首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
吕敦波  张帆  张益峰  杨科  吕飞  胡大伟 《冰川冻土》2022,44(6):1796-1806
In order to study the effect of freeze-thaw cycles on the type I fracture toughness of granite under ultra-low temperature conditions,semi-circular bending(SCB)specimens were used in this study,and different freeze-thaw times(1,2 and 3 times)were selected. The granite in the natural state was treated with -160 ℃ ultra-low temperature freeze-thaw cycles,and the three-point bending test was carried out on the granite after the freeze-thaw cycle. and microstructure effects. The results show that with the increase of freeze-thaw cycles,the localized damage of I-type crack tip of granite is intensified,the fracture toughness is decreased,the number of microcracks and pores in the rock is increased,the length of cracks is increased,and the pore size is increased. Finally,the changes of rock frost heaving force and fracture toughness under low temperature and ultra-low temperature conditions are compared and analyzed. Compared with low temperature conditions,the frost heaving force produced by ultra-low temperature freezing and thawing is larger. When fracture toughness decreases by approximately the same amplitude,rocks need more cycles of freezing and thawing at low temperature. The research results can provide theoretical reference for underground storage of liquefied natural gas(LNG)in ultra-low temperature environment. © 2022 Science Press (China).  相似文献   

2.
Enhanced geothermal system (EGS) is an effective method for developing and utilizing hot dry rock (HDR). The key to the effectiveness of EGS is the construction of an artificial fracture network. The permeability of fractures has severe effects on the heat transfer efficiency and sustainability of geothermal energy. However, the evolution characteristics of hydraulic conductivity under different failure modes have not been adequately studied for HDR. To clarify this, rocks with different failure modes were investigated by conducting thermal triaxial compression experiments, and the fluid seepage related to different rock failure modes was comprehensively investigated. The results showed that the characteristic stresses and crack surface roughness of the rock increased as the confining pressure increased. The permeability in the composited failure mode was the largest (11.4 μm2), followed by that in the Y-shaped shear failure mode (9.7 μm2), and that in the single-shear failure mode was the smallest (7.2 μm2). The confining pressures had an inhibitory effect on permeability. As the confining pressure increased from 5 to 30 MPa, the permeability decreased by 88.8%, 88.4%, and 89.9%, respectively. In contrast, the permeability was significantly enhanced by 128.3%, 94.6%, and 131% as the flow rate increased from 3 to 7 mL/min.  相似文献   

3.
Natural bitumen is the evolutionary residue of hydrocarbon of sedimentary organic matter. Several kinds of bitumen with different occurrences, including bitumen in source rock, migration bitumen filled in fault, oil-bed bitumen and paleo-reservoir bitumen, are distributed widely in the Dabashan foreland. These kinds of bitumen represent the process of oil/gas formation, migration and accumulation in the region. Bitumen in source rock filled in fractures and stylolite and experienced deformation simultaneously together with source rock themselves. It indicated that oil/gas generation and expelling from source rock occurred under normal buried thermal conditions during prototype basin evolution stages prior to orogeny. Occurrences of bitumen in source rock indicated that paleo-reservoir formation conditions existed in the Dabashan foreland. Migration bitumen being widespread in the fault revealed that the fault was the main channel for oil/gas migration, which occurred synchronously with Jurassic foreland deformation. Oil-bed bitumen was the kind of pyrolysis bitumen that distributed in solution pores of reservoir rock in the Dabashan foreland depression, the northeastern Sichuan Basin. Geochemistry of oil-bed bitumen indicated that natural gas that accumulated in the Dabashan foreland depression formed from liquid hydrocarbon by pyrolysis process. However, paleo-reservior bitumen in the Dabashan forleland was the kind of degradation bitumen that formed from liquid hydrocarbon within the paleo-reservior by oxidation, alteration and other secondary changes due to paleo-reservior damage during tectonics in the Dabashan foreland. In combination with the tectonic evolution of the Dabashan foreland, it is proposed that the oil/gas generated, migrated and accumulated to form the paleo-reservoir during the Triassic Indosinian tectonic movement. Jurassic collision orogeny, the Yanshan tectonic movement, led to intracontinental orogeny of the Dabashan area accompanied by geofluid expelling and paleo-reservoir damage in the Dabashan foreland. The present work proposed that there is liquid hydrocarbon exploration potential in the Dabashan foreland, while there are prospects for the existence of natural gas in the Dabashan foreland depression.  相似文献   

4.
Takashi Ono 《冰川冻土》2004,26(Z1):64-69
Serious failure on the slope of rock ground can be caused by a cyclic action of freezing and thawing in the cold regions. The frost susceptibility and the effect of freezing and thawing onthe rock material, however, have not been well investigated. In order to find out the freezing effect on the rock materials, mortar specimens are frozen as a pseudo-rock material under the constant rate of freezing by means of controlling the temperature of both ends of specimen. The freezing process is given one-dimensionally to the cylindrical samples in the laboratory to simulate the in-situ freezing phenomena in the natural ground. Formation of ice lens, frost heave and water intake during freezing process are observed on the mortar specimen under constant freezing rate, which probably causes cracks or large deformation in the real rock ground. The values of the velocity of elastic wave propagation are compared before and after freezing process to estimate the degree of weathering due to freezing and thawing.  相似文献   

5.
This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng–Ansai area of Ordos Basin. Based on destructive diagenesis(compaction and cementation) and constructive diagenesis(dissolution) of sandstone reservoirs, this study analyzed the diagenesis characteristics of the tight sandstone reservoirs in this area, and discussed the relationship between sandstone diagenesis and porosity evolution in combination with present porosity profile characteristics of sandstone reservoir. The effect simulation principle was employed for the mathematical derivation and simulation of the evolution of porosity in the Yanchang Formation tight sandstone reservoirs. The result shows that compaction always occurs in tight sandstone reservoirs in the Yanchang Formation, and cementation occurs when the burial depth increases to a certain value and remains ever since. Dissolution occurs only at a certain stage of the evolution with window features. In the corresponding present porosity profile, diagenesis is characterized by segmentation. From the shallow to the deep, compaction, compaction, cementation and dissolution, compaction and cementation occur successively. Therefore, the evolution of sandstone porosity can be divided into normal compaction section, acidification and incremental porosity section, and normal compaction section after dissolution. The results show that the evolution of sandstone porosity can be decomposed into porosity reduction model and porosity increase model. The superposition of the two models at the same depth in the three stages or in the same geological time can constitute the evolution simulation of the total porosity in sandstone reservoirs. By simulating the evolution of sandstone reservoir porosity of the eighth member in Xifeng area and the sixth member in Ansai area, it shows that they are similar in the evolution process and trend. The difference is caused by the regional uplift or subsidence and burial depth.  相似文献   

6.
刘启  张泽  张圣嵘  恽晴飞  付峻松 《冰川冻土》2022,44(6):1820-1832
Seasonally frozen soils are widely distributed in China in terms of area,and the freeze-thaw cycle effect generated by the alternation of cold and warmth is one of the causes of engineering damage in cold areas during construction,and it is particularly important to restore the nature and state of the soil when it is subjected to freeze-thaw action. Therefore,sandy soil specimens with different numbers of freeze-thaw cycles were prepared,and the long-term strength of frozen sandy soil was tested using a spherical template indenter. Using fractal theory and the microstructure image processing software ImageJ,the change law of grain group and long-term strength of two frozen sandy soils under different numbers of freeze-thaw cycles were studied. The results show that:for fine sand(FS),the fractal dimension DB has a highly significant positive correlation with the long-term strength variation,among which ≥0. 15~0. 20 mm and ≥0. 25~0. 40 mm have the best fit with the long-term strength,and are the dominant grain classes of FS. For medium sand(MS),the fractal dimension DB is slightly positively correlated with the long-term strength,and the variation shows a“vertical N”trend,in which the grain size content of ≥0. 30~0. 40 mm and ≥0. 40 mm fits better with the long-term strength,and is the dominant grain class for MS. The content of other grain groups did not correlate significantly with the long-term strength change. The freeze-thaw action changed the content ratios of coarse and fine grain agglomerates in the soil. With the increase of the overall particle size interval,the dominant particle size also increases,which shows that the long-term strength of frozen sandy soil tends to decrease and then increase with the increase of the content of some particle sizes. The results of the study can provide theoretical reference for the determination of long-term strength in areas subject to freeze-thaw action. © 2022 Science Press (China).  相似文献   

7.
COMPLEXITY AND CHAOTIC DYNAMICS OF ROCK FAULTING   总被引:1,自引:0,他引:1  
Fault is a complex dynamic system controlled by the coupling of rock texture, reaction, fluid flow, stress, and rock deformation mechanism. A coupled reaction-transport- mechanical dynamic model for fault system is established and described in this paper. An example is presented for the Shuikoushan deposit, Hunan. The results of dynamic simulation indicate that the evolution and magnitude of fracture permeability of different rocks are different, and that faulting can enhance the spatial heterogeneity of rock permeability and facilitate fluid flow and mineralization in local fault zone. The pressure for a fault usually shows a variation mode of aperiodic oscillation with time, which reflects the chaotic behavior of the evolution of a fault.  相似文献   

8.
Jiyang (济阳) sag is an oil rich basin,consisting of Huimin (惠民),Dongying (东营),Zhanhua (沾化),and Chezhen (车镇) depressions.The elastic rock of Paleogene has undergone early and middle diagenetic stages and now the main clastic reservoir is in the middle diagenetic stage.Primary and secondary pores are developed in Paleogene sandstone,the latter is generated from the dissolution of feldspar and calcite cement in rocks owing to the organic acid from the maturated source rock,but the materials dissolved are different in different depressions.The reservoir secondary pores of Dongying depression are generated from the dissolution of calcite cement,the ones of Zhanhua and Huimin depressions from the dissolution of feldspar,the secondary pores of Chezhen depression from the dissolution of feldspar in upper section,and the dissolution of calcite cement in the lower section of Paleogene,respectively.The secondary pores are developed in two depths and the depth goes down from west to east,from south to north in Jiyang sag.The major controlling factors for secondary pore development are maturity and location of source rock.Lastly,the favorable reservoirs are evaluated according to reservoir buried depth,sedimentation,and diagenesis.The reservoir with high quality is located in the northern and central parts in Dongying depression; there are some good reservoirs in Gndao (孤岛),Gudong (孤东),and Gunan (孤南) areas in Zhanhua depression,and the favorable reservoirs are located in the north steep slope and the south gentle slope of Chezhen depression and central uplift,south gentle slope of Huimin depression.  相似文献   

9.
Tight sandstone,with severe diagenesis and complex pore structure,differs greatly from conventional sandstone in terms of rock electrical parameters.In subsurface rock electrical experiments,various electrical parameters are confounded and can only be analyzed qualitatively.The lack of quantitative analysis for each individual electrical parameter presents a challenge for the evaluation of oil and gas saturation in tight sandstone.Based on the 2D pore-throat model and the features of pore structure in the tight sandstone of the Penglaizhen and Shaximiao Formations in the upper and middle Jurassic of the Western Sichuan Depression,this paper presents 3D micro pore-throat models for three types of tight sandstone.It proposes a finite element-based rock electrical simulation method to analyze the influence of pore structure parameters,such as throat radius and throat tortuosity,on electrical parameters such as resistivity,formation factor,and cementation index quantitatively.The research revealed the following results:(1)Throats of tight sandstone usually have lamellar or curved lamellar shapes that are slender and narrow.The lamellar throat used in the proposed porethroat model is more consistent with the features of tight sandstone than the tubular throat used in the original model.(2)The throat determines the conductivity of tight sandstone.The throat parallel to the electric potential has the greatest influence on conductivity,and the throat perpendicular to the potential has the least influence.(3)In tight sandstone grades I to III,as the porosity decreases,the formation factor increases and the cementation index decreases.(4)The results of the rock electrical simulation are consistent with the results of the rock electrical experiment,which indicates that the proposed rock electrical simulation method of tight sandstone is effective and accurate.  相似文献   

10.
Petrographic and geochemical analyses of three Cretaceous lithostratigraphic sandstone units were undertaken to constrain their provenance and tectonic setting. Petrographic analysis showed that there are differences in composition between the three sandstone bodies, which can be attributed to differences in provenance relief, transport distance and geology of the terrain. Composition of the three lithostratigraphic sandstone bodies fall within the craton interior field.
Framework mode and chemical features indicated their derivation from basaltic volcanics, source rocks during the early rifting stage, and felsic, intermediate and mafic igneous source rocks located at the southeast basement complex terrain, with minor sedimentary components from the uplifted and folded older Cretaceous strata.
The chemical composition of the sandstones is mainly related to source rocks, chemical weathering conditions and transport agents. The source rocks were derived mainly from the southeastern Precambrian basement of Nigeria. Through examination of the sandstones, the tectonic setting was modeled. The Benue Trough belongs to a continental sedimentary basin of the passive margin type.
The tectonic evolution from Albian to Maastrichtain of the trough is contributed to the difference in framework mode and chemical composition of the sandstones. The evolution of the basin was reconstructed in terms of sandstone petrology and geochemistry. The tectonic evolution can be subdivided into three stages from the petrology and geochemistry data. The first stage covers Albian; the second stage the Turonian-Coniacian, and the third stage the Campanian-Maastrichtain. These are the three mega discontinuities in the sandstone composition among these three stages. These three discontinuities signify the influence of tectonism.  相似文献   

11.
岩石内部存在的裂隙、孔洞等天然损伤对岩石的力学性能和破坏过程有重要影响,依据细胞自动机理论结合CT无损识别技术实现了含天然裂隙岩石在劈裂条件下裂纹扩展和贯通全过程及其力学性能变化规律的研究。从裂隙砂岩的真实细观结构出发,构建了天然裂隙岩石的数值计算模型,运用CASRock数值计算软件完成了含不同裂隙倾角的砂岩劈裂破坏的数值试验,分析了裂隙倾角对砂岩的力学特性、裂纹扩展过程及能量演化的影响规律。研究表明:(1)天然裂隙砂岩的抗拉强度与裂隙倾角密切相关,随着裂隙倾角的增加,其抗拉强度呈现先减小后增加的趋势;(2)裂隙起裂于天然裂隙尖端,当裂隙倾角0°≤θ<48°时,岩样的破坏是由错开型裂纹引起,裂纹沿着与天然裂隙近垂直方向扩展;当裂隙倾角48°≤θ<94°时,岩样的破坏是由张开型裂纹引起,裂纹沿着与天然裂隙近平行方向扩展;(3)劈裂过程中裂纹尖端应力场存在拉应力区和压应力区,拉应力造成翼裂纹由天然裂隙尖端沿加载端方向萌生扩展,而压应力则引发次生裂纹沿天然裂隙方向扩展;(4)含天然裂隙砂岩劈裂破坏过程能量演化可划分为4个阶段,随裂隙倾角的增大,峰值点处的总能量密度、弹性能密度先缓慢减少再迅速增加,但对岩样耗散能影响不大。  相似文献   

12.
青藏高原高寒地区岩体长期稳定性受冻融作用影响显著,有必要开展冻融岩石的时效性特征研究。为探讨砂岩在冻融循环作用下的蠕变劣化特性,基于不同冻融循环次数后石英砂岩及红砂岩单轴蠕变试验结果,深入分析了冻融循环对砂岩各蠕变阶段的影响特征。研究表明,在非屈服应力条件下,试样在衰减蠕变阶段的蠕变时长随着冻融循环次数的增加而明显减小,对应蠕变量及蠕变速率增大;在屈服应力条件下,试样进入加速蠕变阶段的应力阈值随着冻融循环次数的增加而逐渐降低,对应从稳定蠕变到加速破坏所经历的时间更短,破坏时累计的应变增量更大;在长期荷载作用下,试样的宏观破裂形态随循环次数的增加逐步由单一斜剪切破坏模式向共轭断面拉剪复合型破坏模式演化。根据试验结果,提出了具有冻融与长期受荷劣化特征的非定常性黏弹性系数损伤演化方程,将其引入西原模型构建了考虑冻融损伤的砂岩蠕变本构模型。利用冻融后红砂岩蠕变试验数据对模型进行了参数辨识与比较分析,验证了模型的正确性及适用性。通过对模型参数进行拟合分析,揭示了黏弹性冻融损伤系数随冻融循环次数的变化规律,表明了长期受荷损伤参数具有控制加速蠕变幅度的重要作用。研究结果对于高寒山区岩体长期稳定性评价具有一定意义。  相似文献   

13.
单轴压缩条件下裂隙岩样冻融损伤破坏模式分析   总被引:8,自引:7,他引:1  
以寒区裂隙岩体为研究对象,采用水泥砂浆类岩石材料制作具有不同几何特征的裂隙岩样,对预制的不同裂隙岩样进行冻融循环试验和单轴压缩试验,研究裂隙长度、裂隙倾角、裂隙数目以及冻融循环次数对试件贯通模式的影响。试验表明:裂隙岩体的几何特征以及冻融循环作用对岩体损伤破坏模式有较大影响。随着冻融循环次数的增加,岩样破裂面的破裂程度越来越严重,破坏模式也越来越复杂;裂隙倾角为30°的裂隙岩样,主要发生拉伸破坏,而裂隙倾角为60°的裂隙岩样,则表现为拉剪贯通,且双裂隙岩样岩桥间多出现压剪裂纹,对于裂隙倾角为90°的岩样,裂隙数目以及裂隙长度对其影响不大,均为劈裂破坏,且破坏面不一定为裂隙面;预制裂隙长度越大,越容易产生除了主拉裂纹以外的支裂纹(压裂纹)。研究结果可为寒区岩体工程建设及运营提供科学的参考。  相似文献   

14.
水压影响岩石渐进破裂过程的试验研究   总被引:2,自引:0,他引:2  
彭俊  荣冠  周创兵  王小江  侯迪 《岩土力学》2013,34(4):941-946
岩石的压缩过程伴随着裂纹扩展,在低、中围压条件下扩展的裂纹主要受到张拉作用而产生,张拉破坏是首要的作用机制。研究发现,岩石的渐进破裂过程受岩石的结构和构造影响,比如矿物成分、颗粒大小以及胶结情况等,另外,围压以及开挖扰动等外界因素对岩石的渐进破裂过程也有重要影响。基于试验方法探讨水压对岩石渐进破坏过程的影响,首先,阐述岩石渐进破裂过程各个阶段的特征;然后,对岩石渐进破裂指标--岩石的启裂强度 和损伤强度 的确定方法进行总结;最后,选取细粒的石英砂岩为研究对象,通过试验研究水压对岩石渐进破坏过程的影响。试验结果表明,相同围压条件下,随着岩样两端水压的增大,岩石的 有逐渐增大的趋势,而岩石的 和峰值强度 逐渐变小;随着围压逐渐增大,岩石的启裂强度 、损伤强度 及峰值强度 均逐渐增大。  相似文献   

15.
为研究云冈石窟砂岩孔状风化现象的形成机理,对现场选取的含结核砂岩进行冻融循环实验,利用激光共聚焦显微镜对砂岩结核、砂岩基质、以及结核与基质交界面进行观测,分析冻融条件下含结核砂岩裂隙扩展规律,建立了含结核砂岩冻融破坏力学模型。研究表明:随冻融循环周期增加,结核与基质交界面、结核中心、砂岩基质先后出现裂隙。各区域裂隙宽度随冻融循环周期增多均呈增长趋势,但3个位置裂隙发展过程存在差异,交界面的裂隙沿交界面延伸;结核中心产生新裂隙,同时早期裂隙扩展、延伸、汇交形成裂隙网络;砂岩基质裂隙发展缓慢。结核的存在改变了砂岩物理力学性质,显著增强了砂岩的非均质性,建立的含结核砂岩冻融破坏模型,揭示了裂隙一般易发育于交界面的特点。砂岩的非均质性是云冈石窟砂岩形成孔状风化的内在因素。  相似文献   

16.
单轴条件下砂岩三维破裂过程的CT观测   总被引:10,自引:1,他引:9  
岩石破裂过程研究一直是岩石力学专家关注的重要问题。本文采用特制的三轴压力仪与医用西门子SOMATOM -plusCT扫描仪结合 ,对砂岩进行了室内单轴压缩试验。通过对砂岩的CT图像和密度损伤增量与应力关系曲线分析 ,结果显示 ,砂岩的破裂演化过程可分为初始损伤的压密、裂纹出现扩展、裂纹归并分岔、裂纹重分岔扩展以及裂纹惯通宏观破坏等五个阶段。在初始损伤的压密阶段 ,砂岩的密度损伤增量为正值 ,速率也为正 ;在裂纹出现扩展阶段 ,砂岩出现局部密度损伤增量减小 ,并随应力增加而由正值转为负值 ,速率也由正变负 ;在裂纹归并分岔阶段 ,砂岩的密度损伤增量全为负值 ,速率也变快 ;在裂纹重分岔扩展阶段 ,砂岩的密度损伤增量继续变负 ,但速率变慢 ;在裂纹惯通宏观破坏阶段 ,砂岩的密度损伤增量继续变负 ,速率变的更快。  相似文献   

17.
张慧梅  王云飞 《岩土力学》2022,43(8):2103-2114
以红砂岩为研究对象,进行冻融循环、CT扫描及力学特性试验,采用图像处理技术结合遗传算法寻优模型实现了0、5、10、20、40 次冻融循环后 CT 扫描图像的去噪、增强、分割及三维重构处理,通过对同一对象跨尺度的损伤识别与对比研究,建立了基于细观损伤的弹性模量劣化预测公式,并从材料细观结构的物理本质诠释了冻融红砂岩宏观力学行为。结果表明:基于图像最大熵值的遗传算法能够快速精确地选取阈值进行图像分割,实现对岩石细观结构中基质和缺陷的识别;随着冻融次数增加,岩石孔隙率上升、孔隙分维下降,细观尺度上呈现出孔隙扩展、数量增多,但结构复杂程度下降的演化行为;传统方法以有效承载面积、弹性模量为度量基准定义的宏、细观损伤变量未能全面考虑损伤物理机制和材料内部结构信息,宏细观损伤演化曲线差异较大;基于2种物理机制定义细观损伤变量和考虑岩石天然损伤定义宏观损伤变量,实现了损伤的宏-细观结合。最后通过冻融循环过程中细观结构演化与宏观力学响应之间的关系,提出了弹性模量劣化预测公式,并分析冻融砂岩孔隙大小及孔隙结构形态变化在损伤过程中占据的不同主导作用,根据细观结构的物理机制解释宏观砂岩冻融破坏的力学机制。  相似文献   

18.
Evolution of Rock Cracks Under Unloading Condition   总被引:2,自引:0,他引:2  
Underground excavation normally causes instability of the mother rock due to the release and redistribution of stress within the affected zone. For gaining deep insight into the characteristics and mechanism of rock crack evolution during underground excavation, laboratory tests are carried out on 36 man-made rock specimens with single or double cracks under two different unloading conditions. The results show that the strength of rock and the evolution of cracks are clearly influenced by both the inclination angle of individual cracks with reference to the unloading direction and the combination geometry of cracks. The peak strength of rock with a single crack becomes smaller with the inclination angle. Crack propagation progresses intermittently, as evidenced by a sudden increase in deformation and repeated fluctuation of measured stress. The rock with a single crack is found to fail in three modes, i.e., shear, tension–shear, and splitting, while the rock bridge between two cracks is normally failed in shear, tension–shear, and tension. The failure mode in which a crack rock or rock bridge behaves is found to be determined by the inclination angle of the original crack, initial stress state, and unloading condition. Another observation is that the secondary cracks are relatively easily created under high initial stress and quick unloading.  相似文献   

19.
王立  倪彬  谢伟  王书昭  寇坤  赵奎 《岩土力学》2022,43(Z2):373-381
为了探讨粒径对黄砂岩微观-宏观裂纹演化机制的影响,系统地开展了不同粒径黄砂岩单轴压缩声发射试验。基于声发射监测技术以及震源机制反演方法,对岩石变形破坏过程中微裂纹演化机制进行了研究,同时利用电镜扫描技术与几何分形理论,对破坏后的砂岩表面裂隙宏观形态及试件断口的微观形貌特征进行了分析。试验结果表明:粒径的大小、胶结物类型的不同均可影响岩石强度,通过室内试验得出随着黄砂岩粒径的逐渐增大,其峰值应力呈逐渐下降的变化趋势;对比不同粒径黄砂岩试件变形破坏过程中的声发射改进 b 值( bI 值)与平均声发射能率,所有试件峰值破坏前平均声发射能率均存在“激增”与“激降”现象,且声发射 bI 值在砂岩试件达到峰值破坏时下降到最小值,该现象可以作为岩石的失稳破坏前兆特征;随着构岩矿物颗粒粒径的增大,岩石内部微裂纹的破坏模式由张拉型为主导向剪切型为主导进行转变;破坏后岩样表面宏观裂隙的分形维数随着岩石粒径的增加呈现下降的变化趋势,即粒径大小对岩石表面宏观裂隙演化过程具有一定控制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号