首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the light of progressive depletion of groundwater reservoir and water quality deterioration of the Neyveli basin, an investigation on dissolved major constituents in 25 groundwater samples was performed. The main objective was detection of processes for the geochemical assessment throughout the area. Neyveli aquifer is intensively inhabited during the last decenniums, leading to expansion of the residential and agricultural area. Besides semi-aridity, rapid social and economic development stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. Groundwaters of the study area are characterized by the dominance of Na?+?K over Ca?+?Mg. HCO3 was found to be the dominant anion followed by Cl and SO4. High positive correlation was obtained among the following ions: Ca–Mg, Cl–Ca,Mg, Na–K, HCO3–H4SiO4, and F–K. The hydrochemical types in the area can be divided into two major groups: the first group includes mixed Ca–Mg–Cl and Ca–Cl types. The second group comprises mixed Ca–Na–HCO3 and Ca–HCO3 types. Most of the groundwater samples are within the permissible limit of WHO standard. Interpretation of data suggests that weathering, ion exchange reactions, and evaporation to some extent are the dominant factors that determine the major ionic composition in the study area.  相似文献   

2.
A hydrogeochemical investigation was conducted in a coastal region of Cuddalore district to identify the influence of saltwater intrusion and suitability of groundwater for domestic and agricultural purposes. The geology of the study area comprises of sandstone, clay, alluvium, and laterite soils of Tertiary and Quaternary age. A total of 18 groundwater samples were analyzed for 14 different water quality parameters and the result indicates higher concentrations of ions like Cl (3,509 mg/l), Na (3,123 mg/l), and HCO3 (998 mg/l) when compared with WHO, BIS, and ISI standards. A positive correlation (r 2?=?0.82) was observed between Na and Cl, indicating its sources from salt water intrusion. Three factors were extracted with a total variance of 64% which indicates the sources of salinization, cation exchange, and anthropogenic impact to the groundwater. The Piper trilinear diagram indicates both Na–Cl and mixed Na–HCO3–Cl-type, indicating that groundwater was strongly affected by anthropogenic activities. The plot of (Ca?+?Mg)/(K?+?Na) indicates evidences of cation exchange and salt water intrusion. The (Ca–0.33*HCO3)/ SO4 plot indicates salt water intrusion for elevated SO4 levels rather than gypsum dissolution. The spatial distribution of total dissolved solid indicates the saline water encroachment along the SW part of the study area. As per sodium adsorption ratio (SAR), 50% of the samples with <10 SAR are suitable for irrigation and >10 SAR indicates that water is unsuitable for irrigation purposes. The residual sodium carbonate classification indicates that 50% of the samples fall in safe and 50% of the samples fall in bad zones and prolonged usage of this water will affect the crop yield. The Chloro Alkaline Index of water indicates disequilibrium due to a higher ratio of Cl?>?Na–K, indicating the influence of salt water intrusion. The Permeability Index of the groundwater indicates that the groundwater from the study area is moderate to good for irrigation purposes.  相似文献   

3.
The present research aims to identify sources of ions and factors controlling the geochemical evolution of groundwater in an intermountain basin, comprising hill and valley fill region, of Outer Himalaya in Himachal Pradesh, India. The groundwater samples collected from 81 tubewells and handpumps are analyzed for major ions, trace metals and stable isotopes (δ18O and δD). Geochemically the dominant hydrochemical facies in the Una basin are Ca–HCO3, Ca–Mg–HCO3 and Na–Cl types at few locations. A relatively lower ionic concentration in the valley fills indicates dilution and low residence time of water to interact with the aquifer mass due to high porosity and permeability. The ionic ratios of 0.9, 0.8 and 3.8 to 5.7, respectively, for (Ca?+?Mg): HCO3, (Ca?+?Mg): (HCO3?+?SO4) and Na: Cl, suggests that ionic composition of groundwater is mainly controlled by rock weathering of, particularly by dissolution/precipitation of calcrete and calcite hosted in rock veins and Ca–Na feldspar hosted in conglomerate deposits derived from the Higher and Lesser Himalaya during the formation of Siwalik rocks. Although Na, K, NO3 and SO4 are introduced in the groundwater through agricultural practices, Na has also been introduced through ion exchange processes that have occurred during water–rock interaction, as indicated by negative CAI values. Factor analysis further suggests three major factors affecting the water chemistry of the area. The first two factors are associated with rock weathering while the third is anthropogenic processes associated with high nitrate and iron concentration. High concentrations of Fe and Mn ions that are exceeded that of WHO and BIS standards are also present at few locations. The recharge of groundwater in the Outer Himalaya is entirely through Indian Southwest Monsoon (ISM) and depleted ratios of δ18O/δD in valley region indicate infiltration from irrigation in recharging the groundwater and fractionation of isotopes of precipitation due to evaporation before infiltration. High d-excess values and inverse relation with δ18O are indicative of secondary evaporation of precipitation during recharge of groundwater.  相似文献   

4.
The study area Mettur forms an important industrial town situated NW of Salem district. The geology of the area is mainly composed of Archean crystalline metamorphic complexes. To identify the major process activated for controlling the groundwater chemistry an attempt has been made by collecting a total of 46 groundwater samples for two different seasons, viz., pre-monsoon and post-monsoon. The groundwater chemistry is dominated by silicate weathering and (Na + Mg) and (Cl + SO4) accounts of about 90% of cations and anions. The contribution of (Ca + Mg) and (Na + K) to total cations and HCO3 indicates the domination of silicate weathering as major sources for cations. The plot for Na to Cl indicates higher Cl in both seasons, derived from Anthropogenic (human) sources from fertilizer, road salt, human and animal waste, and industrial applications, minor representations of Na also indicates source from weathering of silicate-bearing minerals. The plot for Na/Cl to EC indicates Na released from silicate weathering process which is also supported by higher HCO3 values in both the seasons. Ion exchange process is also activated in the study area which is indicated by shifting to right in plot for Ca + Mg to SO4 + HCO3. The plot of Na-Cl to Ca + Mg-HCO3-SO4 confirms that Ca, Mg and Na concentrations in groundwater are derived from aquifer materials. Thermodynamic plot indicates that groundwater is in equilibrium with kaolinite, muscovite and chlorite minerals. Saturation index of silicate and carbonate minerals indicate oversaturation during pre-monsoon and undersaturation during post-monsoon, conforming dissolution and dilution process. In general, water chemistry is guided by complex weathering process, ion exchange along with influence of Cl ions from anthropogenic impact.  相似文献   

5.
The chemical characteristics of surface, groundwater and mine water of the upper catchment of the Damodar River basin were studied to evaluate the major ion chemistry, geochemical processes controlling water composition and suitability of water for domestic, industrial and irrigation uses. Water samples from ponds, lakes, rivers, reservoirs and groundwater were collected and analysed for pH, EC, TDS, F, Cl, HCO3, SO4, NO3, Ca, Mg, Na and K. In general, Ca, Na, Mg, HCO3 and Cl dominate, except in samples from mining areas which have higher concentration of SO4. Water chemistry of the area reflects continental weathering, aided by mining and other anthropogenic impacts. Limiting groundwater use for domestic purposes are contents of TDS, F, Cl, SO4, NO3 and TH that exceed the desirable limits in water collected from mining and urban areas. The calculated values of SAR, RSC and %Na indicate good to permissible use of water for irrigation. High salinity, %Na, Mg-hazard and RSC values at some sites limit use for agricultural purposes.  相似文献   

6.
The Vaal River Basin is an economically significant area situated in the interior of South Africa (SA), where mining, industrial, domestic and agricultural activities are very intense. The purpose of the study was to assess the influence of geology and anthropogenic activities on groundwater chemistry, and identify the predominant hydrochemical processes in the basin. Data from seventy groundwater sites were retrieved from the national database, and attention was paid to fifteen water quality parameters. Groundwater samples were clustered into seven hydrochemically distinct groups using Hierarchical Cluster Analysis (HCA), and three samples treated independently. A Piper plot revealed two major water types, Ca–Mg–HCO3 and Ca–Mg–SO4-Cl, which were linked to dissolution of the underlying geology and mine pollution. The Ca?+?Mg vs HCO3?+?SO4 plot indicated that reverse ion exchange is an active process than cation exchange in the area. Principal component analysis (PCA) was used to identify the main natural and anthropogenic processes causing variation in groundwater chemistry. Four principal components were extracted using PCA that explains 82% of the total variance in the chemical parameters. The PCA results can be categorized by four components: (1) evaporites and silicates weathering enrichment of Na, K, Cl, SO4 and F, and anthropogenic Cl; (2) dissolution of dolomite, limestone and gypsum; (3) agricultural fertilizers (4) wastewater treatment. This study reveals that both natural and anthropogenic activities are the cause of groundwater variation in the basin.  相似文献   

7.
Groundwater is a finite resource that is threatened by pollution all over the world. Shimabara City, Nagasaki, Japan, uses groundwater for its main water supply. During recent years, the city has experienced severe nitrate pollution in its groundwater. For better understanding of origin and impact of the pollution, chemical effects and surface–groundwater interactions need to be examined. For this purpose, we developed a methodology that builds on joint geochemical analyses and advanced statistical treatment. Water samples were collected at 42 sampling points in Shimabara including a part of Unzen City. Spatial distribution of water chemistry constituents was assessed by describing Stiff and Piper diagrams using major ions concentrations. The nitrate (NO3?+?NO2–N) concentration in 45% of water samples exceeded permissible Japanese drinking level of 10 mg L??1. Most of the samples showed Ca–HCO3 or Ca–(NO3?+?SO4) water types. Some samples were classified into characteristic water types such as Na–Cl, (Na?+?K)–HCO3, (Na?+?K)–(SO4?+?NO3), and Ca–Cl. Thus, results indicated salt water intrusion from the sea and anthropogenic pollution. At the upstream of Nishi River, although water chemistry was characterized as Ca–HCO3, ion concentrations were higher than those of other rivers. This is probably an effect of disinfection in livestock farming using slaked lime. Positive correlation between NO3? and SO42?, Mg2+, Ca2+, Na+, K+, and Cl? (r?=?0.32–0.64) is evidence that nitrate pollution sources are chemical fertilizers and livestock waste. Principal component analysis showed that chemistry of water samples can be explained by three main components (PCs). PC1 depicts general ion concentration. PC2 and PC3 share influence from chemical fertilizer and livestock waste. Cluster analyses grouped water samples into four main clusters. One of these is the general river chemistry mainly affected by PC1. The others reflect anthropogenic activities and are identified by the combination of the three PCs.  相似文献   

8.
About 150 coastal spring outlets discharging from a karstified carbonate rock aquifer constitute the Azmak streamflow which is slightly brackish with 3000 mg/l of total dissolved solids. In this study, multivariate statistical methods were applied including the use of factor analysis, correlation analysis and cluster analysis to evaluate groundwater quality of Azmak Spring Zone using eight variables (Ca, Mg, Na, K, Cl, SO4, EC25 and B) at 19 water points sampled in the dry and wet seasons. Hydrochemical analysis results revealed that for majority of the sampling points, the abundance of cations and anions were ordered as Na?+?K?>?Mg?>?Ca and Cl?>?SO4?>?HCO3?+?CO3, respectively. Factor analysis results indicated that three factors explain 98% and 91% of the total variance in the dry and wet seasons, respectively. Factor 1 was found to be associated with the seawater, factor 2 indicated the effect of fresh water and factor 3 was defined to reflect the effect of seasonal fresh surface water contribution. Cluster analysis results indicated that two main groups and four subgroups could be defined with respect to the ratio of the seawater contribution. Cluster A (A1 and A2) represents the waters affected by seawater while waters less affected by the seawater intrusion are grouped in cluster B (B1 and B2).  相似文献   

9.
The present study investigates the hydrogeochemistry and contamination of Varamin deep aquifer located in the southeast of Tehran province, Iran. The study also evaluates groundwater suitability for irrigation uses. The hydrogeochemical study was conducted by collecting and analyzing 154 groundwater samples seasonally during 2014. Based on evolutionary sequence of Chebotarev, the aquifer is in the stage of SO4 + HCO3 in the north half of the plain and it has evolved into SO4 + Cl in the south half. The unusual increase in TDS and Cl? toward the western boundaries of the aquifer indicates some anomalies. These anomalies have originated from discharge of untreated wastewater of Tehran city in these areas. The studied aquifer contains four dominant groundwater types including Na–Ca–SO4 (55%), Na–Ca–HCO3 (22%), Na–Cl (13%) and Ca–Cl (10%). The spatial distributions of Na–Cl and Ca–Cl water types coincide with observed anomalies. Ionic relationships of SO4 2? versus Cl? and Na+ versus Cl? confirm that water–rock interaction and anthropogenic contribution are main sources of these ions in the groundwater. The main processes governing the chemistry of the groundwater are the dissolution of calcite, dolomite and gypsum along the flow path, and direct ion exchange. Reverse ion exchange controls the groundwater chemistry in the areas contaminated with untreated wastewater. Based on Na% and SAR, 10.3 and 27% of water samples are unsuitable for irrigation purposes, respectively. Regarding residual sodium carbonate, there is no treat for crop yields. Only 6% of water samples represent magnesium adsorption ratios more than 50% which are harmful and unsuitable for irrigation.  相似文献   

10.
The chemical analysis of 59 water wells in Meshkinshar area, Ardabil province NW of IRAN has been evaluated to determine the hydrogeochemical processes and ion concentration background in the region. The dominated hydrochemical types are Na–SO4, Ca–HCO3, Na–HCO3 and Na–Cl in the whole area. Based on the total hardness, the groundwater is soft. According to electrical conductivity and sodium adsorption ratio, the most dominant classes are C1–S1, C2–S1 and C3–S1. The major ion concentrations are below the acceptable level for drinking water. The groundwater salinity hazard is medium to high but the Na hazard is low to medium and in regard of irrigation water the quality is low to medium. So the drainage system is necessary to avoid the increase of toxic salt concentrations.  相似文献   

11.
An attempt has been made to study the groundwater geochemistry in part of the NOIDA metropolitan city and assessing the hydrogeochemical processes controlling the water composition and its suitability for drinking and irrigation uses. The analytical results show that Na and Ca are the major cations and HCO3 and Cl are the major anions in this water. The higher ratios of Na+K/TZ+ (0.2–0.7), Ca+Mg/HCO3 (0.8–6.1); good correlation between Ca-Mg (0.75), Ca-Na (0.77), Mg-Na (0.96); low ratio of Ca+Mg/Na+K (1.6), Ca/Na (1.03), Mg/Na (0.64), HCO3/Na (1.05) along with negative correlation of HCO3 with Ca and Mg signify silicate weathering with limited contribution from carbonate dissolution. The hydro-geochemical study of the area reveals that many parameters are exceeding the desirable limits and quality of the potable water has deteriorated to a large extent at many sites. High concentrations of TDS, Na, Cl, SO4, Fe, Mn, Pb and Ni indicate anthropogenic impact on groundwater quality and demand regional water quality investigation and integrated water management strategy. SAR, %Na, PI and Mg-hazard values show that water is of good to permissible quality and can be used for irrigation. However, higher salinity and boron concentration restrict its suitability for irrigation uses at many sites.  相似文献   

12.
Hydrogeochemical investigation of groundwater has been carried out in the coastal aquifers of southern Tamil Nadu, India. Seventy-nine dug well samples were collected and analyzed for various physicochemical parameters. The result of the geochemical analysis indicates the groundwater in the study area is slightly alkaline with moderate saline water. The cation and anion concentrations confirm most of the groundwater samples belong to the order of Na+ > Mg2+ > Ca2+ > K+ and Cl? > SO4 2? > HCO3 ?. Thereby three major hydrochemical facies (Ca–Cl, mixed Ca–Mg–Cl and Na–Cl) were identified. Based on the US Salinity diagram, majority of the samples fall under medium to very high salinity with low to high sodium hazard. The cross plot of Ca2+ + Mg2+ versus chloride shows 61 % of the samples fall under saline water category. Higher EC, TDS and Cl concentrations were observed from Tiruchendur to Koodankulam coastal zone. It indicates that these regions are significantly affected by saltwater contamination due to seawater intrusion, saltpan deposits, and beach placer mining activities.  相似文献   

13.
The study area is located in the southwestern part of Bangladesh. Twenty-six groundwater samples were collected from both shallow and deep tube wells ranging in depth from 20 to 60 m. Multivariate statistical analyses including factor analysis, cluster analysis and multidimensional scaling were applied to the hydrogeochemical data. The results show that a few factors adequately represent the traits that define water chemistry. The first factor of Fe and HCO3 is strongly influenced by bacterial Fe (III) reduction which would raise both Fe and HCO3 concentrations in water. Na, Cl, Ca, Mg and PO4 are grouped under the second factor representing the salinity sources of waters. The third factor, represented by As, Mn, SO4 and K is related to As mobilization processes. Cluster analysis has been applied for the interpretation of the groundwater quality data. Initially Piper methods have been employed to obtain a first idea on the water types in the study area. Hierarchical cluster analysis was carried out for further classification of water types in the study area. Twelve components, namely, pH, Fe, Mn, As, Ca, Mg, Na, K, HCO3, Cl, SO4 and NO3 have been used for this purpose. With hierarchical clustering analysis the water samples have been classified into 3 clusters. They are very high, high and moderately As-enriched groundwater as well as groundwater with elevated SO4.  相似文献   

14.
Groundwater is of a paramount importance in arid areas, as it represents the main water resource to satisfy the different needs of the various sectors. Nevertheless, coastal aquifers are generally subjected to seawater intrusion and groundwater quality degradation. In this study, the groundwater quality of the coastal Jeffara aquifer (southeastern Tunisia) is evaluated to check its suitability for irrigation purposes. A total of 74 groundwater samples were collected and analyzed for various physical and chemical parameters, such as, electrical conductivity, pH, dissolved solids (TDS), Na, K, Ca, Mg, Cl, HCO3, and SO4. Sodium adsorption ratio, magnesium adsorption ratio, Sodium percentage, and permeability index were calculated based on the analytical results. The analytical results obtained show a strong mineralization of the water in the studied aquifer. TDS concentrations range from 3.40 to 18.84 g?L?1. Groundwater salinity was shown to be mainly controlled by sodium and chloride. The dominant hydrochemical facieses are Na–Cl–Ca–SO4, mainly as a result of mineral dissolution (halite and gypsum), infiltration of saline surface water, and seawater intrusion. Assessment of the groundwater quality of the different samples by various methods indicated that only 7% of the water, in the northwest of the study area, is considered suitable for irrigation purposes while 93% are characterized by fair to poor quality, and are therefore just suitable or unsuitable for irrigation purposes.  相似文献   

15.
The Barwon Downs Graben lies on the northern flanks of the Otway Ranges and is situated approximately 70 km southwest of Geelong, Victoria, Australia. The major lower Tertiary Barwon Downs Graben aquifer comprises highly permeable sands and gravels interbedded with clays and silts of the hydraulically interconnected Pebble Point, Dilwyn and Mepunga Formations. Groundwater flows east into the Barwon Downs Graben from the Barongarook High, and yields 14C ages up to ~20 ka implying that recharge rates are low and, consequently, that the resource could be impacted by overabstraction. The presence of three different lithological units has led to the development of localized flow systems that has resulted in a lack of regular spatial variations in groundwater chemistry. Stable isotopic data suggests that groundwater was recharged under similar climatic conditions as of today. The major ion chemistry of the freshest groundwater is dominated by Na and HCO3 while higher TDS groundwater, from the confining Narrawaturk Marl, is dominated by Na and Cl. Cl/Br ratios are close to rainfall suggesting that halite dissolution is not the principle source of salts. An excess of Na relative to Cl in fresher groundwater suggests that feldspar dissolution has occurred, however, water–rock interaction is limited. The concentrations of Ca, Mg, and SO4 are controlled by silicate dissolution and ion-exchange reactions with clays.  相似文献   

16.
17.
Assessment of chemistry of groundwater infiltrated by pit-toilet leachate and contaminant removal by vadose zone form the focus of this study. The study area is Mulbagal Town in Karnataka State, India. Groundwater level measurements and estimation of unsaturated permeability indicated that the leachate recharged the groundwater inside the town at the rate of 1 m/day. The average nitrate concentration of groundwater inside the town (148 mg/L) was three times larger than the permissible limit (45 mg/L), while the average nitrate concentration of groundwater outside the town (30 mg/L) was below the permissible limit. The groundwater inside the town exhibited E. coli contamination, while groundwater outside the town was free of pathogen contamination. Infiltration of alkalis (Na+, K+) and strong acids (Cl?, SO4 2?) caused the mixed Ca–Mg–Cl type (60 %) and Na–Cl type (28 %) facies to predominate groundwater inside the town, while, Ca–HCO3 (35 %), mixed Ca–Mg–Cl type (35 %) and mixed Ca–Na–HCO3 type (28 %) facies predominated groundwater outside/periphery of town. Reductions in E. coli and nitrate concentrations with vadose zone thickness indicated its participation in contaminant removal. A 4-m thickness of unsaturated sand + soft, disintegrated weathered rock deposit facilitates the removal of 1 log of E. coli pathogen. The anoxic conditions prevailing in the deeper layers of the vadose zone (>19 m thickness) favor denitrification resulting in lower nitrate concentrations (28–96 mg/L) in deeper water tables (located at depths of ?29 to ?39 m).  相似文献   

18.
A linear regression model in conjunction with cluster analysis was applied to the groundwater quality parameters for the Vaniyambadi industrial area, Tamil Nadu, India. These physico-chemical parameters were collected from 25 wells by intensive groundwater sampling conducted during January 2010. All the major ions, pH and electrical conductivity were analyzed. The abundances of cations were in the order of Na 相似文献   

19.
The alluvial aquifer of the Ghatprabha River comprises shallow tertiary sediment deposits underlain by peninsular gneissic complex of Archean age, located in the central–eastern part of the Karnataka in southern India. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, groundwater samples were collected as part of an integrated investigation that coupled multivariate statistical analysis with hydrochemical methods to identify and interpret the groundwater chemistry of the aquifer system. Three main hydrochemical types (Ca–Mg–Cl, Ca–Mg–HCO3, and Na–SO4) were identified. Gibbs plots indicate that the evolution of water chemistry is influenced by water–rock interaction followed by evapotranspiration process. The results of factor analysis indicated the total variance explained by the extracted factor 79.9% and 87.1% for both pre- and post-monsoon, respectively. And other processes such as silicate weathering, ion exchange, and local anthropogenic activities affect the groundwater chemistry.  相似文献   

20.
A total of 162 groundwater samples for three representative seasons were collected from Salem district of Tamilnadu, India to decipher hydrogeochemistry and groundwater quality for determining its suitability for drinking and agricultural proposes. The water is neutral to alkaline in nature with pH ranging from 6.6 to 8.6 with an average of 8.0. Higher electrical conductivity was observed during post-monsoon season. The abundance of major ions in the groundwater was in the order of $ {\text{Na} > \text{Ca} > \text{Mg} > \text{K} = \text{Cl} > \text{HC}}{{\text{O}}_3}\; > \;{\text{S}}{{\text{O}}_4}\; > \;{\text{N}}{{\text{O}}_3} $ . Piper plot reveals the dominance of geochemical facies as mixed Ca–Mg–Cl, Na–Cl, Ca–HCO3, Ca–Na–HCO3, and Ca–Cl type. NO3, Cl, SO4, and F exceed the permissible limit during summer and post-monsoon seasons. Sodium adsorption ratio was higher during post-monsoon and southwest monsoon season indicating high and low salinity, satisfactory for plants having moderate salt tolerance on soils. Permeability index of water irrespective of season falls in class I and class II indicating water is moderate to good for irrigation purposes. As per the classification of water for irrigation purpose, water is fit for domestic and agricultural purposes with minor exceptions irrespective of seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号