首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
1970-2000年念青唐古拉山脉西段冰川变化   总被引:4,自引:1,他引:3  
运用多光谱遥感资料监测冰川变化已成为冰川研究的有效数据源,分析了念青唐古拉山脉西段念青唐古拉山峰区1970年冰川及Landsat ETM (2000)解译的冰川分布.结果显示,念青唐古拉山峰区共有870条冰川,30 a来冰川面积减小了5.7%,冰储量减少了7%;其中,冰川面积1~5 km2的冰川退缩的贡献最大,占总面积退缩量的56.7%.念青唐古拉山东南坡与西北坡的退缩幅度稍有不同,东南坡冰川面积减少了5.2%,西北坡冰川面积减少了6.9%.西北坡的拉弄冰川长度减少了(305±36) m,年退缩率为(10.2±1.2)m·a-1,面积退缩为2.6%.当雄气象站的资料表明,冰川退缩主要受温度持续上升的影响,尤其是1985年以来的温度快速上升的影响.对处于西北坡冰川体积变化分析表明,冰川体积减少可能是导致纳木错湖水位上升、水量增加的重要因素.  相似文献   

2.
利用1999年ETM、2014/2015年GF-1为主的2期遥感影像作为数据源,采用人机交互解译的方法完成了2期冰川编目成果,并对最近15年(1999—2015)念青唐古拉山冰川变化进行分析。结果显示,从1999年至2015年间,念青唐古拉山脉冰川呈退缩趋势,以东段海洋型冰川退缩为主,西段亚大陆型冰川相对稳定。冰川总面积减少了56. 32km2,减少变化率为0. 67%;有10条冰川消失,减少变化率为0. 16%;冰储量减少5. 315 km3,减少变化率为0. 78%。调查结果还显示,念青唐古拉山地区冰川各朝向均呈退缩趋势,偏南向和东向冰川数量与面积减少大于偏北向和西向的;平均坡度在20°~35°范围的冰川数量和面积减少最多;海拔介于4 500~5 500 m区间的冰川面积退缩最明显。在恒河流域和萨尔温江流域的冰川消退最显著。总体上,不同规模冰川均有退缩,规模≤5. 0 km2的冰川是念青唐古拉山地区退缩最多的。冰川退缩与气候变化关系密切。选取念青唐古拉山脉附近3个气象台站,对最近50多年以来的年均气温和年降水量变化分析表明,自1961年以来,念青唐古拉山年均气温呈显著上升趋势,而降水量变化不一,有增有减。气温上升而降水减少,可能是导致念青唐古拉山地区东段冰川退缩的一个因素。  相似文献   

3.
1970-2007年西藏念青唐古拉峰南、北坡冰川显著退缩   总被引:7,自引:3,他引:4  
1999年和2007年夏季,利用GPS技术先后对念青唐古拉峰(念峰)南、北坡的5条冰川末端位置进行了实地测量.结果表明:同1970年比较发现,过去近40 a来5条冰川退缩显著,1970-2007年间念峰北坡的拉弄和扎当冰川与南坡的爬努冰川末端平均退缩速率均接近10.0 m.a-1;西布冰川在1970-1999年间达到38.9 m.a-1,而爬努冰川流域海拔较高的小冰川5O270C0049退缩幅度较小,为4.8 m.a-1.2007年野外观测发现,爬努冰川1970年代的积累区有冰面河形成.念峰周围的冰川变化,不仅仅是末端的显著退缩,而且消融区面积也在扩大.  相似文献   

4.
近25年唐古拉山西段冰川变化遥感监测   总被引:1,自引:0,他引:1  
基于1990—2015年Landsat影像数据,利用比值阈值和NIR水体识别相结合的新方法提取并研究了近25年来唐古拉山西段冰川变化情况和规律,并采用克里金插值构建研究区气候分布及变化特征,揭示冰川变化与气候变化的关系。研究得出:唐古拉山西段冰川总体退缩比较严重,近25年来冰川面积退缩约202.84 km~2,占1990年面积的11.98%;冰川退缩主要集中在海拔5 800 m以下;研究区东南部冰川退缩最严重,中部格拉丹冬地区冰川退缩较少;空间插值表明研究区东南部相对较湿热而西北部干冷,西北—东南方向温度分布呈现由低到高的变化趋势,降水量先减少后增加总体变化幅度不大,但研究区气温普遍上升,插值变化显示增温区从研究区中心向周围辐射,最大增温区几乎已经覆盖整个冰川区域;唐古拉山西段冰川的加速退缩主要是由升温造成的。  相似文献   

5.
念青唐古拉山羊八井附近古仁河口冰川的变化   总被引:6,自引:5,他引:1  
利用GPS测量冰川不同时期的相关位置,结合地形图和航空照片的分析,在2004-2006年连续监测了念青唐古拉山羊八井古仁河口冰川的变化.结果表明:自小冰期以来,古仁河口冰川表现出较强的退缩状态,小冰期最盛期冰川末端海拔比现在降低100 m;小冰期后期到1970年,冰川末端退缩幅度约为7.0 m.a-1,1970-2004年平均退缩幅度为8.3 m.a-1.观测得到2004-2005年的平均退缩量约9.5 m.a-1,2005-2006年的平均退缩量为17.0 m.a-1.古仁河口冰川变化的现状,显示出冰川退缩幅度呈增大趋势.这预示着在全球气候变暖影响下,羊八井地区的冰川消融在逐渐增大,冰川水资源锐减,由此引起冰川面积的缩小.  相似文献   

6.
1960-2010年黑河流域冰川变化的遥感监测   总被引:8,自引:6,他引:2  
别强  强文丽  王超  何磊  赵传燕 《冰川冻土》2013,35(3):574-582
利用1960年地形图、 1990年、 2000年和2010年TM影像, 采用基于冰雪指数(NDSII)和原始波段的面向对象解译方法, 提取黑河流域4个时期的冰川分布, 结合30 m分辨率的DEM数据, 利用遥感、 地理信息系统技术对冰川的时空分布变化及原因和不确定性进行分析. 结果表明: 从1960-2010年50 a间黑河流域上游冰川持续退缩, 面积共减少138.90 km2, 减少率为35.6%, 平均每年减少2.78 km2, 祁连山中段冰川属于强烈退缩型. 祁连山中段黑河流域冰川主要分布在海拔4 200~5 300 m之间, 冰川分布下限为海拔4 000 m; 冰川退缩主要发生在低海拔地区, 冰川的退缩上限为海拔4 600 m.气温的显著上升是研究区冰川退缩的关键因素, 气候持续变暖将会导致冰川退缩加剧.  相似文献   

7.
运用遥感(RS)与地理信息系统(GIS)技术, 结合波密县1960-2010年气象数据, 分析了西藏波密地区冰川的主要分布特征和典型大冰川1980-2010年的时空变化. 结果显示: 波密县共有冰川数量2 040条, 总面积为4 382.5 km2, 其中, 分布在海拔4 000~6 000 m的高山冰川总面积达4 086 km2, 占冰川总面积的93.2%; 南坡分布冰川1 504条, 面积3 180.04 km2, 分别占波密冰川总量的73.73%和72.56%, 而北坡占还不到三分之一. 提取1980、 1990、 2000和2010年4期面积大于20 km2的24条大冰川面积进行对比分析, 1980-2010年间波密县大冰川面积总体呈减小趋势, 由1980年的1 592.78 km2退缩至2010年1 567.04 km2, 共退缩了25.74 km2; 其中, 1980-1990年冰川变化贡献最大, 冰川面积退缩了16.62 km2, 占冰川总面积退缩量的64.6%. 波密县气象站数据显示, 50 a来冰川退缩主要受温度持续上升的影响, 降水量变化对冰川变化影响不大.  相似文献   

8.
可可西里马兰山冰川的近期变化   总被引:5,自引:11,他引:5  
位于可可西里地区的马兰山冰帽,冰川覆盖了整个山体,冰川面积达195km^2,属极大陆型冰川,雪线海拔在5340-5540m之间,大多数冰川末端存在小冰期的碛垄,一般可分辨出3道,自小冰期以来,随着气候的变化,马兰山冰帽表现出波动退缩趋势。小冰期时,冰舌末端南坡比现在低20m,北坡低20-40m,由冰川退缩引起的冰川面积的减小相当于现代冰川面积的4.6%,略小于整个羌塘高原地区小冰期以来冰川面积减小的幅度(8%)。近百年来,冰川的退缩量为45-60m左右,而从1970年以来的30a中,马兰山冰川的退缩量为30-50m,平均年退缩量为1-1.7m。虽然小于高原边缘和其它地区冰川退缩幅度,但是退缩速率正在逐渐增大,这将对高原内陆脆弱的生态系统和生态环境产生较大的影响。  相似文献   

9.
1959-2013年中国境内萨吾尔山冰川变化特征   总被引:1,自引:1,他引:0  
萨吾尔山冰川条数少,中国冰川编目将萨吾尔山南北坡的冰川分别附入了天山和阿尔泰山区的冰川,不便于冰川变化研究,因此应给予其特殊考虑.鉴于前人工作中鲜有涉及该区的冰川研究,以萨吾尔山区冰川为研究对象,利用地形图、冰川编目数据以及Landsat遥感影像数据结合实测探地雷达数据,分析萨吾尔山地区冰川变化特征.通过目视解译结合野外实地观测的方法,得到1959-2013年该区的冰川变化特征.结果表明:总体上,萨吾尔山冰川持续退缩明显,1959-2013年中国境内的冰川面积由17.69 km2退缩为10.13 km2,退缩率42.74%,平均每年退缩0.14 km2;萨吾尔山北坡的冰川退缩率为37.57%,南坡退缩率为72.69%,南坡冰川退缩率基本为北坡的两倍.分析认为,南坡冰川退缩率较高的原因除了与坡向因素有关外,单条冰川面积大小是该差异的主要影响因素;基于木斯岛冰川探地雷达测厚结果,对该冰川体积进行了初步估算并与1959年地形图估算出的体积进行对比,发现该冰川体积减少约44.6%.  相似文献   

10.
近期气候变暖念青唐古拉山拉弄冰川处于退缩状态   总被引:15,自引:8,他引:7  
1999和2003年在念青唐古拉山冰川考察期间,采用GPS对拉弄冰川末端位置进行了测量,并将将测量结果与1970年航摄冰川末端位置进行对比分析.结果表明:1970-1999年拉弄冰川末端退缩了285m,平均年退缩量9.8m;1999-2003年拉弄冰川退缩13m,平均年退缩量3.25m.由于冰川对气候的响应有一定滞后性,近年来气候持续变暖将使拉弄冰川继续保持退缩状态.  相似文献   

11.
1993-2016年喀喇昆仑山什约克流域冰川变化遥感监测   总被引:1,自引:1,他引:0  
基于1993、2000、2016年的多景Landsat TM/ETM+/OLI影像,通过目视解译法提取冰川边界,从规模、朝向、高程带和前进冰川等多个方面分析了近20年来喀喇昆仑山什约克流域冰川面积变化特征。结果表明:近20年来研究区冰川呈微弱退缩态势,年均退缩率仅为0.05%±0.20%,其中1993-2000年退缩速率为(0.03%±0.64%)·a-1,2000-2016年退缩速率为(0.06%±0.27%)·a-1。1993-2016年什约克流域291条冰川的末端发生了前进现象,在一定程度上减小了冰川总面积退缩的幅度。此外,近20年来研究区冰川前进现象呈减弱态势。近35年来什约克流域气温显著上升,降水量亦呈增加趋势,气温的显著上升是冰川退缩的主要原因,而降水量的增加则是冰川退缩速率相对较低的主要原因。  相似文献   

12.
基于Landsat系列卫星遥感影像、 SRTM DEM和TanDEM-X DEM对喀喇昆仑山中部Shigar流域不同类型冰川的面积变化、 物质平衡进行了分析。结果表明: 1993—2016年间Shigar流域内有25条跃动冰川(面积增加1.30 km2), 68条前进冰川(面积增加0.86 km2), 50条退缩冰川(面积减少3.48 km2), 376条稳定冰川(面积减少1.34 km2)。跃动冰川的冰川长度和规模均集中在较大范围内, 前进冰川的规模略高于退缩冰川, 退缩冰川多为小规模冰川, 特大规模冰川保持稳定状态; 不同类型冰川的空间分布差异较大, 且不同海拔带内水热组合条件不一致也影响冰川运动状态。2000—2013年间, 流域内跃动冰川物质平衡为(+0.17±0.03) m w.e.·a-1, 前进冰川物质平衡为(-0.01±0.03) m w.e.·a-1, 退缩冰川物质平衡为(-0.22±0.03) m w.e.·a-1, 稳定冰川物质平衡为(-0.01±0.03) m w.e.·a-1。四类冰川表面高程变化随归一化冰川长度的变化模式以及不同海拔带内和不同坡度区间的冰川表面高程变化显示: 跃动冰川主要特征是积累区物质积累量大; 前进冰川上部物质积累并且向下运动推动冰川末端前进; 退缩冰川消融区物质亏损量大使得冰川末端退缩。  相似文献   

13.
利用"中国冰川资源及其变化调查"项目最新冰川编目成果和中国第一次冰川编目结果, 对中国叶尔羌河流域1968-2009年冰川变化进行了分析. 结果表明:叶尔羌河流域冰川总体上处于退缩状态, 面积减少了927 km2, 年平均面积减少23.2 km2, 年均面积缩小比例为0.36%·a-1, 与中国其他地区冰川退缩程度相比属于中等水平. 叶尔羌河流域不同规模冰川的退缩幅度存在差异, 小冰川大幅萎缩, 甚至消失; 规模较大的冰川相对变化幅度较小, 一些冰川出现过跃动. 从朝向分布来看, 位于南坡的冰川退缩最为严重, 而西坡较小. 冰川集中分布在海拔5 100~5 500 m和5 500~5 900 m区间, 海拔4 700~5 100 m区间的冰川面积减少最为显著. 消失冰川大多数为面积在0.2~0.5 km2的小冰川, 且朝向东北坡的冰川消失数量最多. 研究区有冰川分裂现象, 也出现了支冰川前进超覆现象, 统计表明该流域有13条冰川在前进后形成6条冰川. 1968-2009年研究区气温升高、降水增加, 总体上看, 降水增加缓解了因升温而导致的冰川退缩.  相似文献   

14.
1970—2016年阿尔金山冰川长度变化   总被引:2,自引:1,他引:1  
长度是冰川的重要几何参数,对于认识冰川动态特征和模拟冰川厚度具有重要价值。基于阿尔金山第一次和第二次冰川编目数据及Landsat OLI遥感影像,利用冰川中流线方法提取了阿尔金山1970年、2010年和2016年的冰川长度数据,并结合气象资料分析了冰川长度对气候变化的响应。结果表明:2016年阿尔金山共有冰川507条,面积272.95 km2,平均长度为1.02 km,长度为2~5 km和0.2~1 km的冰川分别构成了该山系冰川面积和数量的主体。1970—2016年阿尔金山冰川面积减少了53.07 km2(变化速率为-1.15 km2·a-1),冰川长度平均缩短了0.26 km(变化速率为-5.65 m·a-1),其中西段冰川长度相对变化速率明显快于东段,且2010—2016年冰川退缩速率明显快于1970—2010年,气温升高是导致阿尔金山冰川退缩的主要原因。冰川长度与冰川面积、周长有较强的相关性,冰川长度变化与冰川消融区面积变化及末端海拔上升有较强的正相关关系,即冰川消融区面积减少越多,冰川末端海拔上升越高,冰川末端长度的减少值也越大。  相似文献   

15.
深入了解全球变暖背景下青藏高原东南部海洋型冰川的变化趋势及其对气候变化的响应,对认识不同类型冰川对气候变化的响应方式有重要意义。根据Landsat系列遥感影像和数字高程等数据提取了青藏高原东南部雀儿山地区1987—2016年期间多年的冰川边界,并对其变化过程和特征进行了分析。结果表明:1987—2016年雀儿山地区冰川面积持续减小,变化率为(-1.69±0.87)%·a-1,为青藏高原众多山系中变化最大的之一。研究区冰川消融主要发生在规模<1 km2的小型冰川及海拔5 200 m以下的冰川消融区,其中西南方向的冰川退缩速率最大。气象数据分析结果显示,1987—2016年雀儿山地区夏季平均气温总体上升了1.58 ℃,平均升温速率为0.33 ℃?(10a)-1。由于夏季平均气温与冰川变化过程有显著的相关性,而同期年降水量无明显变化,由此推测,夏季平均气温的上升是雀儿山地区冰川快速退缩的主因。此外,相对于单纯基于光谱特征提取冰川信息,结合地形阴影模拟数据进行遥感冰川分类在一定程度上可以提高分类精度。  相似文献   

16.
在全球变暖的大背景下,我国藏南地区冰川持续退缩,冰湖不断扩张,从而引发了一系列的地质灾害问题。文章利用Landsat系列影像,在面向对象分类方法的基础上采用波段比值法和NDWI指数提取了藏南希夏邦玛峰地区1994—2018年共9期冰川和冰湖的面积。研究表明,希夏邦玛峰地区净冰川持续退缩,总体速率为(1.28±0.32)%/a,冰湖的扩张速率约为(1.88±1.07)%/a。同时,面积小于1 km2的冰川退缩极为严重,高达33.25%。其次气象再分析数据表明夏季气温和降水的增加可能是该地区净冰川退缩加快的重要原因,并且共同促进了冰湖的加速扩张,大大提高了该地区冰湖溃决的风险。  相似文献   

17.
基于GIS的玛旁雍错流域冰川地貌及现代冰川湖泊变化研究   总被引:11,自引:0,他引:11  
基于多源多时相的数字遥感影像、地形图和DEM数据,利用遥感(RS)和地理信息系统(GIS)技术,对西藏玛旁雍错流域冰川地貌类型和空间分布进行了研究,并对流域内近30 a来冰川和湖泊的变化进行分析.结果表明:1974-2003年玛旁雍错流域冰川总面积减少了7.27 km2,平均退缩速率0.24 km2·a-1;湖泊总面积减少37.58 km2,平均退缩速率1.25 km2·a-1.多时相的监测表明,冰川在加速退缩,且阳坡冰川的消融速度大于阴坡,坡度陡、面积小的冰川消融比例大于坡度缓、面积较大的冰川;湖泊面积先减少后有所增加,但总面积还是减少了,不少小湖泊消失.分析流域附近气象资料可知,气温上升和降水量减少是玛旁雍错流域内冰川消融与退缩的主要原因.  相似文献   

18.
1956—2017年河西内流区冰川资源时空变化特征   总被引:7,自引:6,他引:1  
基于修订后的河西内流区第一、 第二次冰川编目数据及2016—2017年Landsat OLI遥感影像, 对河西内流区1956—2017年冰川时空变化特征进行分析。结果表明: ①河西内流区现有冰川1 769条, 面积976.59 km2, 冰储量约49.82 km3。冰川面积以介于0.1 ~ 10 km2的冰川为主, 数量以<0.5 km2的冰川为主。祁连山是该区域冰川集中分布区, 其冰川数量、 面积和冰储量分别占该区域冰川相应总量的98.47%、 97.52%和97.53%。②疏勒河流域(5Y44)冰川数量、 面积及冰储量最多(最大), 冰川平均面积为0.81 km2, 石羊河流域(5Y41)最少(最小)。从四级流域来看, 宁掌等流域(5Y445)冰川最为发育, 冰川数量、 面积及储量均最大, 宰尔莫合流域(5Y446)冰川平均面积最大(1.80 km2), 夹道沟-潘家河流域(5Y422)最小, 仅有0.05 km2。③近60年河西内流区冰川数量减少556条, 面积减少417.85 km2, 冰储量损失20.16 km3。面积介于0.1 ~ 0.5 km2之间的冰川数量与面积减少最多(457条和 -117.49 km2), 海拔4 400 ~ 5 400 m区间是冰川面积集中退缩的区域(98.55%), 北朝向冰川面积减少最多(-219.92 km2)且冰川退缩速率最快(-3.61 km2·a-1)。④1956—2017年河西内流区各流域冰川面积均呈退缩态势, 区内冰川变化呈自西向东逐渐加快的趋势, 但有3条冰川在1986—2017年出现不同程度的前进, 气温升高是该区域冰川退缩的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号