首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The Voisey’s Bay Ni-Cu-Co sulfide deposit is hosted in a 1.34 Ga mafic intrusion that is part of the Nain Plutonic Suite in Labrador, Canada.The Ni-Cu-Co sulfide mineralization is associated with magmatic breccias that are typically contained in weakly mineralized olivine gabbros, troctolites and ferrogabbros, but also occur as veins in adjacent paragneiss.The mineralization is associated with a dyke-like body which is termed the feeder dyke.This dyke connects the shallow differentiated Eastern Deeps chamber in the east to a deeper intrusion in the west termed the Western Deeps Intrusion.Where the conduit is connected to the Eastern Deeps Intrusion, the Eastern Deeps Deposit is developed at the entry line of the dyke along the steep north wall of the Eastern Deeps Intrusion.The Eastern Deeps Deposit is surrounded by a halo of moderately to weakly mineralized Variable-Textured Troctolite (VTT) that reaches a maximum thickness above the ENE-WSW axis of the Eastern Deeps Deposit. At depth to the west, the conduit is adjacent to the south side of the Western Deeps Intrusion, where the dyke and intrusion contain disseminated magmatic sulfide mineralization.The Reid Brook Zone plunges to the east within the dyke, and both the dyke and adjacent paragneiss are mineralized.The Ovoid Deposit comprises a bowl-shaped body of massive sulfide where the dyke widens near to the present-day surface.It is not clear whether this deposit was developed as a widened-zone within the conduit or at the entry point into a chamber that is now lost to erosion. The massive sulfides and breccia sulfides of the Eastern Deeps are petrologically and chemically different when compared to the disseminated sulfides in the VTT; there is a marked break in Ni tenor (Ni content in 100% sulfide, abbreviated to [Ni]100) and Ni/Co of sulfide between the two.The boundary of the sulfide types is often marked by strong sub-horizontal alignment of heavily digested and metamorphosed paragneiss fragments, development of barren olivine gabbro, and by a change from typically massive sulfides and breccias sulfides into more typical variable-textured troctolites with heavy to weak disseminated sulfide.Sulfides hosted in the feeder dyke tend to have low metal tenors ([Ni]100=2.5%-3.5%); sulfides in Eastern Deeps massive and breccia ores have intermediate Ni tenors ([Ni]100=3.5%-4%) and disseminated sulfides in overlying rocks have high Ni tenors ([Ni] 100=4%-8%) . Conduit-hosted mineralization and mineral zones in the paragneiss adjacent to the Reid Brook Deposit tend to have lower Ni tenor than the Ovoid and Eastern Deeps Deposits.The tenor of mineral hosted in the country rock gneisses tends to be the same as that developed in the conduit ; the injection of the sulfide into the country rocks likely occurred before formation of monosulfide solid solution.The Ovoid Deposit is characterized by coarse-grained loop-textured ores consisting of 10cm-2msized pyrrhotite crystals separated by chalcopyrite and pentlandite.A small lens of massive cubanite surrounded by more magnetite-rich sulfide assemblages represents what appears to be the product of in-situ sulfide fractionation. Detailed exploration in the area between the Reid Brook Zone and the Eastern Deeps has shown that these intrusions and ore deposits are connected by a branched dyke and chamber system in a major westeast fault zone.The Eastern Deeps chamber may be controlled by graben-like fault structures , and the marginal structures appear to have controlled dykes which connect the chambers at different levels in the crust.The geological relationships in the intrusion are consistent with emplacement of the silicate and sulfide laden magma from a deeper sub-chamber (possibly a deep eastward extension of the Western Deeps Intrusion where S-saturation was initially achieved) .The silicate and sulfide magmas were likely emplaced through this conduit into the Eastern Deeps intrusion as a number of different fragment laden pulses of sulfide-silicate melt that evolved with different R factors and in response to some variation in the degree of evolution of the parental magma.S isotope and S/Se data coupled with geological evidence point to a crustal source for the sulfur , and the site of equilibration of mafic magma and crustal S is placed at depth in a sulfidic Tasiuyak Gneiss. The structural control on emplacement of small intrusions with transported sulfide is a feature found in different nickel sulfide deposits around the world.Champagne glass-shaped openings in sub-vertical chonoliths are a common morphology for this deposit type (e.g.the Jinchuan , Huangshan , Huangshandong , Jingbulake , Limahe , Hong Qi Ling deposits in China , the Eagle deposits in the United States , and the Double Eagle deposit in Canada) .Some of the structures of the Midcontinent Rift of North America also host Ni-Cu-(PGE) deposits of this type (e.g.the Current Lake Complex in the Quetico Fault Zone in Ontario , Canada and the Tamarac mineralisation in the Great Lakes Structural Zone of the United States) .Other major nickel deposits associated with flat structures adjacent to major mantle-penetrating structures include the Noril’sk , Noril’sk II , Kharaelakh , NW Talnakh , and NE Talnakh Intrusions of the Noril’sk Region of Russia , the Kalatongke deposit in NW China , and Babel-Nebo in Western Australia.These deposits are all formed in mantle-penetrating structural conduits that link into the roots of large igneous provinces near the edges of old cratons.  相似文献   

2.
The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of original mantle magma, which indicates that these ultrabasic rocks were crystallized from magma that lost Pd in the form of melting segregation of sulfides. The PGE of the rocks show trend of partial melting, similar to that of mantle peridotite, which shows that magma formation occurs during rock-forming and ore-forming processes. The chondrite normalized PGE patterns of the rocks and ores are well related to each other, which signifies the signatures of multi-episode magmatic intrusion, melting and differentiation in the formation processes of rocks and ores. In addition, analyses about the relation between PGE and S, and study on Re-Os isotopes indicate that few contamination of the crustal substances occurred during the magmatic intrusion and the formation of deposit. However, contamination by crustal substances helps to supply part of the S for the enrichment of PGE. Meanwhile, the hydrothermal process is also advantageous for the enrichment of PGE, especially lbr Pt and Pd, due to deep melting segregation. The characteristic parameters (such as Pt/(Pt+Pd), (Pt+Pd)/(Ru+Ir+Os), Pd/Ir, Cu/(Ni+Cu), and so on.) for platinum-group elements for Jinchuan sulfide copper-nickel deposit show the same features as those for sulfide copper-nickel deposit related to basic magma, which also illustrates its original magma property representative of Mg-high tholeiite. Therefore, it is the marie (not ultramafic) magma that resulted in the formation of the superlarge sulfide copper-nickel deposit enriched in Cu and PGE. To sum up, the geochemical characteristics of platinum-group elements in rocks and ores from Jinchuan copper-nickel sulfide deposit are constrained by the continental rift tectonic environment, the parent magma features, the enriched mantel magma source, the complex metallogenesis and PGE geochemical signatures, and this would be rather significant for the study about the genetic mechanism of copper-nickel sulfide deposits.  相似文献   

3.
Before intruding, primary magmas have undergone liquation and partial crystallization atdepth; as a result the magmas are partitioned into barren magma, ore-bearing magma, ore-richmagma and ore magma, which then ascend and are injected into the present locations once ormultiple times, thus forming ore deposits. The above-mentioned mineralizing process is knownas deep-seated magmatic liquation-injection mineralization. The volume of the barren magma isgenerally much larger than those of the ore-bearing magma, ore-rich magma and ore magma. Inthe ascending process, most of the barren magma intrudes into different locations or outpoursonto the ground surface, forming intrusions or lava flows. The rest barren magma, ore-bearingmagma, ore-rich magma and ore magma may either multiple times inject into the same space inwhich rocks and ores are formed or separately inject into different spaces in which rocks and oresare formed. The intrusions containing such deep-seated magmatic liquation-injection depositshave a much smaller volume, greater ore potential and higher ore grade than that of in-situmagmatic liquation deposits. Consequently this mineralizing process results in the formation oflarge deposits in small intrusions.  相似文献   

4.
http://www.sciencedirect.com/science/article/pii/S1674987113000595   总被引:11,自引:0,他引:11  
Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongge,and Baima deposits,are well described in the literature and are hosted in layered mafic-ultramafic intrusions in the Panxi region,the central ELIP.The same type of ELIP- related deposits also occur far to the south and include the Anyi deposit,about 130 km south of Panzhihua,and the Mianhuadi deposit in the Red River fault zone.The Anyi deposit is relatively small but is similarly hosted in a layered mafic intrusion.The Mianhuadi deposit has a zircon U-Pb age of~260 Ma and is thus contemporaneous with the ELIP.This deposit was variably metamorphosed during the Indosinian orogeny and Red River faulting.Compositionally,magnetite of the Mianhuadi deposit contains smaller amounts of Ti and V than that of the other deposits,possibly attributable to the later metamorphism.The distribution of the oxide ore deposits is not related to the domal structure of the ELIP.One major feature of all the oxide deposits in the ELIP is the spatial association of oxide-bearing gabbroic intrusions,syenitic plutons and high-Ti flood basalts.Thus,we propose that magmas from a mantle plume were emplaced into a shallow magma chamber where they were evolved into a field of liquid immiscibility to form two silicate liquids,one with an extremely Fe-Ti-rich gabbroic composition and the other syenitic.An immiscible Fe-Ti-(P) oxide melt may then separate from the mafic magmas to form oxide deposits.The parental magmas from which these deposits formed were likely Fe-Ti-rich picritic in composition and were derived from enriched asthenospheric mantle at a greater depth than the magmas that produced sulfide-bearing intrusions of the ELIP.  相似文献   

5.
The Ni-Cu-platinum group element sulfide ore deposits of the Kharaelakh Intrusion,Noril′sk Region,Siberia,represent a large concentration of sulfides associated with a small differentiated intrusion formed at the edge of the Siberian Craton in the roots of the Siberian Trap flood basalt.The deposit is associated with an intrusion that occupies a flanking periclinal structure adjacent to the Noril′sk-Kharaelakh Fault.The intrusion is strongly differentiated and comprises taxitic gabbrodolerites,picritic gabbrodolerites,and gabbrodolerites within the main body which in turn forms a chonolith within a sheet-like intrusion that extends laterally to form extensive undifferentiated sills of gabbrodolerite.The intrusion substantially replaces the stratigraphy of the country rocks,and although it appears to have exploited the axis of structures developed in response to transtension,the intrusion has created space by both mechanical dilation of stratigraphy and magmatic replacement of pre-existing sedimentary rocks.The frontal lobes of the main intrusion have complex apophyses of gabrodolerite on a range of scales that demonstrate replacement of the sedimentary rocks and link to the development of an extensive metamorphic halo in the country rocks.This halo is much narrower over the main body of the intrusion,and these observations have implications for the thermal history of the intrusion.Mg-skarns and breccias are developed in the roof of the main body of the intrusion.Within the intrusion,the taxitic rocks contain vesicles and the blebby sulfides developed in the picritic and taxitic gabbrodolerites appear to have a linkage to volatile phases.Cuprous sulfide mineralization developed at the roof of the Kharaelakh Intrusion is associated with metamorphosed and skarn-bearing country rocks,and appears to have been generated by a combination of sulfide fractionation and associated metasomatism.The geological relationships appear consistent with a chonolith model for the development of the differentiated intrusion and mineralization,but the extent of metasmorphism of the country rocks appears to be related to the unusual thickness of gabbrodolerite apophyses at the flanks of the intrusion rather than metamorphism produced by the passage of mafic magma through the intrusion.Variations in disseminated sulfide compositions and metasomatic textures in the skarns are described,and a model is proposed which balances traditional views on the evolution of the magma conduits with the impact of magmatic fluids transported through the magma column(i.e.transmagmatic fluids).The importance of structures in controlling the nature of the conduit,and the resultant small intrusions with excess sulfide is a feature of many other Ni-Cu sulfide deposits including Voisey′s Bay,and it is suggested that the sulfides are more likely to have beentransported from depth into their final resting place rather than developed by in-situ equilibration of sulfide with fresh magma in the chonolith.  相似文献   

6.
The Qingkuangshan Ni-Cu-PGE deposit, located in the Xiaoguanhe region of Huili County, Sichuan Province, is one of several Ni-Cu-PGE deposits in the Emeishan Large Igneous Province (ELIP). The ore-bearing intrusion is a mafic-ultramafic body. This paper reports major elements, trace elements and platinum-group elements in different types of rocks and sulfide-mineralized samples in the intrusion. These data are used to evaluate the source mantle characteristics, the degree of mantle partial melting, the composition of parental magma and the ore-forming processes. The results show that Qingkuangshan intrusion is part of the ELIP. The rocks have trace element ratios similar to the coeval Emeishan basalts. The primitive mantle-normalized patterns of Ni-Cu-PGE have positive slopes, and the ratios of Pd/Ir are lower than 22. The PGE compositions of sulfide ores and associated rocks are characterized by Ru depletion. The PGE contents in bulk sulfides are slightly depleted relative to Ni and Cu, which is similar to the Yangliuping Ni-Cu-PGE deposit. The composition of the parental magma for the intrusion is estimated to contain about 14.65 wt% MgO, 48.66 wt% SiO2 and 15.48 wt% FeOt, and the degree of mantle partial melting is estimated to be about 20%. In comparison with other typical Ni-Cu-PGE deposits in the ELIP, the Qingkuangshan Ni-Cu-PGE deposit has lower PGE contents than the Jinbaoshan PGE deposit, but has higher PGE contents than the Limahe and Baimazhai Ni-Cu deposit, and has similar PGE contents to the Yangliuping Ni-Cu-PGE deposit. The moderate PGE depletions in the bulk sulfide of the Qingkuanghan deposit suggest that the parental magma of the host intrusion may have undergone minor sulfide segregation at depth. The mixing calculations suggests that an average of 10% crustal contamination in the magma, which may have been the main cause of sulfide saturation in the magma. We propose that sulfide segregation from a moderately PGE depleted magma took place prior to magma emplacement at Qingkuangshan, that small amounts of immiscible sulfide droplets and olivine and chromite crystals were suspended in the ascending magma, and that the suspended materials settled down when the magma passed trough the Qingkuangshan conduit. The Qingkuangshan sulfide-bearing intrusion is interpreted to a feeder of Emeishan flood basalts in the region.  相似文献   

7.
http://www.sciencedirect.com/science/article/pii/S1674987113000881   总被引:1,自引:0,他引:1  
Granitod batholiths of I-type features(mostly granodiorites and tonalites),and particularly those forming the large plutonic associations of active continental margins and intracontinental collisional belts,represent the most outstanding magmatic episodes occurred in the continental crust.The origin of magmas,however,remains controversial.The application of principles from phase equilibria is crucial to understand the problem of granitoid magma generation.An adequate comparison between rock compositions and experimental liquids has been addressed by using a projected compositional space in the plane F(Fe t Mg)eAnorthiteeOrthoclase.Many calc-alkaline granitoid trends can be considered cotectic liquids.Assimilation of country rocks and other not-cotectic processes are identifed in the projected diagram.The identifcation of cotectic patterns in batholith implies high temperatures of magma segregation and fractionation(or partial melting)from an intermediate(andesitic)source.The comparison of batholiths with lower crust granulites,in terms of major-element geochemistry,yields that both represent liquids and solid residues respectively from a common andesitic system.This is compatible with magmas being formed by melting,and eventual reaction with the peridotite mantle,of subducted mélanges that are fnally relaminated as magmas to the lower crust.Thus,the off-crust generation of granitoids batholiths constitutes a new paradigm in which important geological implications can be satisfactorily explained.Geochemical features of Cordilleran-type batholiths are totally compatible with this new conception.  相似文献   

8.
Recent work on the Panzhihua intrusion has produced two separate models for the crystallisation of the intrusion:(1) low-Ti,high CaO and low H2O(0.5 wt.%) parent magma(equivalent to Emeishan low-Ti basalt) at FMQ;and(2) high-Ti,low CaO and higher H2O(>1.5 wt.%) parent magma(equivalent to Emeishan high-Ti basalt) at FMQ + 1.5.Modelling of these parent magma compositions produces significantly different results. We present here detailed f(O2) and H2O modelling for average compositions of both Emeishan high-Ti and low-Ti ferrobasalts in order to constrain the effects on crystallisation sequences for Emeishan ultra-mafic -mafic layered intrusions.Modelling is consistent with numerous experimental studies on ferro-basaltic magmas from other localities(e.g.Skaergaard intrusion).Modelling is compared with the geology of the Panzhihua intrusion in order to constrain the crystallisation of the gabbroic rocks and the Fe-Ti oxides ore layers.We suggest that the gabbroic rocks at the Panzhihua intrusion can be best explained by crystallisation from a parent magma similar to that of the high-Ti Emeishan basalt at moderate H2O contents(0.5-1 wt.%) but at the lower end of TiO2 content for typical high-Ti basalts(2.5 wt.%TiO2). Distinct silicate disequilibrium textures in the Fe-Ti oxide ore layers suggest that an influx of H2O may be responsible for changing the crystallisation path.An increase in H2O during crystallisation of gabbroic rocks will result in the depression of silicate liquidus temperatures and resultant disequilibrium with the liquid.Continued cooling of the magma with high H2O then results in precipitation of Mt-Uv alone. The H2O content of parent magmas for mafic layered intrusions associated with the ELIP is an important variable.H2O alters the crystallisation sequence of the basaltic magmas so that at high H2O and f(O2) Mt -Uv crystallises earlier than plagioclase and clinopyroxene.Furthermore,the addition of H2O to an anhydrous magma can explain silicate disequilibrium texture observed in the Fe-Ti oxide ore layers.  相似文献   

9.
The Panzhihua layered intrusions is generated closely related to the Emeishan LIPs. This paper analyzes the spatial distribution of plagioclase and pyroxene. The quantitative texture analysis of 2209 plagioclase shows that the characteristic length of plagioclase is 0.54 to 0.96 mm, the intercept variation range is large, from ?0.67 to 0.96, and the slope is ?1.85 to ?1.04, the Aspect Ratio shows from 1.84 to 2.59 and fractal dimension D is 1.908–1.933. The quantitative texture analysis of 2342 pyroxene shows that the characteristic length of pyroxene is 0.38–0.64 mm, the intercept shows from 0.46 to 2.26, The slope ranges from ?2.6 to ?1.47, the Aspect Ratio value varies from 1.53 to 1.71, the fractal dimension D is 0.93 to 1.13. All the CSDs results of the Panzhihua intrusions indicate that plagioclase and pyroxene form in an open magma system and undergo four replenishment of magma injection. The plagioclase crystals do not grow as the lathlike shape, and the fractal growth leads to complex crystal surface. The plagioclase undergoes deformation compaction during the crystal process, and then is oriented. The pyroxene crystals grow along an approximately triaxial ratio and undergo texture adjustment and small crystal dissolution reabsorption. When all crystals in magma system grows up to 2 mm, the pyroxene undergoes cumulation in the Panzhihua layered intrusions. The plagioclase crystallization time scale is 171.23–304.41 years, representing that the crystallization is the more uniform in central part of the melt. The nucleation density continuously increases during the crystallization process of the magma system. The time scale to reach the final maximum crystal nucleation density is 15.28–58.98 years.  相似文献   

10.
The effect of Rayleigh distillation by outgassing of SO2 and H2S on the isotopic composition of sulfur remaining in silicate melts is quantitatively modelled.A threshold mole fraction of sulfur in sulfide component of the melts is reckoned to be of critical importance in shifting the δ^34S of the melts mith respect to the original magmas.The partial equilibrium fractionation in a magmatic system is evaluated by assuming that a non-equilibrium flux of sulfur occurs between magmatic volatiles and the melts,while an equilibrium fractionation is approached between sulfate and sulfide within the melts.The results show that under high fo2 conditions,the sulfate/sulfide ratio in a melt entds to increase,and the δ^34S value of sulfur in a solidified rock might then be shifted in the positive direction.This may either be due to Rayleigh outgassing in case the mole fraction of sulfide is less than the threshold,or due to a unidirectional increase in δ^34S value of the sulfate with decreaing temperature,Conversely,at low fo2,the sulfate/sulfide ratio tends to decrease and the δ^34S value of total sulfur could be driven in the negative direction,either because of the Rayleigh outgassing in case the mole fraction of sulfide is greater than the threshold,or because of a unidirectional decrease inδ^34S value of the sulfide.To establish isotopic equilibrium between sulfate and sulfide,the HM,QFM or WM buffers in the magmatic system are suggested to provide the redox couple that could simultaneously reduce the sulfate and oxidize the sulfide.CaO present in the silicatte Melts is also called upon to participate in the chemical equilibrium between sulfate and sulfide,Consequently,the δ^34S value of an igneous rock could considerably deviate from that of its original magma due to the influence of oxygen fugacity and temperature at the time of magma solidification.  相似文献   

11.
黄婉康  何登华 《地球化学》1981,(3):294-300,i003
Two stages of platinum mineralization, i.e., the main stage contemporaneous with Cu-Ni sulfide ores and the hydrothermal stage are recognizable in the platinum-bearing Cu-Ni sulfide deposit under investigation. In addition to antimonian michenerite-testibio palladite which occur in both stages, sperrylite, cooperite and osmian laurite are formed in the first stage and the presence of sudbryite and nicleoan sudbryite characterizes the second. Statistics shows different correlations among Cu, Ni, Pt, and Pd in the two stages.Being rich in Ni, the main stage exhibits a close correlation between Pt-, Pd-mineralization and Cu, with roughly equal tenors of Pt and Pd. During the second stage Cu is enriched, accompanied by increasingly strong mineralization of Pd while the mineralization of Pt is developed to a less extent and closely related with Ni. In the first stage the correlation between Pt and Os, Ru, Ir is notable, while that between Pd and Rh is intimate. According to occurrence, texture and structure of the sulfide ores, the main platinum mineralization is considered to have taken place through sulfide segregationinjection during magmatie stage. The second platinum mineralization is a typical hydrothermal process related with basic-ultrabasic magma.  相似文献   

12.
The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit.During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.We measured the oxygen-isotope composition of the intrusions,their constituent minerals,and samples of the country rock.Magnetite and plagioclase from Panzhihua intrusion haveδ18O values that are consistent with magmatic equilibrium, and formed from magmas withδ18O values that were 1-2‰higher than expected in a mantle-derived magma.The unmetamorphosed country rock has highδ18O values,ranging from 13.2‰(sandstone) to 24.6-28.6‰(dolomite).The skarns and marbles from the aureole have lowerδ18O andδ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole.This would explain the alteration ofδ18O of the dykes which have significantly higher values than expected for a mantle-derived magma.Depending on the exactδ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevatedδ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%,assuming simple mixing.The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock,mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites.These mechanisms,particularly the latter,were probably involved in the formation of the Fe-Ti-V ores.  相似文献   

13.
We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths(garnet peridotite,eclogite and clinopyroxene-phlogopite rocks)and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle(SCLM)and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation(Phil)occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation(Phl2)occurs as rims and outer zones that surround the Phil grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phil,within the garnet peridotite and clinopyroxene-phlogopite xenoliths,is characterised by low Ti and Cr contents(TiO_21 wt.%,Cr_2 O_31 wt.% and Mg# = 100 × Mg/(Mg+ Fe)92)typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H_2O.Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma.Compared with peridotite xenoliths,eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr_2O_3 despite a wider range of TiO_2 concentrations.The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite.Phl2 has high Ti and Cr concentrations(TiO_22 wt.%,Cr_2O_31 wt.% and Mg# = 100× Mg/(Mg + Fe)92)and compositionally overlaps with phlogopite from polymict brecc:ia xenoliths that occur in global kimberlite formations.These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phil grains or crystallized directly from stalled batches of kimberlitic magmas.Megacrysts,most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths.Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts.Based on the results of this study,we propose a schematic model of SCLM metasomatism involving phlogopite crystallization,megacryst formation,and genesis of kimberlite magmas as recorded by the Grib pipe.  相似文献   

14.
Some pyrrhotite-chalcopyrite-bearing amphibole megacrysts (including pyroxene megacrysts) were discovered in Mesozoic augite diorite-porphyrite at Caoshan in Tongling area, Anhui Province. The amphibole megacrysts, belonging mainly to pargasite and magnesiohastingsite, are characteristic of the amphibole composition derived from mantle and crystallized in lower crust. In general, the aggregates of pyrrhotite-chalcopyrite take the shapes of cylinder and sphere. Three occurrences have been recognized in the amphibole megacrysts: parallel linear, bunchy and scattered. The unique cylinder-like shape of the aggregates and remarkable Ni-poor sulfides in Caoshan are distinctively different from the spherical Ni-rich sulfides in pyroxene megacrysts and any other kinds of megacrysts. In terms of composition, the amphibole megacrysts and their sulfides in Caoshan are similar to those in the pyroxenite xenoliths in Qilin, Guangdong Province. In terms of origin, the pyrrhotite-chalcopyrites as exsolution products resulted from the subsolidus re-equilibration of sulfide solid solution within amphibole megacrysts.amphibole megacrysts were first discovered inside and outside China. This discovery is important for the study of regional magma evolution and its associated mineralizations and ore sources as well.  相似文献   

15.
There are two types of temporally and spatially associated intrusions within the Emeishan large igneous province (LIP); namely, small ultramafic subvolcanic sills that host magmatic Cu-Ni-Platinum Group Element (PGE)-bearing sulfide deposits and large mafic layered intrusions that host giant Ti-V magnetite deposits in the Panxi region. However, except for their coeval ages, the genetic relations between the ore-bearing intrusions and extrusive rocks are poorly understood. Phase equilibria analysis (Q-Pl-Ol-Opx-Cpx system) has been carried out to elucidate whether ore-bearing Panzhihua, Xinjie and Limahe intrusions are co-magmatic with the picrites and flood basalts (including high-Ti, low-Ti and alkali basalts), respectively. In this system, the parental magma can be classified as silica-undersaturated olivine basalt and silica-saturated tholeiite. The equivalents of the parental magma of the Xinjie and Limahe peridotites and picrites and low-Ti basalts are silica-undersaturated, whereas the Limahe gabbro-diorites and high-Ti basalts are silica-saturated. In contrast, the Panzhihua intrusion appears to be alkali character. Phase equilibria relations clearly show that the magmas that formed the Panzhihua intrusion and high-Ti basalts cannot be co-magmatic as there is no way to derive one liquid from another by fractional crystallization. On the other hand, the Panzhihua intrusion appears to be related to Permian alkali intrusions in the region, but does not appear to be related to the alkali basalts recognized in the Longzhoushan lava stratigraphy. Comparably, the Limahe intrusion appears to be a genetic relation to the picrites, whereas the Xinjie intrusion may be genetically related to be low-Ti basalts. Additionally, the gabbro-diorites and peridotites of the Limahe intrusion are not co-magmatic, and the former appears to be derived liquid from high-Ti basalts.  相似文献   

16.
The Tianyu Cu-Ni sulfide deposit occurs in the north margin of the Central Tianshan Arc in East Tianshan orogenic belt, Xinjiang, NW China. The intrusions consist of gabbro, peridotite, and olivine pyroxenite. The peridotite and pyroxenite are the main host rock for the Cu-Ni ores. Rhenium and osmium isotopic analyses of Ni- and Cu-bearing sulfide minerals from the deposit have been used to determine the source of osmium, and by inference, the sources of ore metals. Sulfide ore samples have Os and Re concentrations varying in the ranges 1.85 to 4.58 ppb and 93.56 to 146.00 ppb, respectively. An initial 187Os/188Os ratio ranges from 0.86 to 1.23 for the ores and the γOs values from 592 to 2227. Osmium isotopic data suggest that the Tianyu intrusion and associated Cu-Ni mineralization has derived from crustal-contaminated mantle melts. The intrusions early show island-arc geochemical signatures, which indicate that the Hulu mafic–ultramafic intrusions, along with the Cu-Ni deposit, formed as a result of subduction of oceanic crust in the Early Permian.  相似文献   

17.
徐九华  谢玉玲 《岩石学报》2007,23(1):117-124
Mantle xenoliths are common in the Cenozoic basalts of the Changbaishan District,Jilin Province,China.Sulfide assemblages in mantle minerals can be divided into three types:isolated sulfide grains,sulfide-meh inclusions and filling sulfides in fractures.Sulfide-meh inclusions occur as single-phase sulfides,sulfide-silicate melt,and CO_2-sulfide-silicate melt inclusions. Isolated sulfide grains are mainly composed of pyrrhotite,but cubanite was found occasionally.Sulfide-meh inclusions are mainly composed of pontlandite and MSS,with small amounts of chalcopyrite and talnakhite.The calculated distribution coefficient K_(D3)for lherzolite are similar to that of mean experimental value.The bulk sulfides in lherzolite were in equilibrium with the enclosing minerals, indicating immiscible sulfide melts captured in partial melting of upper mantle.Sulfide in fractures has higher Ni/Fe and(Fe Ni)/S than those of sulfide melt inclusions.They might represent later metasomatizing fluids in the mantle.Ni/Fe and(Fe Ni)/S increase from isolated grains,sulfide inclusions to sulfides in fractures.These changes were not only affected by temperature and pressure,hut by geochemistry of Ni,Fe and Cu,and sulfur fugacity as well.  相似文献   

18.
Element geochemistry of gold arsenic and mineralogical features of their sulfides in the Carlin-type gold depostis of the Qinling region are discussed in this paper.The initial contents of ore-forming elements such as glod and arsenic are high the ore-bearing rock series in the Qinling region.Furthermore,both the metals are concentrated mainly in the diagenetic pyrite.Study on the mineralogy of arsenic-bearing sulfide minerals in the ores demonstrated that there is a poistive correlation between gold and arsenic in the sulfide minerals.Available evidence suggests that gold in the As-bearing sulfide minerals in likely to be presented as a charge species(Au ),and it is most possible for it to replace the exxcess arsenic at the site of iron and war probably deposited together with arsenic as solid in the sulfide minerals. Pyrite is composed of(Aux^3 ,Fe1-2^2 )([AsS]x^3-[S2]1-x^2-),and arenopyrite of (Aux^3 ,Fe1-x^3 )([AsS]x^3-[AsS2]1-x^3-).The occurrence of glod in the As-sulfied minerals from the Carlin-type gold depostis in the Qinling region has been confirmed by electron probe and transmission electron microscopic studies.The results show that gold was probably depostied together with arsenicas coupled solid solutions in sulfide minerals in the early stage of mineralization.Metallogenic chemical reactions concerning gold deposition in the Carlin-type As-rich gold deposits would involve oxidation of glod and concurrent reduction of arsenic.Later,the deposited gold as solid was remobilized and redistributed as exsolutions,as a result of increasing hydrothermal alteration and crystallization,and decreasing resistance to refractoriness of the host minerals.Gold occurs as sub-microscopic grains(ranging from 0.04tp 0.16μm in diameter)of native gold along micro factures in and crystalline grains of the sulfiedes.  相似文献   

19.
Sulphide inclusions, which represent melts trapped in the minerals of magmatic rocks and xenoliths, provide important clues to the behaviour of immiscible sulphide liquids during the evolution of magmas and the formation of NieCueFe deposits. We describe sulphide inclusions from unique ultramafic clots within mafic xenoliths, from the mafic xenoliths themselves, and from the three silica-rich host plutons in Tongling, China. For the first time, we are able to propose a general framework model for the evolution of sulphide melts during the evolution of mafic to felsic magmas from the upper mantle to the upper crust. The model improves our understanding of the sulphide melt evolution in upper mantle to upper crust magmas, and provides insight into the formation of stratabound skarn-type FeeCu polymetallic deposits associated with felsic magmatism, thus promising to play an important role during prospecting for such deposits.  相似文献   

20.
Chemical variations, geochemical behaviors and other problems such as element assemblages and relative abundances of elements during and after various geologic processes (magmatism, assimilation, hydrothermal alteration as well as tectonic movements) have been discussed for a nickel-bearing ultrabasic intrnsion. Particular emphasis is placed on aspects concerning the geochemical behavior of nickel. Conclusions have been reached about the environment and possible mechanism for the emplacement of this massive and for the origin of Ni sulfides. A “assimilation-immiscibility“ hypothesis is proposed for formation of copper-nickel sulfide deposits in ultrabasic intrnsives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号