首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
不同氧化锰矿物对光催化降解苯酚的影响   总被引:1,自引:0,他引:1  
合成层状结构的酸性和碱性水钠锰矿以及隧道结构的锰钾矿和钙锰矿,将其用于苯酚的光催化降解研究。分别采用X射线衍射(XRD)、原子吸收光谱(AAS)、扫描电镜(SEM)、BET氮气吸附法和紫外可见漫反射光谱(UV-Vis DRS)对供试锰氧化物的晶体结构、化学组成、微观形貌、比表面积以及光吸收性能等进行了表征。研究表明,暗反应条件锰氧化物对苯酚的降解作用较弱,而UV-Vis光照能显著促进锰氧化物对苯酚的降解。光照反应12 h后,锰钾矿、酸性水钠锰矿、钙锰矿以及碱性水钠锰矿的苯酚降解率分别为92.1%、77.3%、57.4%和45.8%;对应的TOC去除率分别由暗反应时的6.3%、11.2%、2.0%和4.6%提高至62.1%、43.1%、25.4%和22.5%。4种供试锰氧化物均具有光催化活性,其大小顺序为:锰钾矿>酸性水钠锰矿>钙锰矿>碱性水钠锰矿。UV-Vis光照下氧化锰矿物光化学降解苯酚主要存在3种降解机制———苯酚的直接光解,锰氧化物的化学氧化和锰氧化物的光化学催化,其中光催化降解起主导作用。  相似文献   

2.
几种氧化锰矿物的合成及其对重金属的吸附和氧化特性   总被引:7,自引:0,他引:7  
以改进或优化的方法合成土壤中常见的几种氧化锰矿物,对其形貌、结构、组成和表面性质进行表征,研究其对几种重金属的吸附和对Cr(Ⅲ)的氧化特性及与其结构和表面性质的关系。结果表明,合成的水钠锰矿、钙锰矿、锰钾矿和黑锰矿均为单相矿物,具有典型的形貌特征。水钠锰矿、钙锰矿和锰钾矿的PZC较低,分别为1.75、3.50和2.10,其表面可变负电荷量的大小顺序为水钠锰矿≥锰钾矿>钙锰矿;黑锰矿的PZC较高,表面可变负电荷量远低于其他3种矿物。供试矿物中,水钠锰矿对Pb2 、Cu2 、Co2 、Cd2 和Zn2 等重金属的吸附能力最强,黑锰矿的吸附能力最弱,除黑锰矿吸附更多的Cu2 外,供试氧化锰矿物对Pb2 的吸附量最大。氧化锰矿物对重金属的吸附受重金属的水解常数和矿物的表面负电荷的影响较大,它们均影响氧化锰矿物表面诱导水解作用及吸附离子形态。供试氧化锰矿物对Cr(Ⅲ)氧化能力和氧化过程中Mn2 释放量不同,受矿物结构、氧化度、表面性质以及结晶度等因素影响,氧化能力顺序为水钠锰矿>锰钾矿>钙锰矿>黑锰矿,最大氧化量分别为1330.0、422.6、59.7和36.6mmol/kg。  相似文献   

3.
锰氧化物是常见的半导体材料之一,本文利用XRD、Raman、X射线吸收-发射谱及Zeta电位测试技术对合成的4种锰氧化物矿物(酸性水钠锰矿、碱性水钠锰矿、δ-MnO_2、锰钾矿)的能带结构进行了理论计算。结果表明,4种矿物均是可见光响应的半导体矿物,其禁带宽度分别为2.32 eV、1.77 eV、1.36 eV、1.23 eV;在p H等于6时,4种锰氧化物矿物对应的导带电势分别为-0.32 V、0.09 V、0.39 V、0.46 V(vs.NHE),价带电势分别为2.00 V、1.86 V、1.75 V、1.69 V(vs.NHE)。与腐殖质氧化还原电势相比较,4种锰氧化物矿物在任何pH条件下均能吸收可见光催化氧化腐殖质。从结构上比较,层状结构比隧道结构的锰氧化物可见光催化氧化还原能力更强。  相似文献   

4.
天然锰氧化物矿物主要包括软锰矿、锰钾矿、锰钡矿、硬锰矿、恩苏塔矿、钠水锰矿、水锰矿、褐锰矿、黑锰矿等.  相似文献   

5.
利用回流法合成隧道结构的锰钾矿,并研究其光化学降解苯酚的效果及影响因素。分别采用X射线衍射、原子吸收光谱、扫描电镜、透射电镜和BET氮气吸附法对锰钾矿的晶体结构(包括晶型、晶胞参数和结晶度)、化学组成、微观形貌和比表面积进行了表征。研究表明,非光照时锰钾矿对苯酚的降解效果较差,光照能显著促进锰钾矿对苯酚的降解;光照条件下,p H值减小能显著促进锰钾矿对苯酚的降解;锰钾矿用量增加至1.00 g/L时能显著促进锰钾矿降解苯酚,但继续增加矿物用量却显著降低苯酚降解率;非光照条件下,p H值减小和矿物用量增加不能显著促进锰钾矿降解苯酚。  相似文献   

6.
锰氧化物和氢氧化物中的孔道结构矿物及其环境属性   总被引:6,自引:0,他引:6  
运用晶体化学理论,通过矿物孔道结构的基本概念,描述软锰矿、拉锰矿、恩苏塔锰矿、锰钡矿、锰钾矿、锰铅矿、水锰矿、斜方水锰矿、钡硬锰矿和钙锰矿等矿物的孔道结构特征。总结出孔道结构锰氧化物和氢氧化物矿物在环境修复和治理中的吸附效应、孔道效应、催化效应、氧化还原效应以及纳米效应,并展望孔道结构锰氧化物和氢氧化物矿物在环境属性开发领域的应用前景。  相似文献   

7.
本文对日本天然产出的十七种锰的二氧化物矿物.锰钾矿(隐钾锰矿)(石金石—ishiganeite),锰钡矿(钡硬锰矿),锰钠矿(隐钠锰矿),锰铅矿(铅硬锰矿),软锰矿,恩苏塔矿(横须贺石),拉锰矿,(兰姆斯德矿),钠水锰矿(比艾山矿),钙硬锰矿,低钙锰矿(塔锰矿,高根矿),钙锰矿(钡镁锰矿),锂硬锰矿,硬锰矿,黑锌锰矿,水锌锰矿,黑银锰矿和非晶质锰的二氧化物矿物,从描述矿物学的观点出发,结合陆地产出的锰的二氧化物与锰结核的成分之间的关系。进行了简要的论述。  相似文献   

8.
内蒙古额仁陶勒盖银矿床锰矿物的矿物学初步研究   总被引:8,自引:0,他引:8  
额仁陶勒盖银矿床出现的锰矿物主要为软锰矿、水锰矿、六方锰矿、锰铅矿、锰钾矿、菱锰矿、铁菱锰矿及锰方解石。解主要以独立矿物和离子吸附状态的形式赋存于地表锰铅矿和锰钾矿中;而软锰矿、六方锰矿、锰铅矿、锰钾矿等锰的氧化物和锰的氢氧化物是原生锰碳酸盐矿物的氧化分解而形成的,而水锰矿可能为热液形成;菱锰矿等原生锰的碳酸盐类矿物形成于后期热液阶段。  相似文献   

9.
水钠锰矿是土壤与沉积物中最为常见的氧化锰矿物,依据其MnO6层对称特点分为六方和三斜两种亚结构类型.六方水钠锰矿在表生环境中可通过Mn2+的化学或生物氧化形成,而环境中三斜水钠锰矿的形成及进一步转化为钙锰矿的途径尚不清楚.以两种六方水钠锰矿(酸性水钠锰矿和水羟锰矿)为前驱物,采用X射线吸收光谱(EXAFS)、X射线衍射(XRD)、电镜(FESEM/TEM)及化学组成分析等技术方法模拟表生环境研究了水钠锰矿从六方向三斜的亚结构转化及生成钙锰矿的化学条件和矿物学机制.结果表明,适当Mn(Ⅱ)浓度和弱碱性条件(pH≥8)可使六方水钠锰矿逐渐转化为三斜水钠锰矿,继而经Mg2+交换、常压回流得到了长纤维状的钙锰矿,其晶体生长以溶解-结晶为主.Mn(Ⅱ)与六方水钠锰矿MnO6八面体层内的Mn(Ⅳ)反应生成Mn(Ⅲ)并填充层内空位,使水钠锰矿对称型由六方向三斜转变.与酸性水钠锰矿相比,水羟锰矿结晶弱、层状堆积混乱度高,与Mn(Ⅱ)反应迅速,层结构向三斜水钠锰矿转化快.pH升高,促进六方水钠锰矿对Mn(Ⅱ)的吸附和Mn(Ⅱ)与Mn(Ⅳ)间的反应,六方水钠锰矿转化为三斜水钠锰矿的速率加快."六方水钠锰矿→三斜水钠锰矿"可能是环境中三斜水钠锰矿的重要来源,及进一步形成钙锰矿的重要化学生成机制.  相似文献   

10.
天然锰钾矿催化活性实验研究   总被引:1,自引:1,他引:0  
利用天然锰的氧化物矿物及合成MnO2催化分解过氧化氢溶液.对比研究锰钾矿的催化活性。在0℃下锰钾矿催化分解H2O2的活性远大于天然软锰矿、恩苏塔矿和分析纯MnO2,原因是锰钾矿具有较大的比表面积及特殊的晶体化学特征。锰钾矿分解不同浓度H2O2溶液的反应能很好遵循langmuir—Hinshelwood动力方程式。XRD分析表明锰钾矿反应后结构未发生改变,重复实验锰钾矿催化分解H2O2的活性未见降低。  相似文献   

11.
水钠锰矿是土壤与沉积物中最为常见的氧化锰矿物, 依据其MnO6层对称特点分为六方和三斜两种亚结构类型.六方水钠锰矿在表生环境中可通过Mn2+的化学或生物氧化形成, 而环境中三斜水钠锰矿的形成及进一步转化为钙锰矿的途径尚不清楚.以两种六方水钠锰矿(酸性水钠锰矿和水羟锰矿)为前驱物, 采用X射线吸收光谱(EXAFS)、X射线衍射(XRD)、电镜(FESEM/TEM)及化学组成分析等技术方法模拟表生环境研究了水钠锰矿从六方向三斜的亚结构转化及生成钙锰矿的化学条件和矿物学机制.结果表明, 适当Mn(Ⅱ)浓度和弱碱性条件(pH≥8)可使六方水钠锰矿逐渐转化为三斜水钠锰矿, 继而经Mg2+交换、常压回流得到了长纤维状的钙锰矿, 其晶体生长以溶解-结晶为主.Mn(Ⅱ)与六方水钠锰矿MnO6八面体层内的Mn(Ⅳ)反应生成Mn(Ⅲ)并填充层内空位, 使水钠锰矿对称型由六方向三斜转变.与酸性水钠锰矿相比, 水羟锰矿结晶弱、层状堆积混乱度高, 与Mn(Ⅱ)反应迅速, 层结构向三斜水钠锰矿转化快.pH升高, 促进六方水钠锰矿对Mn(Ⅱ)的吸附和Mn(Ⅱ)与Mn(Ⅳ)间的反应, 六方水钠锰矿转化为三斜水钠锰矿的速率加快."六方水钠锰矿→三斜水钠锰矿"可能是环境中三斜水钠锰矿的重要来源, 及进一步形成钙锰矿的重要化学生成机制.   相似文献   

12.
Manganese at equilibrium in seawater occurs dominantly as Mn2+ and inorganic complexes at a concentration ratio of about 1:0.72; solubility decreases exponentially with increasing pH or Eh. However, the nodule oxides birnessite and todorokite are at least four orders of magnitude undersaturated relative to the Mn concentrations of seawater, and are metastable relative to hausmannite and manganite. This apparent lack of equilibrium is explicable by the mechanism of precipitation.Surfaces assist Mn precipitation by catalyzing equilibration between dissolved and reactive O2 and simultaneously also by adsorbing ionic Mn species. The effective Eh at the surface becomes 200–400 mV above that of seawater; the oxidation rate of Mn increases about 108 ×, and the activation energies for Mn oxidation decrease ~ 11.5 kcal/mole. Consequently, marine Mn nodules and crusts form by adsorption and catalytic oxidation of Mn2+ and ferrous ions at nucleating surfaces such as sea-floor silicates, oxyhydroxides, carbonates, phosphates and biogenic debris. The resulting ferromanganese surfaces autocatalyze further growth. In addition, Mn-fixing bacteria may also significantly accelerate accretion rates on these surfaces.Mn which accumulates in submarine sediments may be diagenetically recycled in response to steep solubility gradients causing upward migration from more acidic and reducing horizons toward the sea floor. In contrast, the concentrations of the predominant ferric complexes, Fe(OH)30 and Fe(OH)4?, are relatively less sensitive to the Eh's and pH's found in this environment; Fe is therefore not as readily recycled within buried sediments. Consequently, Fe is not so effectively enriched on the sea floor, although it precipitates more readily than Mn because seawater is saturated in amorphous Fe(OH)3.The metastable, perhaps kinetically-related, Mn oxides of nodules have a characteristic distribution: birnessite predominates in oxidizing environments of low sedimentation rate and todorokite where sedimentation rates and diagenetic Mn mobility are higher. Surface adsorption and cation substitution within the disordered birnessite-todorokite structure account for the high trace element content of Mn nodules.  相似文献   

13.
Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals of different types, birnessite, todorokite, and hausmannite, could actively oxidize As^Ⅲ to Asv, and greatly varied in their oxidation ability. Layer structured birnessite exhibited the highest capacity of As^Ⅲ oxidation, followed by the tunnel structured todorokite. Lower oxide hansmannite possessed much low capacity of As^Ⅲ oxidation, and released more Mn^2+ than birnessite and todorokite during the oxidation. The maximum amount of Asv produced during the oxidation of As^Ⅲ by Mn oxide minerals was in the order: birnessite (480.4 mmol/kg) 〉 todorokite (279.6 mmol/kg) 〉 hansmannite (117.9 mmol/kg). The oxidation capacity of the Mn oxide minerals was found to be relative to the composition, crystallinity, and surface properties. In the presence of goethite oxidation of As^Ⅲ by Mn oxide minerals increased, with maximum amounts of Asv being 651.0 mmol/kg for birnessite, 332.3 mmol/kg for todorokite and 159.4 mmol/kg for hansmannite. Goethite promoted As^Ⅲ oxidation on the surface of Mn oxide minerals through adsorption of the Asv produced, incurring the decrease of Asv concentration in solutions. Thus, the combined effects of the oxidation (by Mn oxide minerals)-adsorption (by goethite) lead to rapid oxidation and immobilization of As in soils and sediments and alleviation of the As^Ⅲ toxicity in the environments.  相似文献   

14.
Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides   总被引:1,自引:0,他引:1  
Lead sorption efficiencies (sorption per specific surface area) were measured for a number of natural and synthetic Mn and Fe-oxides using a flow-through reactor. The Mn-oxide phases examined included synthetic birnessite, natural and synthetic cryptomelane, and natural and synthetic pyrolusite; the Fe-oxides studied were synthetic akaganéite, synthetic ferrihydrite, natural and synthetic goethite, and natural and synthetic hematite. The sorption flow study experiments were conducted with 10 ppm Pb with an ionic strength of either 0.01 M NaNO3 or 0.01 M KNO3, both at pH 5.5. The experimental effluent solution was analyzed using aqueous spectroscopic methods and the reacted solids were analyzed using microscopy (field emission scanning electron microscopy, FE-SEM), structure analysis (powder X-ray diffraction, XRD), bulk chemical spectroscopy (energy dispersive spectroscopy, EDS), and surface sensitive spectroscopy (X-ray photoelectron spectroscopy, XPS). Overall and under these conditions, the synthetic Mn-oxides have higher sorption efficiencies than the natural Mn-oxides, which in turn are higher than the natural and synthetic Fe-oxides. Only natural pyrolusite had a sorption efficiency as low as the Fe-oxides. Most of the natural and synthetic Fe-oxides examined in this study removed about the same amount of Pb from solution once normalized to BET N2 surface area, although synthetic akaganéite and hematite were significantly less reactive than the rest.It is suggested that the observed efficiency of Mn-oxides for Pb sorption is directly related to internal reactive sites in the structures that contain them (birnessite and cryptomelane, in the case of this study). Comparisons of solution data to XPS data indicated that Pb went into the interlayer of the birnessite, which was supported by XRD; similarly some Pb may go into the tunnels of the cryptomelane structure. Layer structures such as birnessite have the highest Pb sorption efficiency, while the 2 × 2 tunnel structure of cryptomelane has lower efficiencies than birnessite, but higher efficiencies than other Mn- or Fe-oxide structures without internal reactive sites.  相似文献   

15.
本文通过江西武山吴家和安徽铜陵代家冲两个铁帽型金矿床的矿石矿物组成特点的研究,为长江中、下游进一步寻找和评价铁帽型金矿床提供必要的依据。  相似文献   

16.
The removal of Mn(II) from coal mine drainage (CMD) by chemical addition/active treatment can significantly increase treatment costs. Passive treatment for Mn removal involves promotion of biological oxidative precipitation of manganese oxides (MnOx). Manganese(II) removal was studied in three passive treatment systems in western Pennsylvania that differed based on their influent Mn(II) concentrations (20–150 mg/L), system construction (±inoculation with patented Mn(II)-oxidizing bacteria), and bed materials (limestone vs. sandstone). Manganese(II) removal occurred at pH values as low as 5.0 and temperatures as low as 2 °C, but was enhanced at circumneutral pH and warmer temperatures. Trace metals such as Zn, Ni and Co were removed effectively, in most cases preferentially, into the MnOx precipitates. Based on synchrotron radiation X-ray diffraction and Mn K-edge extended X-ray absorption fine structure spectroscopy, the predominant Mn oxides at all sites were poorly crystalline hexagonal birnessite, triclinic birnessite and todorokite. The surface morphology of the MnOx precipitates from all sites was coarse and “sponge-like” composed of nm-sized lathes and thin sheets. Based on scanning electron microscopy (SEM), MnOx precipitates were found in close proximity to both prokaryotic and eukaryotic organisms. The greatest removal efficiency of Mn(II) occurred at the one site with a higher pH in the bed and a higher influent total organic C (TOC) concentration (provided by an upstream wetland). Biological oxidation of Mn(II) driven by heterotrophic activity was most likely the predominant Mn removal mechanism in these systems. Influent water chemistry and Mn(II) oxidation kinetics affected the relative distribution of MnOx mineral assemblages in CMD treatment systems.  相似文献   

17.
热液条件下钙锰矿的合成及其影响因素   总被引:5,自引:0,他引:5  
钙锰矿具有3× 3的大隧道构造, 广泛分布于大洋锰结壳和锰结核等环境中, 其性质和成因倍受关注.以改进方法制备的水钠锰矿(birnessite)为前驱物, Mg2+交换后得到Mg-水钠锰矿(或称布塞尔矿, buserite), 经热液处理合成了结晶度高的单相钙锰矿(todorokite), 采用X-射线衍射(XRD)、透射电镜(TEM)和选区电子衍射(SAED)等技术探讨了热液温度、体系压力和处理时间等因素对钙锰矿合成的影响.结果表明: 合成的钙锰矿与天然钙锰矿有相同的形貌和生长特征, 呈纤维状, 沿120°三连晶生长, 平均化学组成为Mg0.16MnO2.07 0.82H2O.在实验条件下, 热液温度和处理时间是影响钙锰矿合成的主要因素; 而通过改变高压釜的填充度引起体系压力的变化对钙锰矿合成的影响较小, 体系压力并不是钙锰矿形成的主要影响因素.热液温度越高, Mg-水钠锰矿转化为钙锰矿的速率越快, 完全转化为钙锰矿所需的处理时间越短.热液温度分别为120℃、160℃和200℃时, Mg-水钠锰矿完全转化为钙锰矿所需的时间分别为6 h、4 h和2 h; 但热液温度高于160℃时, 易生成水锰矿杂质.延长处理时间与提高热液温度具有相似的影响规律.这进一步明确了钙锰矿的生成条件, 可为阐明钙锰矿的形成机制和促进其在材料科学中的应用提供理论依据.   相似文献   

18.
Manganese (Mn) oxides are among the strongest oxidants and sorbents in the environment, impacting the transport and speciation of metals, cycling of carbon, and flow of electrons within soils and sediments. The oxidation of Mn(II) to Mn(III/IV) oxides has been primarily attributed to biological processes, due in part to the faster rates of bacterial Mn(II) oxidation compared to observed mineral-induced and other abiotic rates. Here we explore the reactivity of biogenic Mn oxides formed by a common marine bacterium (Roseobacter sp. AzwK-3b), which has been previously shown to oxidize Mn(II) via the production of extracellular superoxide. Oxidation of Mn(II) by superoxide results in the formation of highly reactive colloidal birnessite with hexagonal symmetry. The colloidal oxides induce the rapid oxidation of Mn(II), with dramatically accelerated rates in the presence of organics, presumably due to mineral surface-catalyzed organic radical generation. Mn(II) oxidation by the colloids is further accelerated in presence of both organics and light, implicating reactive oxygen species in aiding abiotic oxidation. Indeed, the enhancement of Mn(II) oxidation is negated when the colloids are reacted with Mn(II) in the presence of superoxide dismutase, an enzyme that scavenges the reactive oxygen species (ROS) superoxide. The reactivity of the colloidal phase is short-lived due to the rapid evolution of the birnessite from hexagonal to pseudo-orthogonal symmetry. The secondary particulate triclinic birnessite phase exhibits a distinct lack of Mn(II) oxidation and subsequent Mn oxide formation. Thus, the evolution of initial reactive hexagonal birnessite to non-reactive triclinic birnessite imposes the need for continuous production of new colloidal hexagonal particles for Mn(II) oxidation to be sustained, illustrating an intimate dependency of enzymatic and mineral-based reactions in Mn(II) oxidation. Further, the coupled enzymatic and mineral-induced pathways are linked such that enzymatic formation of Mn oxide is requisite for the mineral-induced pathway to occur. Here, we show that Mn(II) oxidation involves a complex network of abiotic and biotic processes, including enzymatically produced superoxide, mineral catalysis, organic reactions with mineral surfaces, and likely photo-production of ROS. The complexity of coupled reactions involved in Mn(II) oxidation here highlights the need for further investigations of microbially-mediated Mn oxide formation, including identifying the role of Mn oxide surfaces, organics, reactive oxygen species, and light in Mn(II) oxidation and Mn oxide phase evolution.  相似文献   

19.
八面体分子筛(OMS-2)具有2×2孔道结构,在离子交换、催化剂、能源和环境等方面具有非常重要的应用价值,然而天然OMS-2矿物材料——锰钾矿在典型结构的成分精细表征和成因研究等方面仍然缺乏.环带和核-边结构在锰氧化物矿物的结构中非常具有代表性,明确其矿物种属、探索其成分特征对于探究其成因、开拓锰氧化物的应用具有重要意...  相似文献   

20.
The formation of manganese oxides in nature is commonly mediated by microorganisms.In this study,the mineralization of biogenic manganese oxidation mediated by Pseudomanas putida has been experimentally investigated by employing various characterization techniques,including SEM,FESEM,TEM,XRD,and STXM-NEXAFS.The results indicate that Mn~(2+) ions can be oxidized into Mn(Ⅳ) minerals(birnessite and pyrolusite) and Mn(Ⅲ) minerals(hausmannite and feitknechtite),successively.The primary products(birnessite and pyrolusite) further transformed into hausmannite and feitknechtite under Mn~(2+) ion-enriched conditions.However,birnessite and pyrolusite are the endproducts of the continuous microbial oxidation processes.These biogenic Mn oxides are poorly crystallized,which provides them with a high potential for usage in environmental restoration of contaminated soils and waters contaminated with heavy metals.The approaches employed in this study will also enrich genesis research of biological oxidation of Mn(Ⅱ) species in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号