首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bulk analyses of 157 lithic fragments of igneous origin and analyses of their constituent minerals (plagioclase, pyroxene, olivine, Mg-Al spinel, chromite, ilmenite, armalcolite, baddeleyite, zirkelite, K-feldspar, interstitial glass high in SiO2 and K2O) have been used to characterize the lunar highland rock suites at the Luna 20 site. The predominant suite is composed of ANT (anorthositic-noritic-troctolitic) rocks, as found at previous Apollo and Luna sites. This suite consists of an early cumulate member, spinel troctolite, and later cumulate rocks which are gradational from anorthosite to noritic and troctolitic anorthosite to anorthositic norite and troctolite; anorthositic norite is the most abundant rock type and its composition is close to the average composition for the highland rocks at this site. Spinel troctolite is a distinctive member of this suite and is characterized by the presence of Mg-Al spinel, magnesian olivine (average, Fo83), and plagioclase. High-alumina basalt with low alkali content is another important rock type and melt of this composition may be parental to the cumulate ANT suite. Alkalic high-alumina basalt (KREEP) was not found in our sample, but may be genetically related to the ANT suite in that it may have formed by partial melting of rocks similar to those of the ANT suite. Fractional crystallization of low alkali, high-alumina basalt probably cannot produce alkalic high-alumina basalt because the enrichment in KREEP component is many times greater than the simultaneous change in major element components. Formation of alkalic high-alumina basalt by mechanical mixing of ANT rocks with very KREEP-rich components is not likely because the high-alumina basalt suite falls on a cotectic in the anorthiteolivine-silica system. Mare basalts may also be genetically related in that they may have been derived by remelting of rocks formed from residual liquids of fractional crystallization of parental low-alkali, high-alumina basalt, plus mafic cumulate crystals; the resultant melt would have a negative Eu anomaly and high FeMg and pyroxeneplagioclase ratios.  相似文献   

2.
Only fine-grained rocks are present in the Luna 20 samples, and coarser grained rocks are represented by fragments of single crystals. A petrologic study has been made of 47 fine-grained crystalline rocks, microbreccias, and glassy aggregates. In addition, a total of 33 single crystals of pyroxene, plagioclase, olivine and spinel, in the size range 125 to 500 μ, have been examined using electron microprobe and single crystal X-ray diffraction techniques.The most abundant fine-grained crystalline rocks in the samples we have examined are recrystallized anorthositic norite and anorthositic troctolite. Gabbroic rocks, anorthosite, and KREEP basalt are present but not common. Most of the single crystals of pyroxene and plagioclase could have been derived from coarser grained noritic, troctolitic and anorthositic rocks. However, three of the 14 pyroxene crystals, and 2 of the 5 olivine crystals have Fe(Fe + Mg) contents greater than 0.45 and are believed to have been derived from mare basalts or related rocks. Two relatively sodic crystals of plagioclase were found. One is a crystal zoned at least over the range An85 to An63, and the second is a homogeneous crystal of albite (~An3).  相似文献   

3.
Spinels, Fe–Ti oxide minerals, apatites, and carbonates hosted in ophiolitic serpentinites and metagabbros of Gabal Garf (southern ED) and Wadi Hammariya (central ED) of Egypt are discussed. Microscopic and electron probe studies on these minerals are made to evaluate their textural and compositional variations. Alteration of chromites led to form ferritchromite and magnetite; rutile–magnetite intergrowths and martite are common in serpentinites. Fine trillis exsolution of ilmenite–magnetite and ilmenite–hematite and intergrowth of rutile–magnetite and ilmenite–sphene are recorded. Composite intergrowth grains of titanomagnetite–ilmenite trellis lamellae are common in metagabbros. The formation of ilmenite trellis and lamellae in magnetite and titanomagnetite indicate an oxidation process due to excess of oxygen contained in titanomagnetite; trapped and external oxidizing agents. This indicates the high P H2O and oxygen fugacity of the parental magma. The sulfides minerals include pyrrhotite, pyrite and chalcopyrite. Based on the chemical characteristics, the Fe–Ti oxide from the ophiolitic metagabbros in both areas corresponds to ilmenite. The patites from the metagabbros are identified as fluor-apatite. Carbonates are represented by dolomites in serpentinites and calcite in metagabbros. Spinel crystals in serpentinites are homogenous or zoned with unaltered cores of Al-spinel to ferritchromit and Cr-magnetite toward the altered rims. Compared to cores, the metamorphic rims are enriched in Cr# (0.87–1.00 vs. 0.83–0.86 for rims and cores, respectively) and impoverished in Mg# (0.26–0.48 vs. 0.56–0.67) due to Mg–Fe and Al (Cr)–Fe3+ exchange with the surrounding silicates during regional metamorphism rather than serpentinization process. The Fe–Ti oxides have been formed under temperature of ~800 °C for ilmenite. Al-spinels equilibrated below 500–550 °C, while the altered spinel rims correspond to metamorphism around 500–600 °C. Geochemical evidence of the podiform Al-spinels suggest a greenschist up to lower amphibolite facies metamorphism (at 500–600 °C), which is isofacial with the host rocks. Al-spinel cores do not appear to have re-equilibrated completely with the metamorphic spinel rims and surrounding silicates, suggesting relic magmatic composition unaffected by metamorphism. The composition of Al-spinel grains suggest an ophiolitic origin and derivation by crystallization of boninitic magma that belonging to a supra-subduction setting could form either in forearcs during an incipient stage of subduction initiation or in back-arc basins.  相似文献   

4.
LaPaz Icefield 02205 (LAP 02205) is a new low-Ti mare-basalt meteorite that was discovered in the LaPaz Ice Field in Antarctica. This is the first crystalline lunar basalt in the US Antarctic collection and the only 5th unbrecciated mare-basalt meteorite to be discovered to date. The rock has a typical basaltic texture with tabular and elongated pyroxene and plagioclase crystals, and minor olivine grains commonly rimmed by pyroxenes. Core- to rim-zoning in terms of Fe and Mg is present in almost all pyroxene grains. Accessory minerals include ilmenite, chromite, ulvöspinel, troilite, and FeNi metal. This rock is highly enriched in late-stage mesostasis. Free silica is also abundant. In terms of texture and mineralogy, LAP 02205 displays features of low-Ti mare basalts, with similarities to some low-Ti Apollo 12 and Apollo 15 basalts. Whole-rock major- and trace-element compositions confirm the highly fractionated nature of this basalt. The whole-rock REE contents of the meteorite are the highest among all known low-Ti mare basalts. The platinum group element (PGE) contents in LAP are also enriched suggesting the possibility of endogenously enriched source regions or the PGEs generally behaved as incompatible elements during crystal fractionation under low fO2 conditions. Trace-element contents of mineral grains in LAP 02205 display wide variations, suggesting extensive non-equilibrium crystallization. The REE concentrations in the earliest-formed minerals provide constraints on the composition of the parental liquid, which is similar to the measured whole-rock composition. Crystallization modeling of the LAP 02205 bulk composition yields a reasonable fit between predicted and observed mineral phases and compositions, except for the high-Mg olivine cores, which are observed in the rock but not predicted by the modeling. An isochron age of 2929 ± 150 Ma for phosphate minerals makes this rock one of the youngest lunar basalts known to date. The young age and specific geochemical characteristics of LAP distinguish it from those of most other low-Ti mare basalts. However, the low-Ti mare basalt meteorite, NWA 032, has a similar young age, and the two meteorites also appear to be closely related from some geochemical perspectives and might have originated from similar source regions on the Moon.  相似文献   

5.
Lunar meteorite EET 96008 is a fragmental breccia that predominantly consists of basaltic mineral clasts (0.5-2 mm), along with minor lithic fragments and breccia clasts. The matrix consists mainly of smaller mineral fragments (<0.5 mm), bound by glassy cement, the majority of which are pyroxene and plagioclase. The pyroxene possesses extensive exsolution lamellae. These lamellae, up to 1 μm in width, are atypical for mare-basalts. One of the distinguishing textures of EET 96008 is the presence of small pockets (∼400 × 500 μm) of mesostasis areas consisting of coarse (∼20 μm) intergrowths of ferroaugite, fayalite and Si-rich glass. Laths of ilmenite, armalcolite, apatite and whitlockite are also distributed in these areas. Ilmenite grains are abundant and dispersed throughout the thin sections. Chromite and ulvöspinel are present but in minor abundance. Troilite, generally rare in this rock, occurs as several grains in one pyroxene crystal. FeNi metal is conspicuously absent from this meteorite.The molar Fe/Mn ratio in olivines and pyroxenes and the age of the meteorite are evidence for a lunar origin. The mineralogy of EET 96008 shows close affinity to a mare-basalt source, albeit with possible minor highland/non-mare components. The bulk-rock, major-, trace- and rare-earth-element (REE) contents are similar to that of very low-titanium (VLT) basalts, which have experienced extreme fractional crystallization to the point of silicate liquid immiscibility. Mineralogical and textural features of this sample suggest that at least some of the breccia components were derived from a slow-cooled magma. The mineralogy and petrology of EET 96008 is strikingly similar to the lunar meteorite EET 87521, and we support the conclusion that EET 96008 and EET 87521 should be paired.Isochron ages of 3530 ± 270 Ma for apatite and 3519 ± 100 Ma for whitlockite of this rock are consistent with derivation from a mare-basalt precursor. These ages are within error of the low-Ti basalts, dated from the Apollo 12 and 15 sites. The whole-rock, platinum-group-element (PGE) contents of EET 96008 overlap with pristine low-Ti mare basalts, suggesting the presence of only a minimal extraterrestrial component.  相似文献   

6.
Metallic Fe content and S abundance are inversely correlated in mare basalts. Either S volatilization from the melt results in reduction of Fe2+ to Fe0 or else high S content decreases Fe0 activity in the melt, thus explaining the correlation. All considerations favor the model that metallic iron in mare basalts is due to sulfur loss. The Apollo 11 and 17 mare basalt melts were probably saturated with S at the time of eruption; the Apollo 12 and 15 basalts were probably not saturated.Non-mare rocks show a positive correlation of S abundance with metallic Fe content; it is proposed that this is due to the addition of meteoritic material having a fairly constant Fe0/S ratio. If true, metallic Fe content or S abundance in non-mare rocks provides a measure of degree of meteoritic contamination.  相似文献   

7.
Luna 20 soil 22003,1 (250–500 μ) is similar to Apollo 16 soil 61501,47 (250–500 μ) in terms of the percentage of different types of particles. However, among the lithic fragments, the Apollo 16 sample contains a greater percentage of fragments with more than 70 wt. % modal plagioclase and a significantly greater proportion of KREEP-rich particles. Modal analyses of non-mare lithic fragments in Luna 20 and Apollo 11, 14, 15 and 16 indicate that the KREEP-poor highland regions (the bulk of the lunar terrae), though relatively feldspathic, are compositionally inhomogeneous, ranging in plagioclase content from approximately 35 to 100 wt. %. The average plagioclase content lies in the range 45–70 wt.%. Luna 20 pyroxene analyses cluster in two groups, one more magnesian than the other. The groups persist when pyroxene analyses from KREEP-poor noritic, troctolitic and anorthositic lithic fragments from Apollo 11, 14, 15 and 16 and Luna 20 are included. Olivine compositions mimic these pyroxene groups.Within each pyroxene group Cr2O3 and TiO2 decrease as Fe(Fe + Mg) increases, suggesting a relationship by fractional crystallization. The two groups suggest that at least two magma compositions were involved. To account for these observations we envisage a Moon-wide magma system in which initial accretionary heterogeneities were imperfectly erased by diffusion and convection. During the cooling of this magma system fractional crystallization was effected by the flotation of plagioclase and sinking of pyroxene, olivine and perhaps ilmenite. The endproduct was an upper layer enriched in plagioclase and a lower layer enriched in mafic silicates. KREEP-rich rocks, which are predominantly noritic in major element composition, may be mechanical mixtures of KREEP-poor norite and material residual after fractional crystallization of the surface magma system.  相似文献   

8.
Spinel, which constitutes from 0.7% to 3% of lherzolite inclusions, occurs as primary anhedral grains (chrome-rich variety) and as a secondary phase as breakdown products of garnet (alumina-rich variety). Although individual primary spinel grains are chemically homogeneous, spinels are characterized by a wide range of Cr/Al ratios and a relatively narrow range of Mg/Fe″ ratios, even in a single lherzolite sample. The chemical variations of spinels are considered to have the following origin: When garnet lherzolite enters the stability field of the spinel peridotite facies as a consequence of slow upward transport, both orthopyroxenes and clinopyroxenes are recrystallized with loss of jadeite and some Tschermak's component to reach equilibrium. A part of the Tschermak's component reacts with olivine to form pyroxene and spinel. This secondary spinel component is alloted to the primary chromian spinel. However, these reactions did not always reach equilibrium with the major constituent minerals in the lherzolites.  相似文献   

9.
Metagabbros from two widely separated areas in the Adirondacks show development of coronas. In the Southern Adirondacks, these are cored by olivine which is enclosed in a shell of orthopyroxene that is partially, or completely, rimmed by symplectites consisting of clinopyroxene and spinel. Compositions of the corona phases have been determined by electron probe and are consistent with a mechanism involving three partial reactions, thus:
  1. Olivine=Orthopyroxene+(Mg, Fe)++.
  2. Plagioclase+(Mg, Fe)+++Ca++=Clinopyroxene+Spinel+Na+.
  3. Plagioclase+(Mg, Fe)+++Na+=Spinel+more sodic plagioclase+Ca++.
Reaction (a) occurs in the inner shell of the corona adjacent to olivine; reaction (b) in the outer shell; and (c) in the surrounding plagioclase, giving rise to the spinel clouding which is characteristic of the plagioclase in these rocks. Alumina and silica remain relatively immobile. These reactions, when balanced, can be generalized to account for the aluminous nature of the pyroxenes and for changing plagioclase composition. Summed together, the partial reactions are equivalent to:
  1. Olivine + Anorthite = Aluminous orthopyroxene + Aluminous Clinopyroxene + Spinel (Kushiro and Yoder, 1966).
In the Adirondack Highlands, coronas between olivine and plagioclase commonly have an outer shell of garnet replacing the clinopyroxene/spinel shell. The origin of the garnet can also be explained in terms of three partial reactions:
  1. Orthopyroxene+Ca++=Clinopyroxene+(Mg, Fe)++.
  2. Clinopyroxene+Spinel+Plagioclase+(Mg, Fe)++=Garnet+Ca+++Na+.
  3. Plagioclase+(Mg, Fe)+++Na+=Spinel + more sodic plagioclase+Ca++.
These occur in the inner and outer corona shell and the surrounding plagioclase, respectively, and involve the products of reactions (a)-(d). Alumina and silica are again relatively immobile. Balanced, and generalized to account for aluminous pyroxenes and variable An content of plagioclase, they are equivalent to:
  1. Orthopyroxene+Anorthite+Spinel=Garnet (Green and Ringwood, 1967).
Amphibole coronas about opaque oxides in rocks of both areas are the result of oxide/plagioclase reactions with addition of magnesium from coexisting olivine. Based on published experimental data, pressure and temperature at the time of corona formation were on the order of 8 kb and 800° C for the garnet bearing coronas, with somewhat lower pressures indicated for the clinopyroxene/spinel coronas.  相似文献   

10.
Manganoan ilmenite with a variable manganese content occurs as an early accessory constituent of granitic rocks in the Ôsumi Peninsula, southern Kyushu. Electron probe micro-analysis of a grain containing highest manganese gives the structural formula (Fe 1.23 2+ Mn 0.81 2+ ) (Ti1.97) O6, if all of the manganese and iron are in the divalent state. The manganese content of manganoan ilmenite increases with an increase of the differentiation index of host rocks, however, the amount of ilmenite tends to decrease with the increase of the same index. The mode of occurrence of the ilmenite suggests that it is the first mafic mineral to precipitate from the magma. The average value of the distribution coefficient of manganese and ferrous iron between ilmenite and granitic magma is 5.5, if the Mn/Fe ratio of the granitic rocks represents that of granitic magma. The variation in the FeO and MnO contents against the differentiation index for granitic rocks of the Ôsumi Peninsula, and the value of the distribution coefficient, show that high manganoan ilmenite is stable in the most differentiated granitic rock of the Ôsumi Peninsula.  相似文献   

11.
Electron microprobe analyses of the spinel mineral group, ilmenite and rutile have been carried out on part of the Luna 20 soil sample. The spinel group shows an almost continuous trend from MgAl8O4 to FeCr2O4 and a discontinuous trend from FeCr2O4 to Fe2TiO4. Well defined non-linear relationships exist within the spinel group for Fe-Mg substitution, for divalent (FeOFeO + MgO) versus trivalent (Cr2O3Cr2O3 + A12O3), and for divalent versus TiO2TiO2 + A12O3 + Cr2O3. For Cr-Al substitution the relationship is linear and is negative for Mg-rich spinel and positive for Fe-Ti rich spinel. In general a combination of aluminous-rich chromite and ulvöspinel in the Luna 16 samples, combined with the chromian-pleonaste in Apollo 14 define comparable major compositional trends to those observed in Luna 20. Ilmenite is present in trace amounts. It is exsolved from pleonaste and pyroxene, is present in subsolidusreduced ulvöspinel and has undergone reequilibration to produce oriented intergrowths of chromite + rutile. Primary ilmenite is among the most magnesian-rieh (6 wt.% MgO) yet found in the lunar samples. The high MgO, inferred high Cr2O3 concentrations and the iron content of rutile (2.5 wt.% FeO) suggest crystallization at high temperatures and pressures for some components of the Luna 20 soil.  相似文献   

12.
Chemical and Sr isotopic analyses have been made of waters from 16 geothermal sites in Iceland with particular reference to the systems at Reykjanes and Svartsengi for which compositions of geothermal sea water and fresh and hydrothermally-altered rocks have been compared. The alkalies display mixing relationships indicating a hydrothermal input of Rb and K to local meteoric and sea waters as do results for Sr and Ca involving high-temperature fluids. 87Sr86Sr ratios of the geothermal waters of meteoric origin parallel those of associated rocks but are higher. Ratios for geothermal sea waters are 0.7042 (Reykjanes) and 0.7040 (Svartsengi), lower than for normal sea water (0.7092) because of leaching of Sr from rocks followed by partial removal into alteration minerals, of which epidote and chlorite may be most important. Consequently, associated hydrothermally-altered rocks have been subject to significant Sr isotopic contamination by sea water Sr raising 87Sr86Sr ratios from 0.7032 for fresh rock to 0.7038–0.7042 (Reykjanes) and to 0.7039–0.7041 (Svartsengi). Altered basalt is only ~50% equilibrated isotopically with geothermal sea water, at a water/rock ratio of ~2, but is internally equilibrated whereas palagonitized rocks (water/rock ratio of 3 to 4) are close to Sr isotopic equilibrium with associated sea water but show significant internal Sr disequilibrium. Hydrothermal input is unlikely to be important in the oceanic mass balance of Sr but is likely to be highly significant in controlling the strontium isotopic composition of sea water.  相似文献   

13.
The LL-group chondrites Krähenberg (Krbg) and Bhola are heterogeneous agglomerates containing a variety of lithic fragments and chondrules as well as crystal fragments. The FeFe + Mg content of most olivine grains is uniform (Fa28), although a few with distinctly lower Fe contents were found (Fa19). Both meteorites contain large, cm-sized, fragments with high enrichments of K (~12×), Rb (~45×) and Cs (~70×) relative to LL-chondrites, while the REE concentrations are normal (except for a negative Eu anomaly); Na and Sr are depleted (~0.5×) and the NaK weight ratio is 0.33 compared to 11 in the host. However, there is no difference in the sum of Na + K atoms. Also, the major elements, Si, Al, Mg, Ca and Fe, are nearly the same in fragments as in the host material. The K-rich igneous lithic fragments have a microporphyritic texture of euhedral to skeletal olivines in a partly devitrified glass with ~4% K2O. The main pans of both Krbg and Bhola contain mesostasis glasses in porphyritic chondrules and lithic fragments with varying K content (0.1–8.6% K2O) and NaK ratios (0.2–100). Crystalline plagioclase is depleted in K with an average NaK ratio of 22, i.e. higher than that for ordinary chondritic plagioclase, 8.4. Olivines in the large, K-rich fragments and in the host meteorites have the same iron content (Fa28), indicating that both formed under the same oxygen fugacity and probably on the same parent body.Conceivable mechanisms for the formation of the K-rich rocks from normal LL-chondrite parent material are: 1, magmatic differentiation: 2. Na-K exchange via a vapor phase; 3. silicate liquid immiscibility; 4. volatilization and condensation in impact events. Process 2 appears most feasible for forming a rock enriched only in K and heavier alkalies and depleted in Na without noticeably changing other elements including the REE.  相似文献   

14.
The genesis of Liangguo corundum deposit in the southern Gangdese magmatic arc, east-central Himalaya, remains unknown. The present study shows that the corundum-bearing rocks occur as lenses with variable sizes in the Eocene gabbro that intruded into marble. These corundum-bearing rocks have highly variable mineral assemblage and mode. The corundum-rich rocks are characterized by containing abundant corundum, and minor spinel, ilmenite and magnetite, whereas the corundum-poor and corundum-free rocks have variable contents of spinel, plagioclase, sillimanite, cordierite, ilmenite and magnetite. The host gabbro shows variable degrees of hydration and carbonization. The corundum grains are mostly black, and rarely blue, and have minor Fe O and TiO_2. The spinel is hercynite, with high Fe O and low Mg O contents. The corundum-bearing rocks have variable but high Al_2O_3, FeO and TiO_2, and low SiO_2 contents. Inherited magmatic and altered zircons of the corundum-bearing rocks have similar U e Pb ages(~47 Ma) to the magmatic zircons of the host gabbro, indicating corundum-bearing rock formation immediately after the gabbro intrusion. We considered that emplacement of gabbro induced the contact metamorphism of the country-rock marble and the formation of silica-poor fluid. The channeled infiltration of generated fluid in turn resulted in the hydrothermal metasomatism of the gabbro, which characterized by considerable loss of Si from the gabbro and strong residual enrichment of Al. The metasomatic alteration probably formed under Pe T conditions of ~2.2 -2.8 kbar and ~650 -700℃. We speculate that SiO_2, CaO and Na_2O were mobile, and Al_2O_3, FeO, TiO_2 and high field strength elements remained immobile during the metasomatic process of the gabbro. The Liangguo corundum deposit, together with metamorphic corundum deposits in Central and Southeast Asia, were related to the Cenozoic Himalayan orogeny, and therefore are plate tectonic indicators.  相似文献   

15.
Ultrabasic rocks with Niggli values for si between 26 and 100, and k between 0.6 and 1 have been chosen for the study of the distribution of 23 major and minor constituents between phlogopite and the host rock. The rocks include kimberlites, carbonatites and lamprophyres which contain abundant zoned micas and a few zoned spinels. Chemical variations in zoned mica and spinel were determined by electron probe microanalysis, and distribution coefficients for Al, Ti, Fe, Cr, Mg, Mn, and Ni were calculated between mica and spinel for the average composition of the mica and spinel, and for chemically-related and adjacent zones. The spinel changes from chromite in the centre to chromian ulvöspinel in the rim, and the mica from chromian phlogopite, through titaniferous biotite to chromium-poor phlogopite. Distribution coefficients for Cr and Fe between adjacent zones in spinel (0.8 and 0.02 for Cr; 1.1 and 3.1 for Fe) and in mica (0.4 and 0.1 for Cr; 2 and 0.3 for Fe) show more variation than the distribution coefficients between the cogenetic phlogopite and chromite (0.04 for Cr, 0.2 for Fe), and biotite and ulvöspinel (0.08 for Cr; 0.2 for Fe). It is concluded that distribution coefficients for major and minor constituents between related zones are more meaningful than those calculated from the average chemical composition of zoned minerals.The results indicate that phlogopite is the principal carrier of potassium, rubidium, aluminium, fluorine and primary water in kimberlite and carbonatite. Minor elements, such as chlorine, lithium, barium, nickel, chromium, titanium and zinc are present mainly in the mica, whereas sodium, strontium, calcium, carbon and manganese are more abundant in other minerals.  相似文献   

16.
17.
Manganoan ilmenite was identified in Juina, Brazil kimberlitic rocks among other megacrysts. It forms oval, elongated, rimless grains comprising 8–30 wt.% of the heavy fraction. Internally the grains are homogeneous. The chemical composition of Mn-ilmenite is almost stoichiometric for ilmenite except for an unusually high manganese content, with MnO = 0.63–2.49 wt.% (up to 11 wt.% in inclusions in diamond) and an elevated vanadium admixture (V2O3 = 0.21–0.43 wt.%). By the composition, Mn-ilmenite megacrysts and inclusions in diamond are almost identical. The concentrations of trace elements in Mn-ilmenite, compared to picroilmenite, are much greater and their variations are very wide. Chondrite-normalized distribution of trace elements in Mn-ilmenite megacrysts is similar to the distribution in Mn-ilmenites included in diamond. This confirms that Mn-ilmenite in kimberlites is genetically related to diamond. The finds of Mn-ilmenite known before in kimberlitic and related rocks are late- or postmagmatic, metasomatic phases. They either form reaction rims on grains of picroilmenite or other ore minerals, or compose laths in groundmass. In contrast to those finds, Mn-ilmenite megacrysts in Juina kimberlites are a primary mineral phase with a homogeneous internal structure obtained under stable conditions of growth within lower mantle and/or transition zone. In addition to pyrope garnet, chromian spinel, picroilmenite, chrome-diopside, and magnesian olivine, manganoan ilmenite may be considered as another kimberlite/diamond indicator mineral.  相似文献   

18.
Dykes of monchiquites of Cainozoic age (37.5±2.3 Ma) are intrusive in Cretaceous sandstones in the Tchircotché area, Upper Benue valley (northern Cameroon). The differentiation of the monchiquites is explained by crystal fractionation of olivine, clinopyroxene, magnetite, ilmenite and apatite. A studied rock has low Sr-isotope ratio (0.70369±10), which is similar to those of the alkali basalts of the Cameroon Line. Therefore the continental crust appears to have no significant role in the genesis of the monchiquites.  相似文献   

19.
Miller Range (MIL) 05035 is a lunar gabbroic meteorite. The mineralogy, Fe/Mn ratios in olivine and pyroxene, bulk-rock chemical composition and the bulk oxygen isotope values (δ17O = 2.86-2.97‰ and δ18O = 5.47-5.71‰) are similar to those of other mare basalts, and are taken as supporting evidence for a lunar origin for this meteorite. The sample is dominated by pyroxene grains (54-61% by area mode of thin section) along with large plagioclase feldspar (25-36% by mode) and accessory quartz, ilmenite, spinel, apatite and troilite. The bulk-rock major element composition of MIL 05035 indicates that the sample has a very low-Ti (VLT) to low-Ti lunar heritage (we measure bulk TiO2 to be 0.9 Wt.%) and has low bulk incompatible trace element (ITE) concentrations, akin to samples from the VLT mare basalt suite. To account for these geochemical characteristics we hypothesize that MIL 05035’s parental melt was derived from a mantle region dominated by early cumulates of the magma ocean (comprised principally of olivine and orthopyroxene). MIL 05035 is likely launch paired with the Asuka-881757 and Yamato-793169 basaltic lunar meteorites and the basaltic regolith breccia MET 01210. This group of meteorites (Y/A/M/M) therefore may be a part of a stratigraphic column consisting of an upper regolith environment underlain by a coarsening downwards basalt lava flow.  相似文献   

20.
The stability of synthetic armalcolite of composition (Fe0.5Mg0.5Ti2O5 was studied as a function of total pressure up to 15 kbar and 1200°C and also as a function of oxygen fugacity (?O2) at 1200°C and 1 atm total pressure. The high pressure experiments were carried out in a piston-cylinder apparatus using silver-palladium containers. At 1200°C, armalcolite is stable as a single phase at 10 kbar. With increasing pressure, it breaks down (dTdP = 20°C/kbar), to rutile, a more magnesian armalcolite, and ilmenite solid solution. At 14 kbar, this three-phase assemblage gives way (dTdP = 30°C/kbar) to a two-phase assemblage of rutile plus ilmenite solid solution.A zirconian-armalcolite was synthesized and analyzed; 4 wt % ZrO2 appears to saturate armalcolite at 1200°C and 1 atm. The breakdown of Zr-armalcolite occurs at pressures of 1–2 kbar less than those required for the breakdown of Zr-free armalcolite. The zirconium partitions approximately equally between rutile and ilmenite phases.The stability of armalcolite as a function of ?O2 was determined thermogravimetrically at 1200°C and 1 atm by weighing sintered pellets in a controlled atmosphere furnace. Armalcolite, (Fe0.5Mg0.5)-Ti2O5, is stable over a range ?O2 from about 10?9.5to 10?10.5 atm. Below this range to at least 10?12.8 atm, ilmenite plus a reduced armalcolite are formed. These products were observed optically and by Mössbauer spectroscopy, and no metallic iron was detected; therefore, some of the titanium must have been reduced to Ti3+. This reduction may provide yet another mechanism to explain the common association of ilmenite rims around lunar armalcolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号