2-6 µm) plagioclase aggregates of two compositions (An54 and An60), both dried and with 0.1-0.4 wt% H2O present, in shear deformation experiments at two sets of conditions: 900 °C, 1.0 GPa (in the plagioclase stability field) and 750 °C, 1.5 GPa (in the zoisite stability field). Dry samples and those deformed in the plagioclase stability field underwent homogeneous shearing by dislocation creep, but samples with 0.1 to 0.4 wt% water deformed in the zoisite stability field showed extreme strain localization into very narrow (~1-3 µm) shear bands after low shear strain. In these samples the microstructures of reaction products in the matrix differ from those in the shear bands. In the matrix, large (up to 400 µm) zoisite crystals grew in the direction of finite extension, and relict plagioclase grains are surrounded by rims of recrystallized grains that are more albitic. In the shear bands, the reaction products albitic plagioclase, zoisite, white mica, and traces of kyanite form polyphase aggregates of very fine-grained (<0.1 µm) dislocation-free grains. Most of the sample strain after % ~2 has occurred within the shear bands, within which the dominant deformation mechanism is inferred to be diffusion-accommodated grain boundary sliding (DAGBS). The switch from dislocation creep in dry samples deformed without reaction to DAGBS in reacted samples is associated with a decrease in flow stress from ~800 to <200 MPa. These experiments demonstrate that heterogeneous nucleation driven in part by chemical disequilibrium can produce an extremely fine-grained polyphase assemblage, leading to a switch in deformation mechanism and significant weakening. Thus, localization of deformation in polyphase rocks may occur on any pressure (P),temperature (T)-path where the equilibrium composition of the constituent minerals changes.  相似文献   

9.
殷建  宋松柏 《水文》2015,35(3):1-7
研究随机加权先验法进行P-Ⅲ分布参数贝叶斯估计。应用随机加权法确定分布参数的先验分布,MCMC自适应采样算法(AM)进行参数的后验分布采样,并与矩法、极大似然法和概率权重矩法等传统水文频率分析方法进行比较。实例表明,AM方法估算参数下,实测样本与对应频率设计值离差平方和最小,是一种可行的水文频率分析途径。  相似文献   

10.
Schlieren are trains of platy or blocky minerals, typically the ferromagnesian minerals and accessory phases, that occur in granites and melt‐rich migmatites, such as diatexites. They have been considered as: (1) unmelted residue from xenoliths or the source region; (2) mineral accumulations formed during magma flow; (3) compositional layering; and (4) sites of melt loss. In order to help identify schlieren‐forming processes in the diatexites at St Malo, differences in the size, shape, orientation, distribution and composition of the biotite from schlieren and from their hosts have been investigated. Small biotite grains are much less abundant in the schlieren than in their hosts. Schlieren biotite grains are generally larger, have greater aspect ratios and have, except in hosts with low (< 10%) biotite contents, a much stronger shape preferred orientation than host biotite. The compositional ranges of host and schlieren biotite are similar, but schlieren biotite defines tighter, sharper peaks on composition‐frequency plots. Hosts show magmatic textures such as imbricated (tiled), unstrained plagioclase. Some schlieren show only magmatic textures (tiled biotite, no crystal‐plastic strain features), but many have textures indicating submagmatic and subsolidus deformation (e.g. kinked grains) and these schlieren show the most extensive evidence for recrystallization. Magmas at St Malo initially contained a significant fraction of residual biotite and plagioclase crystals; smaller biotite grains were separated from the larger plagioclase crystals during magma flow. Since plagioclase was also the major, early crystallizing phase, the plagioclase‐rich domains developed rapidly and reached the rigid percolation threshold first, forcing further magma flow to be concentrated into narrowing melt‐rich zones where the biotite had accumulated, hence increasing shear strain and the degree of shape preferred orientation in these domains. Schlieren formed in these domains as a result of grain contacts and tiling in the grain inertia‐regime. Final amalgamation of the biotite aggregates into schlieren involved volume loss as melt trapped between grains was expelled after the rigid percolation threshold was reached in the biotite‐rich layers.  相似文献   

11.
The spatial distribution of grains in a solidifying igneous rock controls the physical properties of the crystal mush, and in turn is controlled by the rate of crystal growth and accumulation. A predominant non-spherical habit for igneous minerals brings into question the use of spherical particles in reference packings used for quantification of spatial distribution. Furthermore, variations of crystal clustering/ordering with length scale require spatial statistics which take into account the distribution of particles beyond nearest neighbours. Using random close packings of spherocylinders, we demonstrate the importance of aspect ratio for the aggregation index (usually known as R) and show that packings of spherical particles have more structure than packings of rods. The spatial distribution functions demonstrate that the plagioclase grains in the colonnade from the Holyoke basalt are clustered on a length scale of 0.5 mm. Understanding the controls on grain spatial distribution in igneous rocks will depend on the application of these techniques to well-understood environments.  相似文献   

12.
<正>GRV 020175 is an Antarctic mesosiderite,containing about 43 vol%silicates and 57 vol% metal.Metal occurs in a variety of textures from irregular large masses,to veins penetrating silicates, and to matrix fine grains.The metallic portion contains kamacite,troilite and minor taenite.Terrestrial weathering is evident as partial replacement of the metal and troilite veins by Fe oxides.Silicate phases exhibit a porphyritic texture with pyroxene,plagioclase,minor silica and rare olivine phenocrysts embedded in a fine-grained groundmass.The matrix is ophitic and consists mainly of pyroxene and plagioclase grains.Some orthopyroxene phenocrysts occur as euhedral crystals with chemical zoning from a magnesian core to a ferroan overgrowth;others are characterized by many fine inclusions of plagioclase composition.Pigeonite has almost inverted to its orthopyroxene host with augite lamellae, enclosed by more magnesian rims.Olivine occurs as subhedral crystals,surrounded by a necklace of tiny chromite grains(about 2-3μm).Plagioclase has a heterogeneous composition without zoning. Pyroxene geothermometry of GRV 020175 gives a peak metamorphic temperature(~1000℃) and a closure temperature(~875℃).Molar Fe/Mn ratios(19-32) of pyroxenes are consistent with mesosiderite pyroxenes(16-35) and most plagioclase compositions(An_(87.5_96.6)) are within the range of mesosiderite plagioclase grains(An_(88-95)).Olivine composition(Fo_(53.8)) is only slightly lower than the range of olivine compositions in mesosiderites(Fo_(55-90)).All petrographic characteristics and chemical compositions of GRV 020175 are consistent with those of mesosiderite and based on its matrix texture and relatively abundant plagioclase,it can be further classified as a type 3A mesosiderite.Mineralogical, penological,and geochemical studies of GRV 020175 imply a complex formation history starting as rapid crystallization from a magma in a lava flow on the surface or as a shallow intrusion.Following primary igneous crystallization,the silicate underwent varying degrees of reheating.It was reheated to 1000℃,followed by rapid cooling to 875℃.Subsequently,metal mixed with silicate,during or after which,reduction of silicates occurred;the reducing agent is likely to have been sulfur.After redox reaction,the sample underwent thermal metamorphism,which produced the corona on the olivine, rims on the inverted pigeonite phenocrysts and overgrowths on the orthopyroxene phenocrysts,and homogenized matrix pyroxenes.Nevertheless,metamorphism was not extensive enough to completely reequilibrate the GRV 020175 materials.  相似文献   

13.
This study explores the state of finite strain and changes in the mean kinematic vorticity number, grain size, whole-rock chemistry and mineralogy across an upper amphibolite-facies shear zone in a metadiorite, northern Malawi, east-central Africa. P–T conditions during shear-zone formation and deformation were approximately 700–750C and 5–7?kbar and are slightly less than P–T conditions for the regional peak of metamorphism. The major rock-forming minerals, plagioclase, hornblende, biotite, and quartz, were deformed by crystal-plastic processes accompanied by, except for hornblende, dynamic recrystallization. The modal abundance of all four major rock-forming minerals shows no systematic change from the country rock into and across the shear zone, indicating that shear-zone development was not associated with retrograde mineral reactions. The grain size of the major rock-forming minerals decreases within the shear zone. Plagioclase and hornblende, which occur as porphyroblasts outside the shear zone, exhibit a bimodal grain-size distribution within the shear zone. Quartz has a unimodal grain-size distribution in the shear zone. Major and trace element chemistry does not change systematically across the shear zone, implying no volume change in the mylonite. Matrix strain data for plagioclase and hornblende by the Fry method and fabric strain as deduced from Rf/φ analysis of plagioclase and quartz grains demonstrate a slightly constrictional strain type (K≈1.5) across the shear zone. The quantitative finite-strain data for the different residual minerals as obtained by unlike methods show no systematic variation, but recrystallized plagioclase grains record higher strain than the residual grains. The mean kinematic vorticity number changes from approximately 0.3 outside to approximately 0.8 within the shear zone, indicating that the bulk deformation path deviated from progressive simple shear. The estimates for finite strain and the degree of noncoaxiality account for approximately 50% of thinning normal to the shear zone.  相似文献   

14.
Lunar sample 76535 is a coarse-grained troctolitic granulite exhibiting a texture indicative of long annealing times. It is composed of homogeneous crystals of plagioclase (58 per cent, An96), olivine (37 per cent, Fo88) and bronzite (4 per cent, En86).Chromian spinel-bronzite-diopside (Wo46En50Fs4) symplectic intergrowths commonly occur along olivine-plagioclase boundaries and as tiny inclusions within olivine grains. These symplectites apparently formed by a reaction of the type:
OI + An + Chromite → Opx + Cpx + Al-Mg-chromite
. The reaction is related to the experimentally determined reaction
OI + An = Opx + Cpx + Sp
of Kushiro and Yoder (1966). The enstatite content of the diopside coexisting with the bronzite indicates equilibration at about 1000°C. Thermodynamic calculations for 1000°C indicate that the symplectites formed at a minimum pressure of about 0.6 kb. Low alumina contents of the pyroxenes indicate equilibration near this minimum pressure.Clusters of the same assemblage found in the symplectic intergrowths, but containing accessory metal, troilite, Ca-phosphates, baddeleyite, plagioclase and/or K-feldspar occur sporadically throughout the rock. These apparent late stage products crystallized in the low temperature-high pressure region discussed above.Phase relations of co-existing metal phases indicate that the rock cooled at a few tens of degrees/my, corresponding to depths of 10–20 km below the lunar surface, in agreement with the above pressure estimate.We infer that 76535 represents an original cumulate deposited at a depth between about 10 and 30 km. The last liquid crystallized in the relatively high pressure-low temperature field opx + cpx + Al-Mg-chromite. Cooling was extremely slow and accompanied by extensive chemical and textural re-equilibration. Reaction to form the symplectites occurred during the late stages of re-equilibration.  相似文献   

15.
A new method to determine stress directions using the preferential orientation of plagioclase mechanical twins has been applied to high-temperature mylonitic rocks from the Além Paraíba shear zone, Ribeira fold belt, southeastern Brazil. We have measured the lattice-preferred orientation of plagioclase grains and calculated the orientation of the stress axes possible for the observed twin orientations. The maximum compressive stress direction (σ1), determined for all studied samples, is a function of the mechanical twin orientations of a number of distinct plagioclase populations. The σ1 direction is generally subperpendicular to the (010) plane. The statistical treatment for most of the plagioclase grains examined for each sample shows that σ1 is almost perpendicular to the foliation plane, suggesting a significant coaxial component in the deformation process of these rocks.  相似文献   

16.
One hundred and seventy-six oxide mineral grains in the Luna 20 samples were analyzed by electron microprobe. Spinel is the most abundant oxide, occurring in troctolite fragments. Next most abundant is ilmenite, which occurs in all rock types except those containing spinel. Chromite also occurs in all rock types except those containing spinel. Minor amounts of ulvöspinel, armalcolite, zirkelite, baddeleyite and an unidentified TiO2-rich phase were also found.Spinel grains are predominantly spinel-hercynite solid solutions, commonly with very minor chromite. The Fe(Fe + Mg) ratio is generally lower than in spinel from Apollo 14 rocks. Chromites in non-mare rocks are similar to those from mare rocks. Ilmenite of mare origin is Mg-poor and Zr-rich compared to non-mare ilmenite; these elements may therefore be useful in determining the origin of ilmenite grains.Phase equilibria considerations suggest that spinel troctolite crystallized from a melt high in alumina; a likely candidate is the high-alumina basalt of Prinzet al. (1973a).Sub-micron wide rods of metallic Fe occur in plagioclase grains and may have formed by sub-solidus reduction processes.  相似文献   

17.
Three samples of gem quality plagioclase crystals of An60 were experimentally deformed at 900 °C, 1 GPa confining pressure and strain rates of 7.5–8.7×10−7 s−1. The starting material is effectively dislocation-free so that all observed defects were introduced during the experiments. Two samples were shortened normal to one of the principal slip planes (010), corresponding to a “hard” orientation, and one sample was deformed with a Schmid factor of 0.45 for the principal slip system [001](010), corresponding to a “soft” orientation. Several slip systems were activated in the “soft” sample: dislocations of the [001](010) and 110(001) system are about equally abundant, whereas 110{111} and [101] in ( 31) to ( 42) are less common. In the “soft” sample plastic deformation is pervasive and deformation bands are abundant. In the “hard” samples the plastic deformation is concentrated in rims along the sample boundaries. Deformation bands and shear fractures are common. Twinning occurs in close association with fracturing, and the processes are clearly interrelated. Glissile dislocations of all observed slip systems are associated with fractures and deformation bands indicating that deformation bands and fractures are important sites of dislocation generation. Grain boundaries of tiny, defect-free grains in healed fracture zones have migrated subsequent to fracturing. These grains represent former fragments of the fracture process and may act as nuclei for new grains during dynamic recrystallization. Nucleation via small fragments can explain a non-host-controlled orientation of recrystallized grains in plagioclase and possibly in other silicate materials which have been plastically deformed near the semi-brittle to plastic transition.  相似文献   

18.
《Quaternary Science Reviews》2003,22(10-13):1279-1285
Three sediment samples were collected from a soil profile at the Lagoa do Bordoal site, Algarve, Portugal. Quartz extracted from soil horizons within the profile, was optically dated using the single-aliquot regenerative-dose (SAR) protocol outlined by Murray and Wintle (Radiation Measurements 5 (2000) 523). The optically stimulated luminescence (OSL) emitted by quartz within the 90–150 μm size range was measured using three aliquot sizes. The equivalent doses (DE) that were obtained show an asymmetric distribution. As the numbers of grains in each aliquot are reduced, the distribution of doses is clearly shifted to lower DE values including zero doses on single grain aliquots. This shift is accompanied by an increase in the asymmetry of the distribution. These patterns indicate that as the aliquot size decreases, the distributions are increasingly characterized by aliquots with lower DE's. With respect to the present day modern surface, this shift is most evident in the sample collected from a depth of 37 cm, within an ancient B-horizon. It is least evident in the sample located only 10 cm below it, within a sand unit. An asymmetric distribution of DE's can be a result of a large number of grains that were well bleached at burial being mixed with a small number of grains that were partially bleached at that time (Radiation Measurements 30 (1999) 207). However, the shift in DE's that is seen in the Lagoa East samples is most likely due to the postburial downward movement of fully and partially bleached grains from the surface, with possible contributions from the downward movement of grains that received low doses while buried in overlying horizons. The simplest explanation for our results is that grains carrying zero or small DE's have been moved downward during bioturbation events. These results suggest that downward bioturbation in ancient soil profiles can be identified based on the OSL characteristics of quartz grains. We are also able to provide a minimum age of 24.4±3.2 ka for the Upper Palaeolithic lithic assemblage at the site.  相似文献   

19.
Two moderately shocked rock samples collected from the Ries Crater, West Germany (granite—gneiss sample RC-647-29 and biotite-granite sample RP-627-55) and two weakly shocked pegmatite samples (Lj-711-12 and Lj-711-5) taken from Lake Lappajarvi, Finland, have been optically studied to establish the variation range of optical constants and distribution characteristics of shock lamellae in shocked quartz. It has been found that sample RC-647-29 contains shocked quartz grains with the average refractive index ranging from 1.4612 to 1.5331, and sample RP-627-55 from 1.5002 to 1.4669, i.e., they cover a wide range of shock pressures. As for the larger quartz grains in samples Lj-711-12 and Lj-711-5, the variation range of the average refractive indices are smaller than those of samples from the Ries Crater. Hence the estimation of degree of shock must est with the investigation of a set of representative shocked quartz crystals from a single shocked rock sample. The optical data on shocked quartz indicate that the degree of shock is highly independent of the number of shock lamellae sets and their orientations; the most sensitive optical indicator is the index of refraction. On the basis of TEM investigations of single crystal grains of shocked quartz differing in refractive index, three mechanisms of formation of shock lamellae have been established: host quartz crystals with lamellae having closely spaced dislocations; host quartz crystals with lamellae of randomly oriented fine grains of quartz; and host quartz crystals or their residual fragments with lamellae of silica glass.  相似文献   

20.
《Geochimica et cosmochimica acta》1999,63(13-14):2123-2143
The Weekeroo Station IIE iron meteorite contains a variety of felsic and mafic inclusions enclosed in an FeNi-metal host. Petrographic, EMP, and SIMS data suggest that the petrogenesis of the silicates was complex, and included differentiation, remelting, FeO-reduction, and dynamic mixing of phases.Differentiation produced a variety of olivine-free inclusion assemblages, ranging from pyroxene + plagioclase + tridymite with peritectic compositions, to coarse orthopyroxene, to plagioclase + tridymite and its glassy equivalent. Individual phases have similar trace-element abundances and patterns, despite large variations in inclusion textures, modes, and bulk compositions, probably as a result of mechanical separation of pre-existing phases in an impact event that dynamically mixed silicates with the metallic host. Trace-element data imply that augite and plagioclase grains in different inclusions crystallized from the same precursor melt, characterized by relatively unfractionated REE abundances of ∼20–30 × CI-chondrites except for a negative Eu anomaly. Such a precursor melt could have been produced by ∼2–5% equilibrium partial melting of an H-chondrite silicate protolith, or by higher degrees of partial melting involving subsequent fractional crystallization. Glass appears to have formed by the remelting of pre-existing plagioclase and orthopyroxene, in a process that involved either disequilibrium or substantial melting of these phases. During remelting, silicate melt reacted with the FeNi-metal host, and FeO was reduced to Fe-metal. Following remelting and metal-silicate mixing, inclusions apparently cooled at different rates in a near-surface setting on the parent body; glass- or pigeonite-bearing inclusions cooled more rapidly (≥2.5°C/hr between 1000–850°C) than pigeonite-free, largely crystalline inclusions.The results of this study point to two likely models for forming IIE iron meteorites, both involving collision between an FeNi-metal impactor and either a differentiated or undifferentiated silicate-rich target of H-chondrite affinity. Each model has difficulties and it is possible that both are required to explain the diverse IIE group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号