首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
董西好  叶万军  刘帅 《冰川冻土》2022,44(6):1853-1862
At present,artificial freezing method has become one of the effective methods for coal mine shaft to pass through water-rich soft rock strata,which can stop the movement of groundwater and limit the deformation of surrounding rock. In order to study the frost heaving characteristics of sandstone under different freezing conditions,frost heaving tests of saturated and dry Cretaceous red sandstone samples under different freezing rates (10 ℃·h-1,5 ℃·h-1,2 ℃·h-1,1 ℃·h-1)and different confining pressures(5 MPa,10 MPa,15 MPa,20 MPa,25 MPa)were carried out by using GCTS(Geotechnical Consulting & Testing Systems)servo-controlled low temperature and high pressure triaxial rock testing system. In this paper,based on the existing theory of physical and mechanical properties of frozen soil,we studied the frost heaving law of sandstone under different freezing conditions and explored the frost heaving mechanism. The result shows that in the process of cooling,the dry rock sample always produce cold shrinkage deformation,while the saturated rock sample first produce cold shrinkage deformation,then produce frost deformation,and finally the deformation tends to be stable. The deformation of saturated rock samples is much larger than that of dry rock samples. The larger the stress level of rock samples at the same temperature is,the smaller the frost deformation is,which shows a linear negative correlation,mainly because the high confining pressure limits the volume expansion of the water phase in the pore inside the rock samples when it becomes ice. The frost deformation of rock samples is mainly affected by confining pressure and water content,while the frost heaving rate is mainly affected by cooling rate. Under this test condition,the higher the cooling rate of sandstone is,the higher the frost heaving rate is,and the relationship between them is approximately linear. For saturated rock samples,the confining pressure reduces the rock frost heaving by limiting the expansion during the phase transformation of ice water,and the temperature affects the rock frost heaving by affecting the freezing rate of pore water and the thermal expansion and cold contraction of rock skeleton. For dry rock samples,the deformation is mainly due to the volume contraction of rock mineral particles caused by thermal expansion and cold contraction effect,and the greater the temperature change,the greater the deformation. Based on the experimental results and theoretical analysis method,a calculation formula of rock frost heaving considering the influence of confining pressure was established. By calculating the frost heave of sandstone samples under different confining pressures,it is found that the calculated values are in good agreement with the experimental results. Moreover,according to the calculation formula of frost heaving,the influence factors of rock frost heaving during freezing can be divided into two categories:internal cause and external cause. The internal cause includes porosity,saturation,volume modulus of ice and rock skeleton,and the external cause includes temperature and confining pressure. For saturated rock,the frost heaving is mainly affected by factors such as confining pressure,temperature and porosity. When the saturation,porosity and freezing rate are low,the rock may only produce shrinkage deformation,because these indicators determine whether the rock produces frost heave or freeze shrinkage. The mechanism of rock frost heaving is very complicated due to the interaction and restriction between the internal and external factors and the dynamic changes of rock micro-structure and mechanical properties during the process of frost heaving. The research results can provide theoretical reference for freezing construction scheme design of deep coal seam mine construction,and also provide a theoretical basis for the study of physical and mechanical properties and engineering application of soft rock in frozen soil area. © 2022 Science Press (China).  相似文献   

2.
Takashi Ono 《冰川冻土》2004,26(Z1):64-69
Serious failure on the slope of rock ground can be caused by a cyclic action of freezing and thawing in the cold regions. The frost susceptibility and the effect of freezing and thawing onthe rock material, however, have not been well investigated. In order to find out the freezing effect on the rock materials, mortar specimens are frozen as a pseudo-rock material under the constant rate of freezing by means of controlling the temperature of both ends of specimen. The freezing process is given one-dimensionally to the cylindrical samples in the laboratory to simulate the in-situ freezing phenomena in the natural ground. Formation of ice lens, frost heave and water intake during freezing process are observed on the mortar specimen under constant freezing rate, which probably causes cracks or large deformation in the real rock ground. The values of the velocity of elastic wave propagation are compared before and after freezing process to estimate the degree of weathering due to freezing and thawing.  相似文献   

3.
冻融试验对土中含水量分布的影响   总被引:5,自引:0,他引:5  
The silty clay and silty loam are two typical soil types obtained from two test sites along the Qinghai-Tibet railway. The two types of soil have been designed various initial dry densities, water eontents, temperature conditions in repeated freezing and thawing tests with free access to water at the bottom. Afterfreeze-thaw cycles, the moisture content in the freeze-thaw zone increases more than that in the unfrozen zone to the peak approximately at the top of the samples. With comparison of the water contents in the frozen and thawed states, the moisture content in the upper freeze-thaw zone in the frozen state is greater than that in the thawed state, while that in unfrozen zone in the frozen state is smaller than that in the thawed state. Within the region of the frost front, the water content in frozen state is smaller than that in thawed state. These findings help to study the freeze-thaw mechanisms deeply and perfect the forecasting module of moisture transferring in freeze-thaw cycles.  相似文献   

4.
肖杨  满浩然  董星丰  臧淑英  李苗 《冰川冻土》2022,44(6):1944-1957
Soil freeze-thaw cycles have important effects on surface water and energy balance,and then affect vegetation growth,soil water content,carbon cycle and terrestrial ecosystem. Passive microwave plays an important role in monitoring global and regional surface freeze-thaw processes due to its high temporal resolution,abundant data and sensitivity to soil moisture. With the launch of passive microwave sensors at home and abroad,it provides conditions for the study of permafrost interannual variation,seasonal variation,diurnal variation and long time series of near-surface soil freeze-thaw cycle. In recent years,the study of surface freeze-thaw cycle using passive microwave data has gradually increased. Based on previous studies,this paper summarizes the types of passive microwave remote sensing data and the characteristics of the bands contained in them. Expounded the principle of passive microwave monitoring data used for freezing and thawing,focus on passive microwave data in five categories in the study of freezing and thawing monitoring algorithms,including double index algorithm,the decision tree algorithm,freeze-thaw discriminant algorithm,seasonal threshold algorithm and based on the freezing L-band relative factors discriminant algorithm threshold,and analysis of 5 kinds of algorithms are compared;The freeze-thaw products based on different algorithms and passive microwave data were combed. Finally,the problems and future research directions of passive microwave remote sensing in surface freeze-thaw applications are summarized. In the acquisition of passive microwave data,it is found that the passive microwave data is missing due to the physical characteristics of the sensor,the shape and orbit of the earth,and the low resolution of passive microwave data leads to the low precision of freeze-thaw discrimination. For the problem of missing passive microwave data,it is proposed to use the average value of passive microwave data before and after two days to fill the missing brightness temperature data,or establish statistical function to complement the missing data. For the problem of low passive microwave resolution,the current development trend is to scale down based on passive microwave data and combine with multiple data products,such as ground temperature and active microwave data,or perform probability discrimination on surface freezing-thawing state in pixels,so as to better describe surface freeze-thaw state. In terms of the algorithm for discriminating surface freezing-thawing,based on the problem that dual-index algorithm,decision tree algorithm,freezing-thawing discriminant algorithm and seasonal threshold algorithm cannot accurately distinguish snow and frozen soil,this paper proposes to adopt the method of data assimilation or start from the snow radiation and frozen soil dielectric model. Optimization of the algorithm for the snow covered surface can further improve the accuracy of freeze-thaw classification. Based on existing freeze-thaw products,Although SMAP freeze-thaw products continue to be updated,SAMP satellite was launched late,and SAMP freeze-thaw products have a short time series. In the future,the time span of this algorithm for freezing-thawing products can be extended by combining L-band data provided by SMOS satellite. The problems mentioned above and the direction of further research are of great significance for improving the accuracy of freezing and thawing discrimination and improving the understanding of the variation law of freezing and thawing cycles,and also have certain research space. © 2022 Science Press (China).  相似文献   

5.
冻胀过程与冻结缘特性   总被引:1,自引:0,他引:1  
何平  邴慧  张钊  杨成松 《冰川冻土》2004,26(Z1):21-25
The complex process of soil freezing which relates to moisture field, temperature and stress field usually accompanies water migration and crystallization. The mechanism of water migration in the -frozen fringe is blurry though there have rather mature theory analyzing water migration in the unfrozen zone and fully-frozen zone. It is a visualized and easy method to calculate the potential gradient of frozen fringe by frost heave amount, the duration of the steady state of frost heaving and the coefficient of permeability based on the Darcy penetration theory, not directly considering water driving force, ice segregation temperature and the thickness of frozen fringe. The method is feasible by comparing the calculated amount of frost-heaving with the test data.  相似文献   

6.
土的力学性质对冻胀力影响的试验研究   总被引:1,自引:0,他引:1  
Frost heaving stresses are a result of thermal, mechanical, and chemical forces. The process is complicated, and despite numerous publications on the subject, as yet there is no clear consensus on the model of mechanical interaction for soil freezing. Frost heaving stresses depends on mechanical properties of soil and conditions of measurements. Mechanical equilibrium between water, ice and soil particles based on the generalized Clapeyron equation and deformability of the components is considered. Increase of volume of freezing soil due to water flow to freezing fridge and phase transfer affects surrounding soil layers and appears to be the major reason of change of stress-strain conditions. A simplified model of mechanical interaction between soil and engineering construction is proposed. Experimental results of study of frost heaving forces by sensors of variable frigidity are presented. The experiments with different types of soil in conditions of open and close system were performed to provide a basis for the model and further estimations. Ongoing improvements and possible applications are discussed.  相似文献   

7.
Natural damage such as fissures and pores make the rock microstructure show strong heterogeneity,which influences the failure process and mode. In this paper,the numerical test of freeze-thaw sandstone splitting failure with natural damage was carried out based on CT non-destructive identification technology,combined with digital image processing technology and CASRock numerical simulation software. The analysis of splitting failure mode,deformation localization and crack evolution process of freeze-thaw sandstone with natural damage reveals the failure mechanism of sandstone with natural damage under freeze-thaw and load. The results show that the expansion of primary pores(cracks)and the formation of new pores in sandstone are the main forms of freeze-thaw rock failure evolution. The failure of rock containing natural damage under freeze-thaw and load is related to the degree and distribution of natural damage. The generation of secondary cracks mostly occurs in natural damage-intensive areas. During the loading process,the stress in the localized damage zone is far greater than sandstone’s overall stress,and rock’s failure in the localized damage zone is synchronized with the energy release and stress release in the region. Localized damage reflects the evolution of cracks in rocks and helps to predict the direction of sandstone crack development. The failure mode of rock is related to the number of freeze-thaw cycles. The freeze-thaw cycles make the sandstone with natural damage gradually change from brittle failure to ductile failure,and the change of the overall strength of the rock is a gradual deterioration process. © 2022 Science Press (China).  相似文献   

8.
冷生风化作用对边坡稳定性影响   总被引:1,自引:0,他引:1  
The experiment shows that considerable influence on density rock properties are subjected by nival weathering conditions. The main parameter defining the rock suitability for solution various engineering and geological problems is its firmness limit on single axis pressing. The firmness properties of sandstone being in absolutely dry condition for Kabakta suite at the beginning of investigation was 64.7 MPa, for Nerungri suite sandstones it was 48. 7 MPa. The investigations showed how much the nival conditions of cryohypergenesis of rock sandstones in Kabakta and Nerungri suites have destructive influence in comparison with aquale and more over aerale conditions. In the aerale conditions sedimentary rock firmness of Kabakta suite decreased to 23.2 MPa, in aquale conditions to 16.5, and in the nivale conditions to 8.9 MPa. In Nerungri suite sandstones are according to 17.7 MPa, 11.1 MPa, and 6 MPa after 300 freezing and thawing cycles. The common sandstone firmness decrease of Kabakta suite was 25 %,of Nerungri suite it was 23.8%. Marlstone samples after 400 FTC decrease to 62% in the nivale conditions and to 33 % in the aerale conditions. After 3~5 years of exploitation marlstone will destruct due to structural and textural inhomogenesis up to gruss, i.e. it will not meet the requirements of durability.Judging by the results of carried out experiment it should be concluded that by cryogenic weathering the sedimentary rocks (sandstones) and rocks with schistose lithogenic texture (marlstone) are subjected to disintegration. The primary rock samples firmness considerably influences on the disintegration rate.  相似文献   

9.
Water accumulation associated with water migration is closely related with the ice segregation,but their coupling relationship is still unclear. To decoupling the relationship of water accumulation and ice segrega⁃ tion,herein,the dynamics of water migration and ice segregation during the freezing and thawing of different soil types under different water supplying conditions have been investigated based on pore water pressure mea⁃ surement and layer-scanning technique. Results showed that apparent water accumulation near the freezing front during the freezing of silty clay and loess tested here,but there exist differences in modes. During loess freezing under closed system,no ice segregation was observed,the pore water pressure increased,and there existed ap⁃ parent liquid water accumulation during the early stage of freezing;while during the freezing of silty clay,there existed ice segregation,the pore water pressure decreased,and no apparent liquid water accumulation occurred during the early stage of freezing. The results implied that there exist two modes of water accumulation near the freezing front during soil freezing:one is the water accumulation induced by water pressure gradient induced by pore ice which results in water flowing from the frozen zone and unfrozen zone to the location near the freezing front;the other is the water accumulation induced by cryo-suction of segregation ice which results in the water flowing from the unfrozen zone to the location near the freezing front. Notably,the contribution from each mode associated with water accumulation of soil freezing depends on whether the ice segregation exists. As no ice seg⁃ regation forms,water accumulation induced water pressure gradient predominates during the early stage of freez⁃ ing. As there exists ice segregation during freezing,water accumulation induced cryo-suction predominates dur⁃ ing the later stage of freezing. Investigating on different modes of water accumulations will be helpful for the ex⁃ ploring the mechanisms of freeze-thaw diseases and the ground ice in the cold regions. © 2023 Chinese Journal of General Practitioners. All rights reserved.  相似文献   

10.
梁波  王家东  葛建军  曹元平 《冰川冻土》2004,26(Z1):241-247
Considering the only retaining structure L-type retaining wall used in Golmud-Lhasa section of Qinghai-Tibet Railway, the earth pressure and frost-heaving force was tested in a frost-thaw circle for one year, and several different analysis models were studied. Compared with site test and theory analysis, it was found that the actual earth pressure is much larger than the designed earth pressure. Hence,a revised analysis model of earth pressure is put forward, which could include another possible force except slide triangle or frost heaving force. The model in this paper is only consider the thrust force other than failure sliding wedge. This model could be used as reference for the design and construction of similar projects.  相似文献   

11.
This study aimed to show anisotropic poroelasticity evolution in ultra-low permeability reservoirs under pore pressure, confining pressure, and temperature. Several groups of experiments examining Biot’s coefficient under different conditions were carried out. Results showed that Biot’s coefficient decreased with increased pore pressure, and the variation trend is linear, but the decreasing rate is variable between materials. Biot’s coefficient increased with increased confining pressure; the variation trend is linear, but the increasing rate varies by material as well. Generally, Biot’s coefficient remains stable with increased temperature. Lithology, clay mineral content, particle arrangement, and pore arrangement showed impacts on Biot’s coefficient. For strong hydrophilic clay minerals, expansion in water could result in a strong surface adsorption reaction, which could result in an increased fluid bulk modulus and higher Biot’s coefficient. For skeleton minerals with strong lipophilicity, such as quartz and feldspar, increased oil saturation will also result in an adsorption reaction, leading to increased fluid bulk modulus and a higher Biot’s coefficient. The study’s conclusions provide evidence of poroelasticity evolution of ultra-low permeability and help the enhancing oil recovery (EOR) process.  相似文献   

12.
Melting experiments have been carried out on major rock types from the three rock belts in Southern Xizang. These rocks, being quite different in chemical composition, are representative of granites of Late Yenshanian, Early Himalayan and Late Himalayan periods in this area, Experimental water pressures are eontrolled at 2kb. Results show the beginning temperatures of melting for the seven rock types are : Gubug tourmaline-muscovite granite 615℃, Zayu coarse-grained gneiesose biotite-granite 635℃, Kangmar finegrained gneissose two-mica granite 640℃,Dala gneissese two-mica granite 645℃, Quxu biotite granite 660℃, Lhasa granodiorite 700℃, and Gyubge hypersthene diorite 740℃. The beginning temperature of melting decreases with decreasing granite age.Spatially the temperature of formation drops progressively southwards from Kangdese through Lhagoi Kangri to Himalaya rock belt. Additionally, the beginning temperature of melting varies with the contents of mafic minerals and differentiation index of the rocks. Our experimental and geological data suggest that the three rock belts in Southern Xizang are all of magmatic origin. Himalaya and Lhagoi Kangrl rock belts arc stemed from partial melting of continental material, whereas Kangdese rock belt probably from remelting or partial melting of oceanic crustal material.  相似文献   

13.
Multiple coal seams and interbedded rock assemblages formed in vertical progression due to the influence of multiple stages of sea level transgressions.Based on mercury injection experiment,low temperature liquid nitrogen experiment,porosity and permeability experiment and breakthrough pressure experiment,the vertical variation characteristics of coal-bearing strata in Gujiao block are explained in detail.The results of the mercury injection and low temperature liquid nitrogen experiments show that the pore structure characteristics fluctuate with increasing depth in the strata,with fewer micropores followed by transition pores.The BET specific surface area and average pore diameter of the Shanxi Formation are generally larger than those of the Taiyuan Formation.Due to the continuous cyclic sequence stratigraphy changes,the porosity,permeability,breakthrough pressure and breakthrough time of the samples show a certain cyclicity.Within the same sequence,the porosity is larger,and the permeability is smaller near the maximum flooding surface.Although the permeability of the sandstone samples is higher,the porosity is lower,and the breakthrough pressure and breakthrough times are greater.The strata in the study area formed in an oxidized environment that was affected by freshwater,and the pore structure of different lithologies is quite different.After the formation of sandstone,the intergranular pores generally underwent filling with secondary quartz,clay minerals and organic matter,resulting in low porosity and permeability.  相似文献   

14.
Late Hercynian-early Indosinian (Triassic) granite is widely distributed around the Taer region of the northern margin of West Kunlun. The rock mass is mainly composed of calc-alkaline porphyroid biotite adamellite and characterized by SiO2-rich, high-Ca, moderate-alkaline, and strongly peraluminous attributes, and relatively low ΣREE with LREE enrichment and a moderate Eu anomaly. As shown in the trace element spider web diagram, distinct peaks appear for Th, La, Nd, and Zr and clearly low values appear for Ba, Nb, Sr, P, and Ti. Further, compared with the primitive mantle, Rb/Sr and Rb/Ba are considerably higher and Nd/Th and Nb/Ta are relative low, all falling into the scope of the crust-origin rocks, indicating the characteristics of the crust-origin S-type granite. The rock mass’s zircon U-Pb isotopic age is determined to be 235.7 ± 3.9 Ma. On the basis of the age data, spatio-temporal location, lithology, and geochemistry of the rock mass, we conclude that the formation of the rock mass is closely related to the strong compressional orogenic movement (240 Ma) of the Tianshuihai terrane and the South Kunlun terrane. The rock mass is the product of the collision orogenic movement. However, distinct differences are observed between the studied rock mass and the synorogenic Bulunkou rock mass, which may be caused by the different collision strength and different positions with respect to the collision zone.  相似文献   

15.
刘启  张泽  张圣嵘  恽晴飞  付峻松 《冰川冻土》2022,44(6):1820-1832
Seasonally frozen soils are widely distributed in China in terms of area,and the freeze-thaw cycle effect generated by the alternation of cold and warmth is one of the causes of engineering damage in cold areas during construction,and it is particularly important to restore the nature and state of the soil when it is subjected to freeze-thaw action. Therefore,sandy soil specimens with different numbers of freeze-thaw cycles were prepared,and the long-term strength of frozen sandy soil was tested using a spherical template indenter. Using fractal theory and the microstructure image processing software ImageJ,the change law of grain group and long-term strength of two frozen sandy soils under different numbers of freeze-thaw cycles were studied. The results show that:for fine sand(FS),the fractal dimension DB has a highly significant positive correlation with the long-term strength variation,among which ≥0. 15~0. 20 mm and ≥0. 25~0. 40 mm have the best fit with the long-term strength,and are the dominant grain classes of FS. For medium sand(MS),the fractal dimension DB is slightly positively correlated with the long-term strength,and the variation shows a“vertical N”trend,in which the grain size content of ≥0. 30~0. 40 mm and ≥0. 40 mm fits better with the long-term strength,and is the dominant grain class for MS. The content of other grain groups did not correlate significantly with the long-term strength change. The freeze-thaw action changed the content ratios of coarse and fine grain agglomerates in the soil. With the increase of the overall particle size interval,the dominant particle size also increases,which shows that the long-term strength of frozen sandy soil tends to decrease and then increase with the increase of the content of some particle sizes. The results of the study can provide theoretical reference for the determination of long-term strength in areas subject to freeze-thaw action. © 2022 Science Press (China).  相似文献   

16.
In intermediate-acid magmatic rocks,alkaline magmatic rocks,gneisses and migmatitic rocks K-feldspar is a rock-forming rock in which the contents of Pb are highest,just 2-10 times those of the whole rock,3-16 times those of mica minerals and 6-32 times those of quartz.The lowest contents of K-feldspar are recognized in Early Proterozoic and Achaean rocks,with Pb in the K-feldspar accounting for less than 10% of that in the whole rock;in post Middle Proterozoic alkaine magmatic rocks,K-feldspar-rich granites and metamorphic rocks the contents of K-feldspar tend to increase,with the proportion granites and metamorphic rocks the contents of K-feldspar tend to increase,with the proportion of Pb over that in the whole rock being obviously increased.In the alkaline rocks in which K-feldspar accounts for 50%-70% of the total in the whole rock,the contents of Pb in K-feldspar account approximately for 70%-95% of the total lead in the whole rock.Being accessible to hydrothermal alteration in the late periods,K-feldspar was conversed to sericite,calcite,quartz,etc.In the process of such conversion the lead would be leached out and then find its way into fluid phase.This kind of trans-formation can provide sufficient ore-forming material for later Pb metallogenesis.  相似文献   

17.
Acid intrusions are widespread in the Sawur region, Xinjiang. The Ka'erjiao intrusion is mainly composed of albite granite porphyry, K-feldspar granite porphyry, ivernite and granite porphyry. Being a transitional product between magma intrusion and eruption in the Sawur region, the Ka'erjiao intrusion was formed at the telophase of the late Carboniferous to the begining of early Permian as determined by the SHRIMP U-Pb zircon dating, with an age of 302.6±7.6 Ma (1σ). The intrusion consists of alkali-enriched rock, whose REE distribution patterns are of the LREE enrichment type, theδEu value is low and Nd, Sr, Pb isotopes reflect its mantle source characteristics. Theδ18O value of intrusion is low as a result of isotope exchange with meteoric water. The geochemical characteristics show that it was formed in a post-collisional tectonic setting. Taking combined considerations of current studies of A-type granites and Permian volcanic rocks, we think that in the telophase of the late Carboniferous to the beginning of the early Permian, the Sawur region was within the extension or compressional to extensional period of a post-collisional stage. The Ka'erjiao intrusion from mantle sources can confirm the vertical continental crust growth in the late Paleozoic. The Sawur region in west Junggar is consistent with east Junggar in post-collisional tectonic evolution process.  相似文献   

18.
The Qinghai Gonghe-Guide Basin together with the alternatively distributed mountainous region shows characteristics that the conductive geothermal resource of the basin has high geothermal gradient, the granite occurs in the bottom of borehole for geothermal exploration, and the convective hot springs in the basin-edge uplift fracture are in zonal distribution and with high-temperature geothermal water. There are still some divergences about the heat source mechanism of the basin. In this paper, queries to the view of mantle-derived heat source have been put forward, coming up with geochemical evidences to prove that the radiogenic heat of granite is the heat source within the mantle. Additionally, temperature curve is drawn based on the geothermal boring and geochemical geothermometer has been adopted for an estimation of the temperature and depth of the geothermal reservoir, it has been found that the surrounding mountains belong to the medium-temperature geothermal system while the area within the basin belongs to the high-temperature geothermal system with the temperature of borehole bottom reaching up to 175-180 ℃. In this paper, discussions on the problems existing in the calculation of geothermal gradient and the differences generated by the geothermal system have been carried out.  相似文献   

19.
Acid intrusions are widespread in the Sawur region, Xinjiang. The Ka'erjiao intrusion is mainly composed of albite granite porphyry, K-feldspar granite porphyry, ivernite and granite porphyry. Being a transitional product between magma intrusion and eruption in the Sawur region, the Ka'erjiao intrusion was formed at the telophase of the late Carboniferous to the begining of early Permian as determined by the SHRIMP U-Pb zircon dating, with an age of 302.6±7.6 Ma (1σ). The intrusion consists of alkali-enriched rock, whose REE distribution patterns are of the LREE enrichment type, theδEu value is low and Nd, Sr, Pb isotopes reflect its mantle source characteristics. Theδ18O value of intrusion is low as a result of isotope exchange with meteoric water. The geochemical characteristics show that it was formed in a post-collisional tectonic setting. Taking combined considerations of current studies of A-type granites and Permian volcanic rocks, we think that in the telophase of the late Carboniferous to the beginning of the early Permian, the Sawur region was within the extension or compressional to extensional period of a post-collisional stage. The Ka'erjiao intrusion from mantle sources can confirm the vertical continental crust growth in the late Paleozoic. The Sawur region in west Junggar is consistent with east Junggar in post-collisional tectonic evolution process.  相似文献   

20.
Direct current resistivity and ground penetrating radar surveys were employed to obtain the value of the resistivity and dielectric constant in the brine near the Barrow, Alaska. The geophysical surveys were undertaken together with the permafrost drilling program for the measuring of the ground temperature regime and for the core sampling. The sampled cores were measured for their physical and chemical properties in the laboratory under different temperature conditions (-60 to 20 ℃). Laboratory results support field observations and led to the development of a technique for distinguishing freshwater taliks and brine layers in permafrost. These methods were also employed in freshwater taliks near Council,Alaska. The electrical resistivity is a powerful and sensitive parameter for brine detection. However, the resistivity is a less sensitive indicator of the soil type or water content under highly saline conditions.High frequency dielectric constant is an ideal second parameter for the indication of the soil type, liquid water content and other physical properties. The imaginary part of the dielectric constant and resistivity have a significant dependence upon salinity, i.e. upon freezing temperature. The ground temperature regime and the freezing point of the brine layer are important parameters for studying the electric properties of permafrost terrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号