首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper presents the results of the integrated study of ferromanganese crusts from the Belyaevsky (Central Basin) and Medvedev (Honshu Basin) seamounts from the Sea of Japan. The study of the mineral composition using powder diffraction and optical and electron microscopy showed that the crusts are made up of todorokite, birnessite, and pyrolusite minerals typical of hydrothermal ferromanganese deposits of the World Ocean. The composition of the ferromanganese crusts from the Sea of Japan was determined by ICP-MS and ICP-OES. The contents of Mn, Fe, Co, Cu, Ni, and other major and trace elements indicate the hydrothermal genesis of the crusts. The obtained data on the composition of ferromanganese crusts of the Sea of Japan, as well as their comparison with different types of deposits of the World Ocean, suggest the endogenic genesis of the studied crusts. However, the REE and Y distribution patterns testify to a significant admixture of hydrogenic matter, which participated in the growth of ferromanganese crusts from the Belyaevsky and Medvedev seamounts.  相似文献   

2.
The results of experimental studies of ion exchange properties of manganese and iron minerals in micronodules (MN) from diverse bioproductive zones of the World Ocean are considered. It was found that the sorption behavior of these minerals is similar to that of ore minerals from ferromanganese nodules (FMN) and low-temperature hydrothermal crusts. The exchange complex of minerals in the MN includes the major (Na+, K+, Ca2+, Mg2+, and Mn2+) and the subordinate (Ni2+, Cu2+, Co2+, Pb2+, and others) cations. Reactivity of theses cations increases from Pb2+ and Co2+ to Na+ and Ca2+. Exchange capacity of MN minerals increases from the alkali to heavy metal cations. Capacity of iron and manganese minerals in the oceanic MN increases in the following series: goethite < goethite + birnessite < todorokite + asbolane-buserite + birnessite < asbolane-buserite + birnessite < birnessite + asbolane-buserite < birnessite + vernadite Fe-vernadite + Mn-feroxyhyte. The data obtained supplement the available information on the ion exchange properties of oceanic ferromanganese sediments and refine the role of sorption processes in the redistribution of metal cations at the bottom (ooze) water-sediment interface during the MN formation and growth.  相似文献   

3.
水钠锰矿是土壤与沉积物中最为常见的氧化锰矿物, 依据其MnO6层对称特点分为六方和三斜两种亚结构类型.六方水钠锰矿在表生环境中可通过Mn2+的化学或生物氧化形成, 而环境中三斜水钠锰矿的形成及进一步转化为钙锰矿的途径尚不清楚.以两种六方水钠锰矿(酸性水钠锰矿和水羟锰矿)为前驱物, 采用X射线吸收光谱(EXAFS)、X射线衍射(XRD)、电镜(FESEM/TEM)及化学组成分析等技术方法模拟表生环境研究了水钠锰矿从六方向三斜的亚结构转化及生成钙锰矿的化学条件和矿物学机制.结果表明, 适当Mn(Ⅱ)浓度和弱碱性条件(pH≥8)可使六方水钠锰矿逐渐转化为三斜水钠锰矿, 继而经Mg2+交换、常压回流得到了长纤维状的钙锰矿, 其晶体生长以溶解-结晶为主.Mn(Ⅱ)与六方水钠锰矿MnO6八面体层内的Mn(Ⅳ)反应生成Mn(Ⅲ)并填充层内空位, 使水钠锰矿对称型由六方向三斜转变.与酸性水钠锰矿相比, 水羟锰矿结晶弱、层状堆积混乱度高, 与Mn(Ⅱ)反应迅速, 层结构向三斜水钠锰矿转化快.pH升高, 促进六方水钠锰矿对Mn(Ⅱ)的吸附和Mn(Ⅱ)与Mn(Ⅳ)间的反应, 六方水钠锰矿转化为三斜水钠锰矿的速率加快."六方水钠锰矿→三斜水钠锰矿"可能是环境中三斜水钠锰矿的重要来源, 及进一步形成钙锰矿的重要化学生成机制.   相似文献   

4.
Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals of different types, birnessite, todorokite, and hausmannite, could actively oxidize As^Ⅲ to Asv, and greatly varied in their oxidation ability. Layer structured birnessite exhibited the highest capacity of As^Ⅲ oxidation, followed by the tunnel structured todorokite. Lower oxide hansmannite possessed much low capacity of As^Ⅲ oxidation, and released more Mn^2+ than birnessite and todorokite during the oxidation. The maximum amount of Asv produced during the oxidation of As^Ⅲ by Mn oxide minerals was in the order: birnessite (480.4 mmol/kg) 〉 todorokite (279.6 mmol/kg) 〉 hansmannite (117.9 mmol/kg). The oxidation capacity of the Mn oxide minerals was found to be relative to the composition, crystallinity, and surface properties. In the presence of goethite oxidation of As^Ⅲ by Mn oxide minerals increased, with maximum amounts of Asv being 651.0 mmol/kg for birnessite, 332.3 mmol/kg for todorokite and 159.4 mmol/kg for hansmannite. Goethite promoted As^Ⅲ oxidation on the surface of Mn oxide minerals through adsorption of the Asv produced, incurring the decrease of Asv concentration in solutions. Thus, the combined effects of the oxidation (by Mn oxide minerals)-adsorption (by goethite) lead to rapid oxidation and immobilization of As in soils and sediments and alleviation of the As^Ⅲ toxicity in the environments.  相似文献   

5.
探讨了人工合成的高价锰氧化物与紫外光(UV)联用时降解苯酚废水的特性。结果表明,氧化锰矿物在无UV时对苯酚的降解能力差异大,1 g/L的氧化锰4 h对200 mg/L苯酚废水的降解率和COD去除率分别为:锰钾矿97.51%、酸性水钠锰矿89.07%、碱性水钠锰矿11.36%、钙锰矿9.67%;锰钾矿87.79%、酸性水钠锰矿53.11%、碱性水钠锰矿6.42%、钙锰矿1.43%。UV光照下,氧化锰矿物对苯酚的降解率有不同程度的提高,且表现出显著的表面光催化性质,增加了苯酚的深度降解,COD去除率显著提高。UV下氧化锰4 h对苯酚的降解率分别为:锰钾矿99.48%、酸性水钠锰矿91.86%、碱性水钠锰矿40.15%、钙锰矿35.95%);COD的去除率分别为:锰钾矿98.11%、酸性水钠锰矿68.45%、钙锰矿27.57%、碱性水钠锰矿24.27%。MnO2-UV联用时降解苯酚可能包括两种主要作用机制:氧化锰矿物的直接化学氧化降解和UV下MnO2的表面光催化降解。  相似文献   

6.
拉曼光谱是一种快速无损的分析手段,它既可观察样品的显微结构构造,也可分析样品的成分和结构。为了丰富多金属结核的岩石矿物学特征,文章对西太平洋某海山区的多金属结核样品进行了X射线粉末衍射分析和拉曼光谱分析。X射线分析结果显示该区域样品主要含有水羟锰矿、钡镁锰矿、斜长石、钙十字沸石和石英,显微构造主要有纹层状构造、柱状构造、树枝状构造、充填构造等。通过分析对比潮湿样品和烘干样品铁锰质矿物的拉曼特征谱峰,得出结核中水羟锰矿的特征谱峰位于490 cm~(-1)、570 cm~(-1)和626 cm~(-1)附近,钡镁锰矿的特征谱峰则位于640 cm~(-1)附近,与陆地上对应矿物的特征拉曼谱峰不同。结核中的钡镁锰矿结构不稳定,经过风干或者抛磨后部分产生相变,不同显微结构中,相变情况不同。经与RRUFF数据库比对,识别出钙十字沸石、斜长石等自形晶,多分布于结核最内层,往结核外层总体减少。矿物微晶多见铁锰质矿物微晶和钙十字沸石微晶,铁锰质矿物绕其向外生长。  相似文献   

7.
Manganese oxides precipitated from aerated well sea water at the Marine Science Museum, Tokai University, have been analyzed chemically and mineralogically. The OMn ratios are lower in todorokite than in birnessite but these minerals have similar contents of minor transition metals, which can be taken up additionally from sea water after the precipitation of Mn oxides. On the basis of these results, the genesis of Mn minerals is discussed in relation to marine Mn nodules.  相似文献   

8.
随着我国钢铁工业和化学工业的迅猛发展,对锰矿资源的需求,日益增加.梅县锰矿公司对该县的锰矿地质和锰矿生产做了大量工作.在前人工作的基础上,我们在锰矿资源的调研中,曾对广东省梅县的宝山岗、白沙坪、桃尧大华、宝坑、仙水塘、磔角坑、车陂等地的锰矿体、进行过采样工作.经室内鉴定后、梅县的锰矿石有优质的放电锰矿石和冶金用锰矿石、矿床规模属于中小型.梅县锰矿资源的生产,继续已有20多年的历史,在矿床的质和量方面尚需做更深入的研究,以便为矿山开采和锰矿生产提供更充分的依据.本文是对锰矿物质成分初步研究的部分结果.  相似文献   

9.
Numerous gold deposits and occurrences were recognized in the regions of tectonomagmatic activation in the southeastern Siberian Platform. They are located in four metallogenic zones: the Ket-Kap (skarns, quartz veins, and stockworks; gold-bearing lodes in silicitolites; and argillisite-sericite metasomatites), Ulkan (clayey-micaceous metasomatites, quartz veins), Preddzhugdzhur (quartz veins, skarns, and sericite-hydromicaceous metasomatites), and Uda (sericite-hydromicaceous metasomatites). The skarn mineralization is of Meosozoic age, while the mineralization in the quartz veins, quartz-hydromicaceous metasomatites, and quartz-sulfide veins may have a Meosozoic, Paleozoic, or Late Paleozoic age. The highest temperatures were determined for the ore formation in the Preddzhugdzhur skarns (500–715 °C) and the hydrothermal-metasomatic rocks of the Ket-Kap zone (510–530 °C). The composition of gas-liquid inclusions in the minerals of these rocks is dominated by aqueous Na, K, and Ca chloride solutions with salinity up to 40 wt % NaCl equiv; fluid contains CO2. Quartz veins and stockworks of the Ket-Kap zone were formed under high (up to 465°C) and moderate temperatures and salinity up to 32 wt % NaCl equiv. Sometimes, the minerals in these rocks contain inclusions of low-density CO2. The gold-bearing veins of the Preddzhugdzhur zone formed at 225–230°C and salinity of 1–2 wt % NaCl equiv. The ore-bearing solutions in the gold-bearing veins of the Ulkan zone are characterized by a potassium-sodium-chlorine composition and salinity of 2–10 wt % NaCl equiv., and the temperature of their formation was 220–280 °C.  相似文献   

10.
Layered ferromanganese crusts collected by dredge from a water depth range of 2770 to 2200 m on Mendeleev Ridge, Arctic Ocean, were analyzed for mineralogical and chemical compositions and dated using the excess 230Th technique. Comparison with crusts from other oceans reveals that Fe-Mn deposits of Mendeleev Ridge have the highest Fe/Mn ratios, are depleted in Mn, Co, and Ni, and enriched in Si and Al as well as some minor elements, Li, Th, Sc, As and V. However, the upper layer of the crusts shows Mn, Co, and Ni contents comparable to crusts from the Atlantic and Indian Oceans. Growth rates vary from 3.03 to 3.97 mm/Myr measured on the uppermost 2 mm. Mn and Fe oxyhydroxides (vernadite, ferroxyhyte, birnessite, todorokite and goethite) and nonmetalliferous detrital minerals characterize the Arctic crusts. Temporal changes in crust composition reflect changes in the depositional environment. Crust formation was dominated by three main processes: precipitation of Fe-Mn oxyhydroxides from ambient ocean water, sorption of metals by those Fe and Mn phases, and fluctuating but large inputs of terrigenous debris.  相似文献   

11.
Experiments devoted to interaction between the material of ferromanganese crusts (FMC) of Pacific seamounts and hydrogen sulfide at temperatures ranging from 100 to 600°C unraveled the formation of pyrite microcrystals at 100°C. Upon heating, the pyrite acquires more perfect crystalline form at 200°C and breaks down at 600°C. The formation and breakdown of magnetite take place according to the same similar scenario. At 200°C, one can see the formation of lumpy aggregates of the slightly crystallized alabandine transformed at 600°C into lamellar crystals, which accumulate the whole Mn and part of Fe hosted in rock. At maximal temperature, platinum and gold are crystallized selectively as lamellar particles and native sulfur is accumulated. The composition of these newly formed minerals is incomparable with the mineralogy of natural FMCs. This is inconsistent with the assumption about the possible influence of hypothetic hydrosulfuric emanations on the formation of minerals mentioned above. However, experimental results demonstrate an extremely high sorption capacity of FMCs relative to hydrogen sulfide, suggesting great prospects of the practical application of FMCs for the industrial and ecological purposes.  相似文献   

12.
地表“矿物膜”:地球“新圈层”   总被引:1,自引:0,他引:1  
地球表层是一个极为复杂的开放系统,其中所充满的阳光、大气、水分、有机酸、无机酸/盐、矿物质和微生物等彼此之间无时无刻不在发生着人们尚未充分认识到的多种自然作用。本文采用环境矿物学、半导体物理学与光电化学等交叉学科研究手段,在我国南方红壤、西南喀斯特和西北戈壁等典型陆地生境中,发现直接暴露于太阳光下的土壤/岩石表面广泛发育有几十纳米到数百微米厚度的铁锰氧化物"矿物膜";详细研究了铁锰氧化物"矿物膜"中矿物组成及其精细结构特征,发现半导体性能优异的水钠锰矿普遍存在,其晶体结构中富含促进其光催化功能的稀土元素Ce。在这些生境中,矿物岩石表面所包覆的铁锰氧化物"矿物膜"总是朝着太阳光发育,岩石背面却不出现"矿物膜",揭示出太阳光照射下的地球陆地表面普遍存在的"矿物膜"与太阳光有着直接的响应关系。光电化学测试结果显示,天然"矿物膜"具有较好的日光响应性能,由其制成的电极在可见光照射下皆能产生明显的光电流,而不含铁锰氧化物矿物的岩石基质样品及石英、长石等矿物样品几乎不产生光电流,表明"矿物膜"光电流的产生主要与铁锰氧化物有关。进一步测得"矿物膜"中主要铁锰氧化物的禁带宽度均小于2. 5eV,证明其均为对可见光具有广泛而良好吸收的天然半导体矿物。以全球日光平均辐照强度100mW/cm~2计以及全球典型生境中"矿物膜"分布面积估算,全球"矿物膜"吸收太阳能等效为生物质能的最大量与2017年度全球糖类产量(1. 92亿吨)相当。铁锰氧化物"矿物膜"不仅存在于陆地地表,还存在于海洋透光层中。可以认为地表"矿物膜"是地球上分布最广的天然"太阳能薄膜",从功能上"矿物膜"相当于继地核、地幔和地壳之后的地球第四大圈层,事实上构成了地球"新圈层",也是地球在太阳光能量驱动下发生外营力地质作用的关键地带。在此基础上,本文提出从"矿物膜"中产生的矿物光电子与太阳光子和元素价电子共同组成了地表存在的三种主要能量形式的认识。深入探讨太阳光照射下地表多圈层交互作用界面上所发生的电子传递与能量转化的微观机制,有助于深刻理解地表"矿物膜"这一地球"新圈层"如何影响地球物质演化、生命起源进化与环境变化演变的宏观过程。  相似文献   

13.
Diagenetic transformation of clay minerals, zeolites and silica minerals in Cretaceous and Tertiary argillaceous rocks from deeply drilled wells in Japan were studied. Transformations of these minerals during diagenesis were as follows: in clay minerals, montmorillonite → montmorillonite-illite mixed-layer mineral → illite; in zeolites, volcanic glass → clinoptilolite → heulandite and/or analcite → laumontite and/or albite; in silica minerals, amorphous silica → low-cristobalite → low-quartz. Maximum overburden pressures and geothermal temperatures corresponding to these transformations in each well studied were calculated. For clay minerals, a pressure of approximately 900 kg cm?2 and a temperature of about 100°C are necessary for the transformation from montmorillonite to mixed-layer mineral and 920 kg cm?2 and 140°C for mixed-layer mineral to illite. Transformation from kaolinite to other minerals requires much higher pressures and temperatures than from montmorillonite to mixed-layer mineral. For zeolites, 330 kg cm?2 and 60°C are required for the transformation from volcanic glass to clinoptilolite, 860 kg cm?2 and 120°C for clinoptilolite to heulandite and/or analcite, and 930 kg cm?2 and 140°C for heulandite and/or analcite to laumontite and/or albite. For silica minerals, 250 kg cm?2 and 50°C are necessary for the transformation from amorphous silica to low-cristobalite and 660 kg cm?2 and 70°C for low-cristobalite to low-quartz. Based on these diagenetic mineral transformations, seven mineral zones are recognized in argillaceous sediments. On the other hand, from the porosity studies of argillaceous sediments in Japan, the process of diagenesis is classified into the following three stages. The early compaction stage is marked by shallow burial and viscous rocks with more than 30% porosity. The late compaction stage is characterized by intermediate burial and plastic rocks with 30-10% porosities. The transformation stage is marked by deep burial and elastic rocks with less than 10% porosity.  相似文献   

14.
Enrichments of REY (rare earth + yttrium) and other trace metals (Co and Ni) in deep-sea ferromanganese (FeMn) micronodules have received increasing attention in both deep-sea research and mineral exploration. Due to the presence of multiple, easily-crushed and poorly-crystallized phases in micronodules, the genesis of micronodules and their adsorption of various trace elements are poorly understood. To address this gap, we examined the spatial distributions of elements in cross-sections of micronodules from the western tropical North Pacific Ocean using high-resolution (HR) LA-ICP-MS raster mapping coupled with laser Raman and X-ray photoelectron spectroscopy (XPS). The ferromanganese micronodules we studied are dominated by Fe and Mn oxides with minor carbonate minerals, such as siderite, rhodochrosite and calcite. LA-ICP-MS maps show that these micronodules consist of a Mn-rich core and a Fe-rich rim. The Fe-enriched rim is enriched in As and surrounds a Mg, Mn, Cu, Co and Ni concreted core. Laser Raman maps show that the micronodule core contains more birnessite, an important scavenger of trace metals in deep sea sediments, than the rim. The birnessite filled core of these micronodules does not have elevated REY. Indeed, birnessite line channels may feed metal-rich fluid containing REY to adjacent minerals, including well-crystallized bio-apatite and zeolite, as high Ce and Y levels are spatially correlated with these minerals. The observed element profiles and XPS observations showing the coexistence of multiple oxidation states of Mn (+2, +3 and +4), Fe (+2 and +3) and Ce (+3, +4) demonstrate that the FeMn phases of these micronodules are of a diagenetic origin and that they are sites of redox-driven metal enrichment in deep-sea sediment.  相似文献   

15.
Marjorie Powell 《Lithos》1978,11(2):99-120
During slow cooling of plutonic igneous rocks the initial high temperature minerals crystallised from the magma continue to re-equilibrate with each other to varying degrees with falling temperature. Thermodynamic studies of mineral equilibria are used to calculate crystallisation temperatures for the cumulus assemblage ol-cpx-mt-ne-fsp in the Igdlerfigssalik syenites and to calculate composition parameters for the original magmas. Cumulus crystallisation occurred in the range 900–980°C. Nepheline and alkali feldspar continued to equilibrate in some rocks down to 650°C, while macroscopic exsolution in alkali feldspar and titanomagnetite continued to temperatures below 600°C. Oxygen activities during the crystallisation of the cumulus minerals were below magnetite-wustite.  相似文献   

16.
17.
Manganese minerals in the polymetallic nodules from the Central Pacific Ocean were studied using electron microscopy. The principal Mn minerals, being vernadite and todorokite, exhibit different electron diffraction patterns and morphological features. According to its morphological feature, todorokite shows three phases: fibrous, lamellar and lath-shaped. Both vernadite and todorokite are authigenic minerals. While vernadite was mainly precipitated directly from the relevant solution by microbiological oxidation, todorokite was separated from the solution chemically without the help of microbe. Hence, these two minerals show a close genetic relation.  相似文献   

18.
The Dzhusinskoe pyrite–polymetallic deposit is characterized by an abundant concentration of dykes of basic and intermediate rocks. Thermal metamorphism of ore-host rocks and the recrystallization of ore minerals are associated with the intrusion of post-ore dykes. A regular increase in the homogenization temperature from 156° at a distance from a dyke to 287–305°C in the contact zone was established. Highly saline (6.4–15.7 wt % NaCl eq.) CO2–H2O–NaCl fluids under high pressure (up to 1500 bar) can be associated with the processes of contact and regional metamorphism.  相似文献   

19.
Manganese at equilibrium in seawater occurs dominantly as Mn2+ and inorganic complexes at a concentration ratio of about 1:0.72; solubility decreases exponentially with increasing pH or Eh. However, the nodule oxides birnessite and todorokite are at least four orders of magnitude undersaturated relative to the Mn concentrations of seawater, and are metastable relative to hausmannite and manganite. This apparent lack of equilibrium is explicable by the mechanism of precipitation.Surfaces assist Mn precipitation by catalyzing equilibration between dissolved and reactive O2 and simultaneously also by adsorbing ionic Mn species. The effective Eh at the surface becomes 200–400 mV above that of seawater; the oxidation rate of Mn increases about 108 ×, and the activation energies for Mn oxidation decrease ~ 11.5 kcal/mole. Consequently, marine Mn nodules and crusts form by adsorption and catalytic oxidation of Mn2+ and ferrous ions at nucleating surfaces such as sea-floor silicates, oxyhydroxides, carbonates, phosphates and biogenic debris. The resulting ferromanganese surfaces autocatalyze further growth. In addition, Mn-fixing bacteria may also significantly accelerate accretion rates on these surfaces.Mn which accumulates in submarine sediments may be diagenetically recycled in response to steep solubility gradients causing upward migration from more acidic and reducing horizons toward the sea floor. In contrast, the concentrations of the predominant ferric complexes, Fe(OH)30 and Fe(OH)4?, are relatively less sensitive to the Eh's and pH's found in this environment; Fe is therefore not as readily recycled within buried sediments. Consequently, Fe is not so effectively enriched on the sea floor, although it precipitates more readily than Mn because seawater is saturated in amorphous Fe(OH)3.The metastable, perhaps kinetically-related, Mn oxides of nodules have a characteristic distribution: birnessite predominates in oxidizing environments of low sedimentation rate and todorokite where sedimentation rates and diagenetic Mn mobility are higher. Surface adsorption and cation substitution within the disordered birnessite-todorokite structure account for the high trace element content of Mn nodules.  相似文献   

20.
The mineralogy and petrology of pumice exposed in two small outcrops at the top of two hills in western Spain suggest that these rocks are of impact genesis. Ringwoodite, which was identified in the rocks, can crystallize from melt under pressures of 10?C11 GPa in static regime or at the relief of pressure of a shock wave under pressures of 15?C17 GPa and more. The other minerals crystallizing from the melt at a pressure decrease are ferrous hortonolite (unit cell parameters of ringwoodite and hortonolite are reported), minerals belonging to the spinel group and having variable Fe mole fractions, clinopyroxene, orthopyroxene, anorthite, and corundum. Hollow, skeleton, dendritic, and whisker crystals of these minerals suggest that they crystallized at the cooling and strong undercooling of the melt. The crystallization temperature of the hercynite is 1780°C. The temperature of the melt that produced the pumice is estimated at 1900?C2700°C. Our find of ringwoodite is the first discovery of this mineral in natural impact rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号