首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
This study presents an example of locating Cambrian–Ordovician boundary in the lower Paleozoic carbonate succession in Korea using carbon isotope stratigraphy. The Yeongweol Unit of the lower Paleozoic Joseon Supergroup comprises the Upper Cambrian Wagok Formation and the Lower Ordovician Mungok Formation in the Cambrian–Ordovician transition interval. Conventionally, the boundary was placed at the lithostratigraphic boundary between the two formations. This study reveals that the boundary is positioned in the basal part of the Mungok Formation based on the carbon isotope stratigraphy coupled with biostratigraphic information of conodont and trilobite faunas. The δ13C curve of the Lower Ordovician Mungok Formation shows a similar trend to that of the coeval stratigraphic interval of Argentine Precordillera (Buggisch et al., 2003), suggesting that the δ13C curve of the Mungok Formation reflects the Early Ordovician global carbon cycle.  相似文献   

2.
Marine microbial communities recorded in the Moroccan Anti‐Atlas were unaffected across the Neoproterozoic–Cambrian transition. A stromatolite‐dominated consortium was replaced at the beginning of the Atdabanian (ca 20 Myr after the Neoproterozoic–Cambrian boundary) by shelly metazoan and thromboid consortia, which contain the oldest biostratigraphically significant fossils of the Moroccan Cambrian. The associated collapse of microbial mat (stromatolitic) growth appears to coincide with a change from pre‐Atdabanian shallow‐water restricted conditions into Atdabanian deeper, open‐sea conditions. It is postulated that this environmental change led to an episode of improved water circulation over carbonate platform interiors, promoting shelly metazoan immigration into the region. The Tiout/Amouslek lithostratigraphic contact in the early Atdabanian marks the end of an episodically unstable seafloor as suggested by the abundance of slumping and sliding structures, and synsedimentary microfaults and cracks recorded in the underlying Tiout Member. Concurrent with the transition is the occurrence of a network of cryptic fissures and cavities that provided habitats for a coelobiontic chemosynthetic–heterotrophic microbial community composed of stromatolitic crusts, RenalcisEpiphytonGirvanella intergrowths, and Kundatia thalli. In the overlying Amouslek Formation, archaeocyathan–thromboid reefs were constrained by substrate stability, water depth and subsidence rate. Four reef geometries are distinguished: (i) patch reefs surrounded by shales, (ii) bioherms in which flank beds intercalate laterally with carbonate and shale inter‐reef sediments, (iii) biostromes or low‐relief structures formed as a result of lateral accretion of patch reefs, and (iv) kalyptrate complexes that nucleated because of a marked tendency for aggregation, and in which patch reefs and bioherms occur stacked together bounded by clay–marl–silt seams.  相似文献   

3.
中国南方奥陶—志留纪沉积层序与构造运动的关系   总被引:16,自引:0,他引:16  
李志明  陈建强 《地球科学》1997,22(5):526-530
根据对湘西北奥陶纪和黔东北志留纪的层序划分,结合中国南方奥陶-志留纪已确定的构造运动幕次,同时辅以该地区不同期岩相地理的变化,讨论了层序界面与构造运动的关系,研究结果表明,在中国南方二级层序界面的形成更多地受到区域构造运动的影响,而三级层段序界面主要受全球海平面变化的影响,从沉积旋回的观点出发,认为中国南方加里东运动的最后一幕应在中地留世早期,即回星哨期末。  相似文献   

4.
New data on geochemical features of the Lower Paleozoic terrigenous rocks in the Mamyn terrane (eastern Central Asian Fold Belt) and U–Pb geochronological studies of the detrital zircon from these rocks are presented. The obtained results suggest the following conclusions. 1. At present, the Kosmataya sequence includes different age Lower Cambrian terrigenous–carbonate and Lower Ordovician terrigenous rocks or represents Lower Ordovician olistostromes including limestone blocks with the Lower Cambrian fauna. Lower Ordovician terrigenous rocks were formed in an island arc or active continental margin, mainly, owing to the erosion of Cambrian–Early Ordovician plutons and volcanics that are widespread in structures of the Mamyn terrane and weakly reworked by the chemical weathering. 2. The Silurian Mamyn Formation was developed at a passive continental margin. The main sources of clastic material for this formation were the same Cambrian–Early Ordovician igneous rocks as for the Cambrian sequence, with the participation of Early Silurian and Vendian igneous complexes. The obtained data significantly refine concepts about the geological structure of the Mamyn terrane, which is a member of the Argun Superterrane, one of the largest tectonic structures in the eastern Central Asian Fold Belt.  相似文献   

5.
鄂尔多斯地区早古生代岩相古地理*   总被引:6,自引:4,他引:2       下载免费PDF全文
鄂尔多斯地区早古生代沉积了一套以海相碳酸盐岩夹碎屑岩为主的沉积建造,沉积厚度巨大,沉积类型多样,可以划分为海岸沉积、碳酸盐岩台地沉积、台地边缘沉积和深水斜坡—海槽沉积4大沉积类型以及数个亚相和微相,并对各个沉积相带的沉积特征和时空展布进行了归纳和总结。在此基础上,编制了早古生代岩相古地理图1套。岩相古地理研究表明,早寒武世仅在鄂尔多斯西南缘环陆发育了一套泥砂坪、泥云坪沉积;中寒武世海侵扩大,广大的鄂尔多斯中东部逐渐由砂泥坪发展为局限—开阔台地沉积,在其西缘发展为台地边缘—深水海槽沉积;晚寒武世开始海退,中东部主体演变为局限台地云坪沉积,而西侧的深水斜坡—海槽则继续发育。早奥陶世鄂尔多斯主体为一古陆,仅在东南缘形成环陆泥云坪和云灰坪相沉积;中奥陶世的大规模海侵使鄂尔多斯大部地区形成了广阔的浅水陆表海沉积,在陕北凹陷发育膏盐湖沉积,向外依次发育局限台地和开阔台地沉积,中奥陶世晚期西南侧开始发育台地前缘斜坡—深水海槽沉积;晚奥陶世的加里东运动使鄂尔多斯整体抬升为陆,仅在西南缘的狭窄海域接受沉积,由碳酸盐岩台地很快过渡为深水斜坡—海槽沉积,并在南缘发育生物礁建造,形成陆缘海型镶边台地沉积。  相似文献   

6.
Ordovician quartz turbidites of the Lachlan Fold Belt in southeastern Australia accumulated in a marginal sea and overlapped an adjoining island arc (Molong volcanic province) developed adjacent to eastern Gondwana. The turbidite succession in the Shoalhaven River Gorge, in the southern highlands of New South Wales, has abundant outcrop and graptolite sites. The succession consists of, from the base up, a unit of mainly thick‐bedded turbidites (undifferentiated Adaminaby Group), a unit with conspicuous bedded chert (Numeralla Chert), a unit with common thin‐bedded turbidites (Bumballa Formation (new name)) and a unit of black shale (Warbisco Shale). Coarse to very coarse sandstone in the Bumballa Formation is rich in quartz and similar to sandstone in the undifferentiated Adaminaby Group. Detrital zircons from sandstone in the Bumballa Formation, and from sandstone at a similar stratigraphic level from the upper Adaminaby Group of the Genoa River area in eastern Victoria, include grains as young as 453–473 Ma, slightly older than the stratigraphic ages.The dominant detrital ages are in the interval 500–700 Ma (Pacific Gondwana component) with a lessor concentration of Grenville ages (1000–1300 Ma). This pattern resembles other Ordovician sandstones from the Lachlan Fold Belt and also occurs in Triassic sandstones and Quaternary sands from eastern Australia. The Upper Ordovician succession is predominantly fine grained, which reflects reduced clastic inputs from the source in the Middle Cambrian to earliest Ordovician Ross‐Delamerian Fold Belts that developed along the eastern active margin of Gondwana. Development of subduction zones in the Late Ordovician marginal sea are considered to be mainly responsible for the diversion of sediment and the resulting reduction in the supply of terrigenous sand to the island arc and eastern part of the marginal sea.  相似文献   

7.
Reefal buildups in western Mongolia of mid-Early Cambrian (late Atdabanian) age flourished during a period when shelf seas were globally widespread. The succession at Zuune Arts records the transition from shallow marine siliciclastic sediments (Bayan Gol Formation) to shallow marine, but still clastic-influenced, carbonates (Salaany Gol Formation). The Salaany Gol Formation is interpreted as having been deposited as a series of shallowing upwards cycles on a shallow, gently inclined shelf in a rapidly subsiding epicontinental sea. Cycles commenced with the growth of subtidal metazoan-calcimicrobe aggregative communities on an open shelf. The resultant buildups were commonly engulfed by extensive, massive microbial stromatolites when they grew in agitated intertidal conditions. Latterly, they were smothered by ooid shoals in response to rapid sea level rise. Four types of reefal buildup are distinguished: (1) green-coloured calcimicrobe (Tarthinia, Epiphyton, Gordonophyton and Renalcis) boundstones; (2) red-or green-coloured Cambrocyathellus-Tarthinia-Epiphyton bafflestones; (3) red-coloured Okulitchicyathus bindstones; and (4) red-coloured radiocyath-archaeocyath-cribricyath bioherms. Each is interpreted as having grown at increasing depths and possibly sedimentation rates. The buildups are commonly enclosed within graded and planar bedded bioclastic grainstones and packstones, and are best developed towards the top of the formation, when sea level was high. Thickets of large, solitary archaeocyaths are also inferred in the deeper interbiohermal areas. These buildups had synoptic relief and constructed porous structures with growth-framework cavities housing diverse coelobiontic communities. Extensive synsedimentary cements are present, including pseudomorphed aragonitic fans and possible pseudomorphed aragontic botryoids. These early reefs thus have geological fabrics similar to later Phanerozoic representatives. It is proposed however, that this ecosystem was largely composed of generalist and opportunistic filter and suspension feeders which were dependent upon a far higher input of nutrients than modern day reefal developments. Bacteria were probably the main primary producers, from both planktic and benthic cyanobacterial communities. The diversity of each buildup assemblage appears to be controlled by primary cavity size, the richest fauna belonging to the highly tiered radiocyath-dominated community inferred to have lived in the deepest waters. The communities at Zuune Arts can be compared with other buildups from the early Cambrian, and with Lower Ordovician receptaculid-calcimicrobe-solitary sponge bioherms known from the USA and Siberia.  相似文献   

8.
塔里木盆地阿克苏-柯坪地区寒武系-奥陶系的沉积环境   总被引:8,自引:0,他引:8  
本文讨论了塔里木西北缘厚一千余米的寒武系-奥陶系暗色碳酸盐岩夹细碎屑岩系的沉积环境。寒武系以粉-细晶白云岩、微晶叠层石白云岩夹细碎屑岩为主;奥陶系以含硅粉-细晶白云岩、内碎屑岩、细碎屑岩与灰岩的混合岩互层为主。根据矿物成分、生物化石、结构构造、岩石的元素、稳定同位素、矿物组合等判断,其沉积环境为半封闭的潮坪环境至开阔的陆棚沉积环境。  相似文献   

9.
Graptolite‐bearing Middle and Upper Ordovician siliciclastic facies of the Argentine Precordillera fold‐thrust belt record the disintegration of a long‐lived Cambro‐Mid Ordovician carbonate platform into a series of tectonically partitioned basins. A combination of stratigraphic, petrographic, U‐Pb detrital zircon, and Nd‐Pb whole‐rock isotopic data provide evidence for a variety of clastic sediment sources. Four Upper Ordovician quartzo‐lithic sandstones collected in the eastern and central Precordillera yield complex U‐Pb zircon age spectra dominated by 1·05–1·10 Ga zircons, secondary populations of 1·22, 1·30, and 1·46 Ga, rare 2·2 and 1·8 Ga zircons, and a minor population (<2%) of concordant zircons in the 600–700 Ma range. Archaean‐age grains comprise <1% of all zircons analysed from these rocks. In contrast, a feldspathic arenite from the Middle Ordovician Estancia San Isidro Formation of the central Precordillera has two well‐defined peaks at 1·41 and 1·43 Ga, with no grains in the 600–1200 Ma range and none older than 1·70 Ga. The zircon age spectrum in this unit is similar to that of a Middle Cambrian quartz arenite from the La Laja Formation, suggesting that local basement rocks were a regional source of ca 1·4 Ga detrital zircons in the Precordillera Terrane from the Cambrian onwards. The lack of grains younger than 600 Ma in Upper Ordovician units reinforces petrographic data indicating that Ordovician volcanic arc sources did not supply significant material directly to these sedimentary basins. Nd isotopic data (n = 32) for Middle and Upper Ordovician graptolitic shales from six localities define a poorly mixed signal [ɛNd(450 Ma) = −9·6 to −4·5] that becomes more regionally homogenized in Upper Ordovician rocks (−6·2 ± 1·0; TDM = 1·51 ± 0·15 Ga; n = 17), a trend reinforced by the U‐Pb detrital zircon data. It is concluded that proximal, recycled orogenic sources dominated the siliciclastic sediment supply for these basins, consistent with rapid unroofing of the Precordillera Terrane platform succession and basement starting in Mid Ordovician time. Common Pb data for Middle and Upper Ordovician shales from the western and eastern Precordillera (n = 15) provide evidence for a minor (<30%) component that was likely derived from a high‐μ (U/Pb) terrane.  相似文献   

10.
Granites from the Tunka pluton of the Sarkhoi complex, located in the eastern Tunka bald mountains (East Sayan), have been dated at the Middle Ordovician (462.6 ± 7.8 Ma) by LA ICP MS. The granites of the Sarkhoi complex within the studied area cut a foldthrust structure consisting of deformed fragments of the Vendian (Ediacaran)–Early Cambrian cover of the Tuva–Mongolian microcontinent (Upper Shumak metaterrigenous formation, Gorlyk carbonate formation). The red-colored conglomerates and sandstones of the Late Devonian–Early Carboniferous(?) Sagan-Sair Formation overlie the eroded surface of the Tunka pluton granites in the eastern Tunka bald mountains. The Sagan-Sair Formation, in turn, is overlain along a low-angle thrust by a group of tectonic sheets, which comprises the volcanic and carbonate sediments of the Tolta Formation, biotitic schists, and plagiogneisses with garnet amphibolite bodies. Two nappe generations have been revealed on the basis of the described geologic relationships, the Middle Ordovician age of the Tunka pluton granites, and numerous Late Paleozoic Ar–Ar dates of syntectonic minerals from the metamorphic rocks in the area. The first thrusting stage was pre-Middle Ordovician, and the second, Late Carboniferous–Permian. The Lower Paleozoic thrust structure resulted from the accretion of the Tuva–Mongolian microcontinent to the Siberian Platform. The Late Paleozoic nappes resulted from intracontinental orogeny and the reactivation of an Early Paleozoic accretionary belt under the effect of the Late Paleozoic collisional events.  相似文献   

11.
大巴山地区早古生代发育下寒武统水井沱组(巴山组—鲁家坪组)和上奥陶统五峰组—下志留统龙马溪组2套黑色岩系。沉积学研究表明,2套黑色岩系均发育于扬子北缘被动大陆边缘盆地之上,早期快速海侵,沉积环境以深水陆棚为主,晚期随着海平面下降逐渐变为浅水陆棚沉积,局部发育滩礁沉积。早寒武世和晚奥陶世—早志留世,研究区均处于被动大陆边缘盆地,基底不平整,陆架边缘呈现多个小岛阻隔的古地理格局,但两者的形成机制却完全不同:早寒武世的构造格局沿袭了陡山沱期的地堑和地垒分布格局,地垒处表现为局部隆起或水下潜隆;晚奥陶世—早志留世的构造格局则与扬子板块向华北板块俯冲有关,是在扬子北缘被动大陆边缘基础上发育起来的前陆隆起。这种受限的滞留海域有利于形成厚度大、有机碳含量高(2%~6%)、脆性矿物含量高(40%~65%)的富有机质页岩,虽然其是页岩气勘探的有利目标层系,但仍需加强构造保存条件的研究。  相似文献   

12.
The Tarim Basin has experienced three tectonic evolutionary phases from the Cambrian to Ordovician: (1) Regional extension from the late Neoproterozoic to Mid-Early Cambrian, (2) Relatively weak regional compression from the Late Cambrian to Mid-Early Ordovician, and (3) Regional compression during the Late Ordovician. Intra-platform tectonic and sedimentary characteristics indicate a clear linkage to the tectonic evolution of the basin margin during early Paleozoic time. During the Cambrian, small intra-platform rift-related depressions formed during an extensional setting. During the Mid-Early Ordovician, a transition from extension to compression caused formation of the Tazhong and Tabei paleo-uplifts and major unconformities T74 (base of the Late Ordovician). The evolving paleo-geomorphology led to differentiation of sedimentary facies, and numerous intra-platform shoals formed during deposition of the Early Ordovician Yingshan Formation. During the Late Ordovician, regional compression began, which changed the platform margin slopes into four slopes that surrounded the three isolated island uplifts of Tabei, Tazhong, and Tangnan in the Late Ordovician. Simultaneously, the basin margin dynamic conditions also changed the relative sea level and filling pattern of the basin. In the Early and Middle Cambrian, the Tarim Basin mainly developed a progradational ramp-type platform due to relative sea level fall. From the Late Cambrian to Early Ordovician the relative sea level began to rise, resulting in an aggradational—retrograding rimmed margins-type platform. In the Late Ordovician, along with a further rise in relative sea level, the basin mainly developed isolated platform.  相似文献   

13.
中扬子地区下古生界海相泥-页岩含气勘探远景   总被引:1,自引:0,他引:1  
利用中扬子区下古生界页岩的野外露头地质剖面、有机地球化学分析数据和钻井显示资料,分析中扬子下古生界页岩气资源勘探远景。研究表明,中扬子区下古生界海相泥-页岩主要以下寒武统水井沱组(或牛蹄塘组)和上奥陶统五峰组—下志留统龙马溪组为主。上述2套泥质岩和页岩有机质含量丰富、有机质类型好、热演化程度高,多数已达到成熟—过成熟阶段,是有效页岩气气源岩。中扬子区自加里东以来经历了多期构造运动、构造隆升和挤压作用,改善了页岩储层的储集性能,提高页岩气聚集量。湘鄂西区和江汉平原区南部下寒武统泥-页岩可作为有利页岩气勘探选区,而鄂西渝东区钻井揭示志留系见工业性气流,表明该区志留系页岩气潜力较大。  相似文献   

14.
At some time prior to the Ptychagnostus gibbus Zone of the Middle Cambrian the area of deposition of Upper Precambrian (or Lower Cambrian) well‐sorted sands, silts and dolomite was affected by tectonic movements producing uplift of the Tyennan Geanticline and change in the shape of the depositional basin (Spry, Chapter I). Continued tectonic activity and more rapid sinking of the sea floor resulted in a change in sedimentary association from well‐sorted sediments of the orthoquartzite‐limestone suite to poorly sorted sediments of the greywacke suite. Initially siltstone was the main deposit in the Dundas, Huskisson River, Ulverstone, Deloraine and Beaconsfield areas and this has been likened to the initial euxinic phase of geosynclinical development elsewhere (Campana, 1961b).

Silt seems to have been the predominant normal deposit during the Middle and early Upper Cambrian, but siliceous oozes and some limestone were also formed. Carbonaceous, pyritic and calcareous silts were deposited. Inter‐bedded with the silts are poorly‐sorted greywackes and greywacke conglomerates with a disrupted framework and graded bedding. Banks and Jennings interpret these as mostly turbidity current deposits. The proportion of greywacke and conglomerate varies through the successions in a cyclic manner (Carey and Banks, 1954; Banks, 1956) such that a conglomerate‐rich section is followed by a greywacke‐rich section and this by a predominantly lutaceous section. These cycles may be interpreted as due to tectonic instability and variation in height of the source area. Faulting of Upper Middle Cambrian and Lower Dresbachian age has been demonstrated near Ulverstone. Campana and King state: “The proportion of coarse material increases upwards in the Dundas and Huskisson successions at least.”

Turbidity currents brought fragments of grey, red, black and banded cherts, banded slate, quartzite, basalt and golden mica (this last presumably from breakdown of Precambrian mica schist) to the Dundas area. In view of the known distribution of chert in western Tasmania a westerly or north‐westerly source is likely. Turbidity currents deposited fragments of chert, claystone, quartzite, slate, greywacke, quartz mica schist, chloritised basic lava and spilite in the Deloraine area indicating a source area with Precambrian rocks and earlier Cambrian sediments and lavas. Near Rocky Boat Harbour the source area contained dolomite, ultrabasic rocks, granite, and Precambrian quartzites and schists.

A difference between the fauna in the silts and in the greywackes is evident in the Hodge Slate at Dundas and the Kateena Formation near Ulverstone at least. The “dendroids” in the Hodge Slate are in the siltstone and the fragmentary trilobites and cystoids in the greywacke. This suggests that the fossils in the greywackes are thanatocoenotic as might be expected and introduces the possibility of remanié fossils and of shallow water fauna intercalated with deeper water fauna. The bathymetric conditions suggested by Hills and Thomas (1954) for the Cambrian of Victoria may thus not be applicable to Tasmania.

Deposition was also interrupted from time to time by lava flows, some of them, at least, submarine. The Mt. Read Volcanics may be Lower Cambrian but acid and basic lavas and pyroclastic rocks are interbedded with or overlie Middle and Upper Cambrian sediments at Zeehan, Dundas, Ulverstone, Smithton and Beaconsfield. Acid volcanic rocks are commoner near the Tyennan Geanticline and basic rocks further away. Possibly during the Dresbachian ultrabasic rocks were intruded as sheets and dykes into Precambrian and earlier Cambrian rocks and by Franconian time were exposed to erosion at Adamsfield.

Deposition may have commenced later at Smithton (Upper Middle Cambrian), Beaconsfield (Lower Dresbachian) and Adamsfield (Lower Franconian) than at Dundas (Lower Middle Cambrian).

Campana and King express the thoughts of Bradley (1957, pp. 114–115) and the author when they state: “The Dundas Group reflects a eugeosynclinical cyclic sedimentation under unstable tectonic conditions. The group is no doubt a synorogenic suite comparable with the Flysch as it was deposited in the narrow subsiding Dundas Trough which developed along the Mt. Read Volcanic Arc, and which is similar to the present deeps of archipelago areas. Such a comparison is enhanced by the succeeding Ordovician conglomerates and sandstones, comparable in some respects with the molassic deposits which displaced the Flysch sedimentation in the Pre‐Alpine troughs (Fig. 12).”

The Cambrian rocks were folded or tilted at least along the western and northern margin of the Tyennan Geanticline and near New River Lagoon, the Tyennan Geanticline was rejuvenated, the Asbestos Range Geanticline raised and the highland areas near Ulverstone and Zeehan uplifted late in the Cambrian or very early in the Ordovician.  相似文献   

15.
The Middle Ordovician Rosroe Formation consists of some 1350 m of coarse, mainly siliciclastic to volcaniclastic sedimentary rocks, deposited in a submarine fan environment, and is restricted to the southern limb of the South Mayo Trough, western Ireland. Discrete allochthonous blocks, reaching 5 m in size, are present in the formation at several localities. Conodonts recovered from these blocks, collected from two separate locations, are of late Early and mid Mid Ordovician age. The conodonts have high conodont‐alteration indices (CAI 5) indicative of temperatures as high as 300o to max. 480 °C; some found in the Lough Nafooey area have abnormally high indices (CAI 6), which correspond to temperatures of about 360o to max. 550 °C. The oldest fauna is dominated by Periodon aff. aculeatus and characterized by Oepikodus evae typical of the Oepikodus evae Zone (Floian Stage; Stage Slices Fl2–3, Lower Ordovician). The younger conodont assemblage, characterized by Periodon macrodentatus associated with Oistodella pulchra, is referred to the P. macrodentatus conodont Biozone (lower Darriwilian; Stage Slices Dw1–2). The Rosroe conodont assemblages are of Laurentian affinity; comparable faunas are well known from several locations along the east to south‐eastern platform margin of Laurentia and the Notre Dame subzone of central Newfoundland, Canada. The faunal composition from the limestone blocks suggests a shelf edge to slope (or fringing carbonate) setting. The faunal assemblages are coeval with, respectively, the Tourmakeady Formation (Floian–Dapingian) and Srah Formation (Darriwilian) in the Tourmakeady Volcanic Group in the eastern part of the South Mayo Trough and probably are derived from the same or similar laterally equivalent short‐lived carbonate successions that accumulated at offshore ‘peri‐Laurentian’ islands, close to and along the Laurentian margin. During collapse of the carbonate system in the late Mid Ordovician, the blocks were transported down a steep slope and into deep‐water by debris flows, mixing with other rock types now found in the coarse polymict clastics of the Rosroe Formation. The faunas fill the stratigraphical ‘gap’ between the Lower Ordovician Lough Nafooey Volcanic Group and the upper Middle Ordovician Rosroe Formation in the South Mayo Trough and represent a brief interval conducive to carbonate accumulation in an otherwise siliciclastic‐ and volcaniclastic‐dominated sedimentary environment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
渤海湾盆地北部奥陶纪岩相古地理   总被引:8,自引:0,他引:8  
渤海湾盆地北部主要包括黄骅坳陷、沧县隆起、冀中坳陷和下辽河坳陷,区内奥陶系厚 6 0 0~ 80 0m,主要由石灰岩和白云岩组成。下奥陶统分为冶里组和亮甲山组,中奥陶统分为下马家沟组、上马家沟组和峰峰组,上统缺失。其中下马家沟组、上马家沟组和峰峰组又进一步划分为下段和上段。早奥陶世冶里期和亮甲山期,本区以局限海环境为主,其内散布着一些潮坪和滩。中奥陶世,本区岩相古地理面貌变化旋回极为明显,下马家沟期早期潮坪广布,晚期以局限海为主;上马家沟期早期又是潮坪广布,晚期以开阔海为主;峰峰期早期潮坪广布,晚期又以开阔海为主。在奥陶纪,本区经历了 4个大的海侵-海退旋回,其中上马家沟期晚期是本区乃至整个华北地台的最大海侵期。  相似文献   

17.
Abstract In mid‐Middle Cambrian time, shallow‐water sedimentation along the Cordilleran passive margin was abruptly interrupted by the development of the deep‐water House Range embayment across Nevada and Utah. The Marjum Formation (330 m) in the central House Range represents deposition in the deepest part of the embayment and is composed of five deep‐water facies: limestone–argillaceous limestone rhythmites; shale; thin carbonate mud mounds; bioturbated limestone; and cross‐bedded limestone. These facies are cyclically arranged into 1·5 to 30 m thick parasequences that include rhythmite–mound, rhythmite–shale, rhythmite–bioturbated limestone and rhythmite–cross‐bedded limestone parasequences. Using biostratigraphically constrained sediment accumulation rates, the parasequences range in duration from ≈14 to 270 kyr. The mud mounds are thin (<2 m), closely spaced, laterally linked, symmetrical domes composed of massive, fenestral, peloidal to clotted microspar with sparse unoriented, poorly sorted skeletal material, calcitized bacterial(?) filaments/tubes and abundant fenestrae and stroma‐ tactoid structures. These petrographic and sedimentological features suggest that the microspar, peloids/clots and syndepositional micritic cement were precipitated in situ from the activity of benthic microbial communities. Concentrated growth of the microbial communities occurred during periods of decreased input of fine detrital carbonate transported offshore from the adjacent shallow‐water carbonate platform. In the neighbouring Wah Wah Range and throughout the southern Great Basin, coeval mid‐Middle Cambrian shallow‐water carbonates are composed of abundant metre‐scale, upward‐shallowing parasequences that record high‐frequency (104?105 years) eustatic sea‐level changes. Given this regional stratigraphic relationship, the Marjum Formation parasequences probably formed in response to high‐frequency sea‐level fluctuations that controlled the amount of detrital carbonate input into the deeper water embayment. During high‐frequency sea‐level rise and early highstand, detrital carbonate input into the embayment decreased as a result of carbonate factory retrogradation, resulting in the deposition of shale (base of rhythmite–shale parasequences) or thin nodular rhythmites, followed by in situ precipitated mud mounds (lower portion of rhythmite–mound parasequences). During the ensuing high‐frequency sea‐level fall/lowstand, detrital carbonate influx into the embayment increased on account of carbonate factory pro‐ gradation towards the embayment, resulting in deposition of rhythmites (upper part of rhythmite–mound parasequences), reworking of rhythmites by a lowered storm wave base (cross‐bedded limestone deposition) or bioturbation of rhythmites by a weakened/lowered O2‐minimum zone (bioturbated lime‐ stone deposition). This interpreted sea‐level control on offshore carbonate sedimentation patterns is unique to Palaeozoic and earliest Mesozoic deep‐water sediments. After the evolution of calcareous plankton in the Jurassic, the presence or absence of deeper water carbonates was influenced by a variety of chemical and physical oceanographic factors, rather than just physical transport of carbonate muds.  相似文献   

18.
The South Qilian belt mainly comprises an early Paleozoic arc-ophiolite complex, accretionary prism, microcontinental block, and foreland basin. These elements represent accretion-collision during Cambrian to Silurian time in response to closure of the Proto-Tethyan Ocean in the NE of the present-day Tibet Plateau. Closure of the Proto-Tethyan Ocean between the Central Qilian block and the Oulongbuluke block and the associated collision took place from NE to SW in a zipper-like style. Sediment would have been dispersed longitudinally SW-ward with a progressive facies migration from marginal alluvial sediments toward slope deep-water and deep-sea turbidites. This migration path indicates an ocean basin that shrank toward the SW. The Balonggongga'er Formation in the western South Qilian belt represents the fill of a latest Ordovician-Silurian remnant ocean basin that separated the Oulongbuluke block from the Central Qilian block, and records Silurian closure of the Proto-Tethyan Ocean and subduction beneath the Central Qilian block. However, alluvial deposits in the Lajishan area were accumulated in a retro-foreland basin, indicating that continent-continent collision in the eastern South Qilian belt occurred at c. 450–440 Ma. These results demonstrate that the Proto-Tethyan Ocean closed diachronously during early Paleozoic time.  相似文献   

19.
四川盆地是一个大型叠合含油气盆地,经历了多期伸展-聚敛旋回,资源潜力巨大。近年来,盆地中部下组合天然气勘探在震旦系灯影组和下寒武统龙王庙组获得重大突破,但盆地东部尚未获得实质性进展,有利勘探方向尚待明确。以构造-沉积演化分析为基础,将盆地东部及邻区海相下组合划分为伸展分异台地(震旦纪至早寒武世沧浪铺期)、稳定统一台地(早寒武世龙王庙期至中奥陶世宝塔期)和挤压前陆坳陷(晚奥陶世至志留纪)三个演化阶段;根据油气成藏要素和运聚特征,划分出寒武系盐下碳酸盐岩、寒武系盐上碳酸盐岩和志留系致密碎屑岩等三个油气勘探领域,不同勘探领域制约油气成藏和富集的关键因素差异较大;指出了川东南震旦系灯影组四段台缘带、川东寒武系洗象池群碳酸盐岩浅滩和志留系小河坝组大型三角洲砂体等,为盆地东部海相下组合的有利勘探方向,同时明确了重点突破地区。  相似文献   

20.
The most southerly exposed Lower Palaeozoic strata in Ireland occur on the southwest coast of County Waterford along a 2.5 km long coastal section at Muggort's Bay where they are surrounded by Devonian rocks. Five formations can be distinguished which, in ascending order, are: the Ballycurreen, Carrickbrean, Rathnameenagh, Moanbrack and Killinoorin formations. The total thickness of the succession is over 1800 m. No macrofossils are present, but the lithologies are largely fine‐grained turbidites and subordinate volcanic rocks which closely resemble the Ribband Group seen elsewhere in southeast Ireland and have previously therefore been classified with it. Palynological analysis was undertaken on 25 samples collected from Muggort's Bay, of which eight were productive. Diagnostic microfossils, comprising acritarchs, chitinozoans and scolecodonts, indicate an Early to Middle Ordovician age for both the Rathnameenagh and the Moanbrack formations. These ages confirm that the strata are part of the Ribband Group which elsewhere has been biostratigraphically dated as ranging from Mid‐Cambrian to Mid‐Ordovician. Reworked mid‐Middle Cambrian acritarchs occur in the Moanbrack Formation and reworked late Middle to early Late Cambrian acritarchs in the Rathnameenagh Formation. Despite generally poor preservation of the organic matter, some 20 acritarch species have been distinguished. Among these, three species belong to the herein revised genus Retisphaeridium for which an emended diagnosis is proposed together with two new combinations, Retisphaeridium capsulatum (Jankauskas, 1976 ) Vanguestaine nov. comb. and Retisphaeridium pusillum (Moczydlowska, 1998 ) Vanguestaine nov. comb. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号