首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A camptonite dike swarm (Agardag alkali-basalt complex) in the western part of the Sangilen Upland abounds in mantle xenoliths. Mineralogical, petrographic, and petrochemical studies show that the dikes are composed of lamprophyres of two groups, basic and ultrabasic. Ar/Ar dating of amphibole and phlogopite megacrysts gives an intrusion age for the dikes of 443.0 ± 1.3 Ma. 206Pb/238U dating of zircon from a glomeroporphyritic intergrowth in camptonite from one of the dikes yielded a core age of 489.0 ± 5.4 Ma. This corresponds to the time of formation of the Chzhargalanta granite–leucogranite complex (489.4 ± 2.6 Ma). The 206Pb/238U age of the zircon rim is 444.0 ± 7.5 Ma. The ages obtained by Ar/Ar dating of amphibole and biotite megacrysts and by U/Pb dating of the magmatic rim of zircon crystal from the camptonite coincide within the dating error, which indicates that the camptonite dikes formed in the Late Ordovician. These dikes are the oldest-known example of mantle-derived xenoliths in mafic volcanic rocks from an off-craton setting. These are samples of the Upper Ordovician lithospheric mantle.  相似文献   

2.
王明  李才  解超明  吴彦旺  苏犁  胡培远 《岩石学报》2012,28(12):4101-4108
聂荣微陆块呈透镜体状夹持在班公湖-怒江板块缝合带内,其上出露有黑云母花岗片麻岩以及二长花岗片麻岩等不同类型的古老片麻岩,本文报道产出于聂荣微陆块上花岗片麻岩的锆石LA-ICP-MS U-Pb定年结果,样品锆石的岩浆震荡环带十分发育,多数锆石具有典型的岩浆结晶锆石的特征。所有测点中有16个测点的Th/U值较高,介于0.58~1.24之间,平均值为0.79,获得的206Pb/238U年龄基本一致,加权平均值为819.6±5.2Ma,笔者等认为该年龄代表了花岗片麻岩的原岩结晶时代为新元古代。我们在羌塘南部地区的碎屑岩中获得了同样的年龄峰值(809Ma)。此外,我们认为年龄中具有507Ma左右的信息反映了泛非事件之后另外一次强烈构造热事件的影响在该区的存在。  相似文献   

3.
《Gondwana Research》2014,26(4):1535-1553
The Upper Wulashan “Subgroup” at Daqingshan in the Khondalite Belt of the Western Block of the North China Craton contains an Early Paleoproterozoic (2.5–2.45 Ga) supracrustal sequence, incorporating banded iron formations, which we refer to as the Daqingshan Supracrustal Rocks. They contain rounded to elliptical zircon grains that commonly show core–rim or core–mantle–rim structures and precise SHRIMP U–Pb dating of these domains allows the discrimination of a series of tectono-thermal events that straddle the Archean/Proterozoic boundary. Detrital zircon cores with oscillatory zoning have formation ages ranging from 2.55 to 2.50 Ga, indicating derivation from Late Neoarchean magmatic rocks. As a result of exhumation and erosion, these became incorporated in earliest Paleoproterozoic sediments that were deposited between 2.50 and 2.45 Ga and then underwent high-grade metamorphism at 2.45–2.40 Ga. This event variously recrystallized the cores into two main domains: a dark inner domain and a gray outer domain, as imaged in cathodoluminescence. The gray domains commonly show sector zoning and have Th/U ratios of 0.1–0.5, a feature commonly noted in zircons recrystallized under high-grade metamorphic conditions. Metamorphic mantles are generally more homogeneous in structure and have lower Th/U ratios (commonly < 0.1) than the recrystallized domains, although they show similar age distributions. However, they are difficult to distinguish when only two domains are present in the zircon and they represent a continuum of recrystallization. The rocks then underwent a second episode of high-grade metamorphism in the Late Paleoproterozoic, as revealed by thin overgrowth rims that are homogeneous or show only weak zoning, have low Th/U ratios (commonly < 0.1), and record ages of 1.95–1.90 Ga. This is the first time that two tectono-thermal events of Early and Late Paleoproterozoic age have been identified in single rock samples from the Western Block of the North China Craton. The conclusion that unequivocal earliest Paleoproterozoic sediments are present in the North China Craton is also supported by evidence that the Daqingshan Supracrustal Rocks are cut by anatectic garnet granite, previously dated at 2.39 Ga. Combined with evidence obtained here and elsewhere in the North China Craton, we conclude that the 2.45–2.40 Ga metamorphism was not an extension of the well-established, craton-wide Late Neoarchean tectono-thermal event, but a previously unrecognized episode that followed a short quiescent period that allowed sedimentation of the Daqingshan Supracrustal Rocks.  相似文献   

4.
锡林浩特杂岩中斜长角闪岩锆石U-Pb年代学及Hf同位素研究   总被引:3,自引:1,他引:2  
王善辉  陈岳龙  李大鹏 《现代地质》2012,26(5):1019-1027
锡林浩特杂岩是一套经历强变形变质作用的变质岩,主要由黑云斜长片麻岩、角闪斜长片麻岩、斜长角闪片麻岩及变粒岩夹透镜状或脉状斜长角闪岩组成。查明其形成年龄、变质年龄对深入认识中亚造山带的形成演化具有重要意义。本次研究对锡林浩特杂岩中斜长角闪岩进行了SHRIMP锆石U-Pb测年和LA-MC-ICP-MS锆石Hf同位素组成分析,给出了锆石SHRIMP U-Pb的加权平均年龄为(316±4)Ma,该年龄代表斜长角闪岩的原岩形成年龄,表明锡林浩特杂岩不是前寒武纪地质体。通过锆石Hf同位素分析,εHf(t)值主要为正值(+4.1~+17.0),揭示其物源可能来自亏损地幔或壳幔混合。根据亏损地幔和古老地壳的锆石Hf同位素进行两端元的混合计算,得到斜长角闪岩原岩岩浆的源区以幔源增生组分为主体(经过计算壳幔混合比例大约1∶2)。部分锆石的模式年龄在1.8~2.5 Ga之间,表明斜长角闪岩的原岩在形成过程中有古元古代地壳物质的加入,通过兴蒙造山带和锡林浩特杂岩中斜长角闪岩的Hf模式年龄对比可知,物源可能来自兴蒙造山带内部。基于Hf同位素的两端元混合计算表明该区在晚古生代存在地壳增生。根据野外观察和室内岩石特征分析,该套杂岩可能是一套经历强变形与变质作用的晚古生代火山-沉积建造。  相似文献   

5.
Behavior of zircon at the schist/migmatite transition is investigated. Syn-metamorphic overgrowth is rare in zircon in schists, whereas zircon in migmatites has rims with low Th/U that give 90.3 ± 2.2 Ma U–Pb concordia age. Between inherited core and the metamorphic rim, a thin, dark-CL annulus containing melt inclusion is commonly developed, suggesting that it formed contemporaneous with the rim in the presence of melt. In diatexites, the annulus is further truncated by the brighter-CL overgrowth, suggesting the resorption and regrowth of the zircon after near-peak metamorphism. Part of the zircon rim crystallized during the solidification of the melt in migmatites. Preservation of angular-shaped inherited core of 5–10 μm in zircon included in garnet suggests that zircon of this size did not experience resorption but developed overgrowths during near-peak metamorphism. The Ostwald ripening process consuming zircon less than 5–10 μm is required to form new overgrowths. Curved crystal size distribution pattern for fine-grained zircons in a diatexite sample may indicate the contribution of this process. Zircon less than 20 μm is confirmed to be an important sink of Zr in metatexites, and ca. 35-μm zircon without detrital core are common in diatexites, supporting new nucleation of zircon in migmatites. In the Ryoke metamorphic belt at the Aoyama area, monazite from migmatites records the prograde growth age of 96.5 ± 1.9 Ma. Using the difference of growth timing of monazite and zircon, the duration of metamorphism higher than the amphibolite facies grade is estimated to be ca. 6 Myr.  相似文献   

6.
The ophiolite in the southern Tianshan, Uzbekistan, is interrupted distributed along the northern border (NW‐trending) of the Nuratau Mountain. It's the suture zone between kyzylkum‐Alai and Kazakhstan paleo‐continents. In order to study the tectonic evolution of the Turkestan ocean during the Paleozoic, we present zircon U‐Pb ages, major element, trace element data for rocks from the ophiolite in the Nuratau segment. The ophiolite comprises the rock blocks of serpentinite, altered basalt, allalinite, altered diabase, pillowed basalt, limestone, etc and the matrix of quartz schist, forming the grid structure. The matrix suffers strong deformation and deterioration, while the mylonitization occurred in the western outcrop. New LA‐ICP‐MS zircon U‐Pb ages were determined for six magmatic rock blocks and two quartz schist matrix and these ages confirm the presence of Late Devonian‐Early Permian (ca. 411 to 294 Ma). Five zircon grains from greenschist facies metamorphic basic rock yielded a group minimum weighted mean age of 226 Ma, interpreted as the result of Late Triassic thermal event. The apex of zircon ages for 2 quartz schist is about 450 Ma (Late Ordovician). That indicates sedimentary material from the Late Ordovician. The basalt (SiO2=48.15‐49.93%) are Na‐enriched (average Na2O=2.32‐4.02%), with high HREE/LREE ratios (average=4.93), Weak positive anomalies (average Eu*/Eu=1.02) and convex‐type mantle‐normalized immobile trace elements patterns, which are similar to the geochemical characteristics of Alkaline Ocean island basalt (OIB) and subalkaline Oceanic plateau basalt (OPB). This ophiolite is characterized by Mantle (serpentinite) and Ocean crust (altered basalt, allalinite, pillowed basalt), formed in Early Devonian at the latest. During the evolution of the Turkestan ocean, the growth of OIB and OPB, Ordovician provided a large amount of sedimentary material. The earliest start time of the ocean closed and paleo‐continents assembly is the Early Permian. Afterward, a Late Triassic thermal event occurred on a region scale and is recorded by metamorphic zircon.  相似文献   

7.
Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207Pb/206Pb age in the range of (2 493±54) -(2 500±180) Ma. The magmatic genesis-derived detrital zircon domain gives a 207Pb/206Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206Pb/238U age of (2 790±150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a dicsordia with an upper intercept age of (2 044.7±29.3) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. ~2.8 Ga magmatism and ~2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.  相似文献   

8.
Although ultrahigh‐pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east‐central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high‐pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle‐derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two‐fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition.  相似文献   

9.
刘福来  许志琴  宋彪 《地质学报》2003,77(4):533-539
通过隐藏在锆石微区矿物包体激光拉曼的系统鉴定和阴极发光图像特征的详细研究,配合相应的锆石微区SHRIMP U-Pb定年测试,发现苏鲁地体超高压变质带中确实存在非超高压变质的花岗质片麻岩。该类岩石中的锆石晶体自核部到边部所保存的矿物包体以不含超高压矿物为特征,相应的阴极发光图像具有典型岩浆结晶锆石的核部和幔部,以及变质的再生边的特点。其中岩浆结晶锆石微区记录的~(238)U-~(206)Pb年龄为404~748Ma,表明原岩中部分锆石可能经历了Pb丢失,也不排除后期热事件因素的影响,原岩的形成年龄应大于748 Ma;而锆石的再生边所记录的~(238)U-~(206)Pb。年龄为204~214 Ma,与研究区经历超高压变质的副片麻岩和花岗质片麻岩锆石微区所记录的苏鲁地体快速折返过程中角闪岩相退变质年龄(~(238)U-~(206)Pb年龄的平均值为211±4 Ma,刘福来等,2003a)十分相似。上述特征表明,苏鲁地体超高压变质带中的部分花岗质片麻岩在超高压变质事件之前就已经形成,但并未“参与”深俯冲—超高压的变质演化过程,而是在苏鲁地体快速折返的角闪岩相退变质过程中与超高压岩片“拼贴”在一起。该项成果不仅为正确识别非超高压变质岩石提供了一个新的研究方法,而且对进一步深入探讨苏鲁地体超高压和非超高压岩片的“拼贴”机制有着重  相似文献   

10.
本研究应用激光剥蚀技术测定了北大别黄土岭高温-高压长英质麻粒岩锆石3个结构域的U-Pb年龄.变质锆石成因的碎屑锆石域的207Pb/206Pb年龄范围为(2493±54) Ma~(2500±180) Ma, 岩浆成因的碎屑锆石域的207Pb/206Pb年龄范围为2628~2690Ma, 其最大的206Pb/238U年龄为(2790±150) Ma, 变质增生或变质重结晶锆石域的不一致线上交点年龄为(2044.7±29.3) Ma.长英质麻粒岩的矿物组合成分、主量元素地球化学, 尤其是锆石副矿物内部结构特征显示其原岩为沉积岩.这表明, 麻粒岩原岩物质来自具有复杂热历史的蚀源区, 该蚀源区曾发生过~2.8Ga的岩浆作用和~2.5Ga变质作用, 因此其原岩的沉积年龄不应早于2.5Ga.高温-高压麻粒岩相变质作用的精确年龄为(2.04±0.03) Ga, 表明黄土岭麻粒岩是一个晚古元古代超高温变质岩之残块.   相似文献   

11.
华南大陆内部燕山期的岩浆事件可分为2期:燕山早期180~150 Ma,燕山晚期140~80 Ma。而处于扬子板块西南缘的滇黔贵等地,仅见有第二期晚白垩世中酸性侵入岩与相关成矿作用,缺乏第一期岩浆活动的时间记录。本文在滇东建水地区首次发现了麦地村煌斑岩,对其进行高精度LA-ICP-MS锆石U-Pb定年和主微量元素测试分析。结果显示煌斑岩的锆石U-Pb年龄为(158.4±2.4)Ma(MSWD=4.2),为晚侏罗世的产物,补充了该区较为空白的第一期岩浆热事件。麦地村煌斑岩不相容元素明显高于原始地幔,表现出不同程度的富集,大离子亲石元素Rb、Ba、Ce等富集程度不明显,高场强元素中U、Ta、Pb等表现出一定程度富集,LREE相对富集,HREE相对亏损,不具有Nb-Ta-Ti负异常的俯冲型配分曲线特征,具有明显的OIB型洋岛玄武岩稀土元素配分特征,为板内伸展环境下的产物。滇东地区发育中生代时期的NNE构造,早期NNE向褶皱叠加有后期同方向正断层。早期褶皱表现为SEE-NWW挤压应力作用下的构造特征,后期断层表现出同方向张应力作用下的特征。煌斑岩正是由于该区发生挤压之后伴随着一期应力松弛调整,伸展减压作用诱发地幔物质部分融熔,来自于深处的软流圈地幔流体与岩石圈地幔发生交代作用,形成富集型地幔,交代富集的岩石圈地幔局部受热、部分熔融,发生上升侵位。煌斑岩的侵位时间即是滇东地区中生代从挤压向伸展转换的起始时间。  相似文献   

12.
Previous U–Pb zircon dating of the Pomona Island Granite (PIG) pluton (South Island, New Zealand) yielded either Permo-Carboniferous or Late Jurassic ages for five samples essentially indistinguishable in their field, petrographic, and geochemical characteristics. Detailed cathodoluminescence imaging and LA-ICP-MS dating of zircon in new and previously dated samples reveal that portions of the pluton contain either delicately oscillatory-zoned Late Jurassic zircon grains with rare Permo-Carboniferous cores, or Permo-Carboniferous grains with ubiquitous but thin Late Jurassic rims. Based on zircon dissolution-overgrowth textures, zircon rim and core trace element compositions, and the limited extent of sub-solidus rock recrystallisation textures, the bipartite age distribution is unlikely to reflect variable Pb-loss or metamorphic re-equilibration. Magmatic Zr-saturation temperatures were ≥851°C for samples dominated by Jurassic zircon and ≤809°C for samples with a predominance of Permo-Carboniferous zircon. Together, these data are consistent with PIG magmas having been derived from partial melting of a Permo-Carboniferous felsic igneous source at variable temperature wholly in the Late Jurassic (157 ± 3 Ma). The lowest temperature melts would have been incapable of dissolving significant amounts of pre-existing zircon and consequently generated inheritance-rich magmas, with the very thin rims on the pre-existing zircon grains the only evidence of the Late Jurassic magmatic age. As the partial melting temperature increased and nearly all pre-existing zircon grains dissolved into the magma, an inheritance-poor batch of melt was generated, which precipitated new zircon grains upon crystallisation. Concentrations of major and many trace elements in both magma batches may have been buffered by retention of residual quartz and feldspar in the source, which would explain the limited geochemical differences between inheritance-rich and inheritance-poor portions.  相似文献   

13.
Geochronological and geochemical analyses were carried out to determine the age of protolith formation and the timing of eclogite and granulite metamorphism of the Saxonian Granulite Massif (SGM). The age of the ultramafic protoliths of the garnet pyroxenites from the rim of the SGM has been determined to be Late Riphean (828 Ma), which together with geochemical and isotope data implies the extraction of the melt from an enriched mantle reservoir with an initial -Nd value of + 3.4. The minimum emplacement age of the mafic to felsic granulites has been dated at 470 Ma. The source material of these granulites reflects an enriched mantle reservoir with an -Nd value of + 2.6 (470 Ma).Based on U/Pb zircon and Sm/Nd analyses (garnet kyanite, apatite, clinopyroxene, whole rock) the granulite metamorphism of the SGM probably occurred at 340 Ma. The time of the eclogite metamorphism for a garnet pyroxenite has been detected at 380 Ma using the Sm/Nd method on minerals (garnet — clinopyroxene—zircon) and whole rock.Geochemical and isotope data clearly indicate a MORB- as well as an IAT-type source for the mafic granulites. During the time of the eclogite and granulite formation the oceanic basin closed in a subduction zone tectonic setting. A terrane or microcontinent model is consistent with these data and further explains the Ordovician, Silurian and Devonian high pressure events detected all over the European Hercynides. In this model, Gondwana derived microcontinents successively collided from the Early Ordovician onwards, causing subduction zone related high pressure metamorphism during closure of oceanic basins.  相似文献   

14.
西秦岭大草滩群的形成时代和构造意义探讨   总被引:2,自引:0,他引:2  
大草滩群a岩组中最年轻的一组锆石206Pb/238U年龄加权平均值为404.9±4.8 Ma(MSWD=0.11),b岩组中最年轻的锆石206Pb/238U年龄值为385±5 Ma,c岩组样品中最年轻的锆石206Pb/238U年龄值为375±6 Ma,这一结果将大草滩群的最大沉积时代有效地限定在405~375 Ma之间。结合生物化石组合资料,大草滩群的时代归属于晚泥盆世。根据岩石组合、沉积相、构造变形、形成时代和物源分析等资料综合研究表明,晚泥盆世大草滩群河湖相粗粒碎屑岩形成时的大地构造背景是位于安第斯型活动大陆边缘的弧前拉张—裂陷盆地,作为北秦岭微陆(+岩浆弧)与华北大陆西南缘碰撞的沉积响应,是碰撞造山作用以后南部洋壳持续俯冲阶段同火山—岩浆活动的弧前沉积体系。  相似文献   

15.
大别山北部榴辉岩及英云闪长质片麻岩的锆石U-Pb年龄分析表明:北部榴辉岩相峰期变质时代为226~230Ma左右;北部塔儿河一带英云闪长质片麻岩经历过印支期变质事件;大别山北部与南部超高压岩石中一致的(226~230Ma)高压或超高压变质年龄表明,北部镁铁-超镁铁质岩带中部分岩石也曾作为扬子俯冲陆壳的一部分,在印支期发生过高压或超高压变质作用;本区锆石发生过两期变质增生事件,一是印支期高压或超高压变质,另一期是燕山期热变质事件;榴辉岩及英云闪长质片麻岩的原岩形成时代为晚元古代;锆石U-Pb年龄可用多期变质增生模型来解释。  相似文献   

16.
三合屯金矿位于黑龙江省嫩江县境内,普遍认为其是韧性剪切带型金矿.本次对采自韧性剪切带中花岗质糜棱岩样品进行了锆石LA-ICP-MS U-Pb定年,以约束剪切带的活动时代,并为金矿化事件提供依据,获得糜棱岩中热液锆石增生边加权平均年龄为162 Ma.因此,矿区在燕山期晚侏罗世经历剪切变形,并且这期变形事件与前人研究的科洛...  相似文献   

17.
A unique zircon was studied in the gneiss samples collected from the Wadi Abu Rusheid psammitic gneiss using electron scanning microscope and electron probe microanalyses. This zircon can be categorized into two types according to the texture and trace element content: (l) magmatic zircon slightly enriched in HfO2 with ordinary zone. (2) Overgrowths of zircon occur as two species, the first species being highly enriched in HfO2 with irregular zoning. The second species is highly enriched in HfO2 forming a rim around the second species with a very sharp thinner boundary. The first type shows a distinct oscillatory internal zoning pattern without change in shape of this zone and has conspicuous inclusion-free zircon overgrowths with distinct poor concentrations in Y, Hf, Th, U, Nb, and Ta in both rim and core. The second type shows two species, the first one displays distinct irregular interval zoning and irregular overgrowth with abrupt change in composition of these zones with distinct enrichment in Y, Hf, Th, U, Nb, and Ta in the rim relative to the core. The second species is forming a rim around the first species also with distinct enrichment in Y, Hf, Th, U, Nb, and Ta content. These indicate that two events (crystallization environment) have played an important role in the formation of this zircon and largely reflect differences in whole-rock trace element contents between the successive generations of this zircon. The first event is believed to be of magmatic origin giving rise to normal composition of magmatic zircon. The second event shows an intense successive process of metasomatic activity during the formation of the Abu Rusheid radioactive gneiss. Electron microprobe analysis indicates that oscillatory zoned zircon shows poor content of Y, Hf, Th, U, Nb, Ta, and rare earth elements (REE) in the rim and core, while overgrowths of zircon are slightly enriched by these elements. Also, these analyses indicate that the Abu Rusheid psammitic gneiss has been significantly enriched by the thorite mineral (Th content up to 54.72% ThO2) and columbite-bearing minerals (Nb content up to 64.74% Nb2O5, Ta content up to 9.32% Ta2O5). The poor content of REE in overgrowths of zircon indicates mobilization of REE during the metamorphism processes of gneiss.  相似文献   

18.
中国大陆科学钻探主孔0-4500米的岩心主要由榴辉岩、斜长角闪岩、副片麻岩、正片麻岩以及少量的超基性岩所组成。岩相学研究结果表明,榴辉岩的围岩普遍经历了强烈角闪岩相退变质作用的改造,峰期超高压变质的矿物组合已完全被后期退变质过程中角闪岩相矿物组合所替代。采用激光拉曼技术,配备电子探针和阴极发光测试,发现主孔224件岩心中有121件(包括榴辉岩、斜长角闪岩、副片麻岩和正片麻岩)样品的锆石中普遍隐藏以柯石英为代表的超高压矿物包体,且不同岩石类型锆石中所保存的超高压矿物包体组合存在明显差异。(含多硅白云母)金红石石英榴辉岩锆石中保存的典型超高压包体矿物组合为柯石英 石榴石、柯石英 石榴石 绿辉石 金红石和柯石英 多硅白云母 磷灰石。黑云绿帘斜长角闪岩锆石中保存的超高压矿物组合为柯石英 石榴石 绿辉石、柯石英 石榴石 多硅白云母和柯石英 绿辉石 金红石,与榴辉岩所保存的超高压矿物组合十分相似,表明该类斜长角闪岩是由超高压榴辉岩在构造折返过程中退变质而成。在副片麻岩类岩石,如石榴绿帘黑云二长片麻岩锆石中,代表性的超高压包体矿物组合为柯石英 多硅白云母和柯石英 石榴石等;而在石榴黑云角闪钠长片麻岩锆石中,则保存柯石英 硬玉 石榴石 磷灰石、柯石英 硬玉 多硅白云母 磷灰石和柯石英 石榴石 磷灰石等超高压矿物包体。在正片麻岩锆石中,标志性的超高压矿物包体为柯石英、柯石英 多硅白云母、柯石英 蓝晶石 磷灰石和柯石英 蓝晶石 榍石等。此外,在南苏鲁东海至临沭一带的地表露头以及一系列卫星孔岩心的锆石中,也普遍发现以柯石英为代表的标志性超高压矿物包体,表明在南苏鲁地区由榴辉岩及其围岩的原岩所组成的巨量陆壳物质(方圆>5000km2,厚度超过4.5km)曾整体发生深俯冲,并经历了超高压变质作用。该项研究对于重塑苏鲁-大别超高压变质带俯冲-折返的动力学模式有着重要的科学意义。  相似文献   

19.
Multi-dating on the same detrital grains allows for determining multiple different geo-thermochronological ages simultaneously and thus could provide more details about regional tectonics. In this paper, we carried out detrital zircon fission-track and U-Pb double dating on the Permian-Middle Triassic sediments from the southern Ordos Basin to decipher the tectonic information archived in the sediments of intracratonic basins. The detrital zircon U-Pb ages and fission-track ages, together with lag time analyses, indicate that the Permian-Middle Triassic sediments in the southern Ordos Basin are characterized by multiple provenances. The crystalline basement of the North China Craton (NCC) and recycled materials from pre-Permian sediments that were ultimately sourced from the basement of the NCC are the primary provenance, while the Permian magmatites in the northern margin of NCC and Early Paleozoic crystalline rocks in Qinling Orogenic Collage act as minor provenance. In addition, the detrital zircon fission-track age peaks reveal four major tectonothermal events, including the Late Triassic-Early Jurassic post-depositional tectonothermal event and three other tectonothermal events associated with source terrains. The Late Triassic-Early Jurassic (225–179 Ma) tectonothermal event was closely related to the upwelling of deep material and energy beneath the southwestern Ordos Basin due to the coeval northward subduction of the Yangze Block and the following collision of the Yangze Block and the NCC. The Mid-Late Permian (275–263 Ma) tectonothermal event was associated with coeval denudation in the northern part of the NCC and North Qinling terrane, resulting from the subduction of the Paleo-Asian Ocean and Tethys Ocean toward the NCC. The Late Devonian-early Late Carboniferous (348±33 Ma) tectonothermal event corresponded the long-term denudation in the hinterland and periphery of the NCC because of the arc-continent collisions in the northern and southern margins of the NCC. The Late Neoproterozoic (813–565 Ma) tectonothermal event was associated with formation of the Great Unconformity within the NCC and may be causally related to the Rodinia supercontinent breakup driven by a large-scale mantle upwelling.  相似文献   

20.
Spinel pyroxenites occur locally as clasts in polygenic breccias from the Late Cretaceous sedimentary mélanges of the Northern Apennine (Italy). They are of cumulus origin and formed in the deep crust by early precipitation of clinopyroxene and minor olivine and late crystallisation of orthopyroxene, spinel, Ti-pargasite and sulphides. Pyroxenites underwent high-temperature (~850°C) subsolidus re-equilibration and ductile deformation with development of mylonitic bands made of clinopyroxene, orthopyroxene, Ti-pargasite and spinel. U–Pb geochronology on zircons revealed the occurrence of inherited grains of Early Proterozoic to Late Devonian age. The inherited zircons are locally rimmed by recrystallised zircon domains. The oldest rims yield a mean concordia U–Pb age at 306 ± 8 Ma, which is considered to date the emplacement of the pyroxenites, in the framework of the post-Variscan lithospheric extension. The incompatible element compositions of calculated melts in equilibrium with clinopyroxenes from the pyroxenites are characterised by Ba, Nb, LREE and Sr enrichment relative to N-MORB. The depleted Nd isotopic signature of the pyroxenites (initial εNd values of +5.3 to +6.1) may be thus linked to primary magmas produced by low degrees of melting of asthenospheric mantle. In addition, the pyroxenites locally record the infiltration of plagioclase-saturated hydrous melts, most likely evolved through fractional crystallisation and enriched in highly incompatible elements, within the clinopyroxene-dominated crystal mush. A thermal event in Late Permian–Middle Triassic caused the partial resetting of zircon U–Pb system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号