首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
THREE-DIMENSIONAL DEFORMATION ALONG THE ALTYN TAGH FAULT ZONE AND UPLIFT OF THE ALTYN MOUNTAIN, NORTHERN TIBET  相似文献   

2.
Three dimensional seismic-reflection data from the western Niger Delta were used to investigate the segmentation and linkage of a syn-sedimentary normal fault array and to estimate the influence of a pre-existing normal fault on the geometry and growth of younger faults. The nucleation, growth and linkage of a regional (seaward-dipping) deltaic fault system were analyzed on reflectivity time-/horizon slices and vertical seismic sections. In the deep subsurface, a master fault that consists of two segments (northwestern, NW, and southeastern, SE) grew through time into a single fault by lateral tip propagation reaching a final length of about 15 km. After attaining this length, displacement along the fault system developed non-uniformly through time. The analysis of the hanging-wall sediments of the deep-seated master fault shows two different processes of vertical linkage above the NW and SE segment. The SE segment links vertically to several younger faults contemporaneously with displacement accumulation on the master fault; in contrast, fault linkage above the NW segment occurred only after an interval of master-fault inactivity connecting the deep-seated structure upwards to a single syn-sedimentary normal fault. The observed differences in fault development suggest that although multi-segment deltaic faults form single fault systems after segment linkage, individual pre-linkage characteristics can be preserved, supporting a possibly diverse upward growth and connection to younger faults in the overburden. The geological interpretations presented highlight the influence of large deep-rooted structures on the development, location and geometry of shallow deltaic faults, documenting the influence of an older structural grain on delta tectonics.  相似文献   

3.
The northern margin of the Tibetan Plateau (NMTP) is a major intracontinental Cenozoic transpressional zone that comprises a series of active strike-slip faults and thrust faults. It is important to document cumulative horizontal displacements along the NMTP in order to understand quantitatively strain partitioning in East Asia since the India–Eurasia collision. Based on an analysis of horizontal slip along major active faults, the total amount of horizontal displacements is estimated up to 700 km between the Tibetan Plateau and the Tarim Basin since the convergence of India and Eurasia. Along the western and middle segment of the Altyn Tagh fault to the northern margin of the Qaidam Basin, there are abundant evidence that show that the net displacement is 400 km since 40–35 Ma, and along the Shulenan Shan and southeast of middle Qilian Shan since 25–17 Ma, the amount of offset is 150 km. The largest horizontal slip in Qilian Shan–Hexi Corridor to the northeast of the Altyn Tagh fault is also 150 km since late Oligocene to early Miocene. It decreases to only 60 km along the Haiyuan fault (since late Miocene) and to 25 km along the Zhongwei–Tongxin fault since the Pliocene (about 5.3–3.4 Ma), at the northeast margin of the Tibetan Plateau. This clearly implies northeastward diminishing of the total horizontal displacement and temporal getting younger of the fault slip along the NMTP. However, this tendency is very complicated at different times and different segments as a result of the uplift, growth and rotation of different segments of the NMTP at different stages during the convergence of India and Eurasia.  相似文献   

4.
郯庐断裂带是中国东部板内一条规模最大的强构造变形带与地震活动断裂带,其断裂结构与历史地震活动性具明显的分段活动性。文中通过沿郯庐断裂带中南段的历史地震活动性、精定位背景地震活动性与震源机制解分析,讨论了断裂带的深部几何结构与现今活动习性。现今地震活动在中段主要沿1668年郯城MS 8地震破裂带线性分布,线性条带在泗洪-诸城间延伸约340 km长,为1668年地震长期缓慢衰减的余震序列活动。大震地表破裂遗迹与精定位地震分布都揭示出郯庐断裂带中段的两条全新世活动断裂昌邑-大店断裂与安丘-莒县断裂以右阶斜列的形式共同参与了1668年郯城MS 8地震破裂。精定位震源剖面刻画出两条断裂结构面呈高角度相背而倾,其中昌邑-大店断裂倾向SE,安丘-莒县断裂倾向NW,两条断裂在深部没有合并汇聚。余震活动所代表的1668年地震震源破裂带是郯庐断裂带中现今尚未闭锁的安全段落,对应于高b值段。而未发生破裂的安丘以北段,小震活动不活跃,b值低,现今可能已成为应力积累的闭锁段。震源机制解揭示的断裂应力状态在中段以NE向主压应力为主,表现为右旋走滑活动性质,且存在少量正断分量,南段转为以NEE至近EW向为主,存在少量的逆冲分量。在中段与南段的转折处宿迁-嘉山段,主压应力方向垂直断裂带走向呈NWW向,反映出局部以挤压为主的应力特征,其中泗洪-嘉山段也是历史地震未破裂段,现今小震活动不活跃,因此该段可能更易于应力积累。精定位小震活动在郯庐断裂与北西向断裂相交汇处聚集,反映出北西向断裂的新活动性,以及郯庐断裂带现今的逆冲作用。在断裂带南端,精定位背景地震活动沿与其相交汇的襄樊-广济断裂带东段呈北西向线性分布,表明了该段的现今活动性。  相似文献   

5.
Quantitative analysis of the kinematics of the active faults distributed around the Qinghai-Tibetan Plateau is critical to understand current tectonic processes of the plateau. Chronological analysis, based on the comparison among regional climate and geomorphology, digital photogrammetry, offset landforms, and the tectonics were adopted in this study on the Xianshuihe fault in the eastern Tibetan plateau. Two or more offset-age data were obtained for each segment of the Xianshuihe and the Yunongxi faults. The offset landforms, including river terrace, alluvial fan and glacial moraine, provide constraints for the late Quaternary slip rate of the Xianshuihe fault. The left-lateral strike slip rate of the Xianshuihe fault decreases from 17 mm/a on the northwest segment to 9.3 mm/a on the southeast segment. Regarding the Xianshuihe fault zone and its adjacent blocks as a regional tectonic system, vector analysis was used to quantitatively analyze the longitudinal kinematical transformation and transversal slip partitioning on the fault zone in terms of the kinematical parameters of the main faults within the zone. The results show that there is a distributed vertical uplift at a rate of 6.1 mm/yr caused by shortening across the Gongga Mountains region. Based on these results, we established a model of the slip partitioning for the southeastern segment of the Xianshuihe fault zone.  相似文献   

6.
In this paper we determine the structure and evolution of a normal fault system by applying qualitative and quantitative fault analysis techniques to a 3D seismic reflection dataset from the Suez Rift, Egypt. Our analysis indicates that the October Fault Zone is composed of two fault systems that are locally decoupled across a salt-bearing interval of Late Miocene (Messinian) age. The sub-salt system offsets pre-rift crystalline basement, and was active during the Late Oligocene-early Middle Miocene. It is composed of four, planar, NW–SE-striking segments that are hard- linked by N–S-striking segments, and up to 2 km of displacement occurs at top basement, suggesting that this fault system nucleated at or, more likely, below this structural level. The supra-salt system was active during the Pliocene-Holocene, and is composed of four, NW–SE-striking, listric fault segments, which are soft-linked by unbreached relay zones. Segments in the supra-salt fault system nucleated within Pliocene strata and have maximum throws of up to 482 m. Locally, the segments of the supra-salt fault system breach the Messinian salt to hard-link downwards with the underlying, sub-salt fault system, thus forming the upper part of a fault zone composed of: (i) a single, amalgamated fault system below the salt and (ii) a fault system composed of multiple soft-linked segments above the salt. Analysis of throw-distance (T-x) and throw-depth (T-z) plots for the supra-salt fault system, isopach maps of the associated growth strata and backstripping of intervening relay zones indicates that these faults rapidly established their lengths during the early stages of their slip history. The fault tips were then effectively ‘pinned’ and the faults accumulated displacement via predominantly downward propagation. We interpret that the October Fault Zone had the following evolutionary trend; (i) growth of the sub-salt fault system during the Oligocene-to-early Middle Miocene; (ii) cessation of activity on the sub-salt fault system during the Middle Miocene-to-?Early Pliocene; (iii) stretching of the sub- and supra-salt intervals during Pliocene regional extension, which resulted in mild reactivation of the sub-salt fault system and nucleation of the segmented supra-salt fault system, which at this time was geometrically decoupled from the sub-salt fault system; and (iv) Pliocene-to-Holocene growth of the supra-salt fault system by downwards vertical tip line propagation, which resulted in downward breaching of the salt and dip-linkage with the sub-salt fault system. The structure of the October Fault Zone and the rapid establishment of supra-salt fault lengths are compatible with the predictions of the coherent fault model, although we note that individual segments in the supra-salt array grew in accordance with the isolated fault model. Our study thereby indicates that both coherent and isolated fault models may be applicable to the growth of kilometre-scale, basin-bounding faults. Furthermore, we highlight the role that fault reactivation and dip-linkage in mechanically layered sequences can play in controlling the three-dimensional geometry of normal faults.  相似文献   

7.
The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight Ms ≥ 7.0 earthquakes. The seismic risk of the Xianshuihe fault zone is a large and realistic threat to the western Sichuan economic corridor. Based on previous studies, we carried out field geological survey and remote sensing interpretation in the fault zone. In addition, geophysical surveys, trenching and age-dating were conducted in the key parts to better understand the geometry, spatial distribution and activity of the fault zone. We infer to divide the fault zone into two parts: the northwest part and the southeast part, with total eight segments. Their Late Quaternary slip rates vary in a range of 11.5 mm/a –(3±1) mm/a. The seismic activities of the Xianshuihe fault zone are frequent and strong, periodical, and reoccurred. Combining the spatial and temporal distribution of the historical earthquakes, the seismic hazard of the Xianshuihe fault zone has been predicted by using the relationship between magnitude and frequency of earthquakes caused by different fault segments. The prediction results show that the segment between Daofu and Qianning has a possibility of Ms ≥ 7.0 earthquakes, while the segment between Shimian and Luding is likely to have earthquakes of about Ms 7.0. It is suggested to establish a GPS or In SAR-based real-time monitoring network of surface displacement to cover the Xianshuihe fault zone, and an early warning system of earthquakes and post seismic geohazards to cover the major residential areas.  相似文献   

8.
楚全芝 《地质学报》2009,83(9):1221-1232
中卫断裂带在晚更新世以来的左旋走滑运动中,先存的挤压逆掩、逆冲断裂带发生了分化。某些断层或断层段继续活动;另一些先存断层在晚更新世以来不再活动;此外,还发育了一些新断层。因此,我们把中卫断裂带划分出三种断层类型,即新生断层、继承性断层和遗弃断层。新生断层就是指:在某次构造运动中新发育的断层。具体到中卫断裂带来说,就是指晚更新世以来新发育的断层。这类断层是中卫断裂带左旋走滑运动的产物。在早期的挤压逆断运动中这些断层并不存在。通过对新生断层的调查研究可以获得以下资料。①反演晚更新世以来的构造应力场;②确定晚期构造运动的起始时代;③估算断层的断错幅度和速率。继承性断层就是指:在早期的挤压逆掩(冲)活动中就已经存在的断层或断层段,在晚期的左旋走滑运动中继续活动。继承性断层的最大优点是包含了较多的信息量。①继承性断层记录了多期构造运动的信息;②继承性断层是中卫断裂带多期活动的见证;③继承性断层是研究构造演化过程的重要依据。遗弃断层就是指:某些断层或断层段在早期构造运动中是主体断裂带的一部分,其活动习性与主体断裂带基本一致。当早期的构造运动终止之后,这些断层或断层段在后继的构造运动中不再活动,也就是说这些断层被遗弃。遗弃断层的作用就在于它保留了早期构造运动的大部或全部信息,这些信息基本上没有受到后期构造运动的干扰破坏。因而通过对遗弃断层的研究可以获得早期构造运动的主要信息。①确定早期构造运动终止的年代;②反演早期构造应力场方向;③研究断层的滑动方式,即粘滑和蠕滑。  相似文献   

9.
The Main Recent Fault of the Zagros Orogen is an active major dextral strike-slip fault along the Zagros collision zone, generated by oblique continent–continent collision of the Arabian plate with Iranian micro-continent. Two different fault styles are observed along the Piranshahr fault segment of the Main Recent Fault in NW Iran. The first style is a SW-dipping oblique reverse fault with dextral strike-slip displacement and the second style consists of cross-cutting NE-dipping, oblique normal fault dipping to the NE with the same dextral strike-slip displacement. A fault propagation anticline is generated SW of the oblique reverse fault. An active pull-apart basin has been produced to the NE of the Piranshahr oblique normal fault and is associated with other sub-parallel NE-dipping normal faults cutting the reverse oblique fault. Another cross-cutting set of NE–SW trending normal faults are also exist in the pull-apart area. We conclude that the NE verging major dextral oblique reverse fault initiated as a SW verging thrust system due to dextral transpression tectonic of the Zagros collision zone and later it has been overprinted by the NE-dipping oblique normal fault producing dextral strike-slip displacement reflecting progressive change of transpression into transtension in the collision zone. The active Piranshahr pull-apart basin has been generated due to a releasing damage zone along the NW segment of the Main Recent Fault in this area at an overlap of Piranshahr oblique normal fault segment of the Main Recent Fault and the Serow fault, the continuation of the Main Recent Fault to the N.  相似文献   

10.
THE GROWTH MODE OF ALTUN FAULT AND IT'S DYNAMICS  相似文献   

11.
张家口一蓬莱断裂带是一条北西西向活动断裂带。本文选取ETM+光学影像和SRTM高程影像作为主要数据源,结合研究区已有地质资料研究发现该带断裂构造的北西西向线性特征明显。从水系分布和错断地形等地貌标志判断,该断裂具有左阶组合样式和左行走滑活动特征。据遥感影像综合特征,可将该带分为张家口段、延庆-怀来段和北京一天津段,影像特征分段性显著,并与断裂带的分段性一致。研究结果表明,张家口-蓬莱断裂具有左行走滑的运动学特征,限制或错断北北东或北东向断裂,并且控制该区域的左阶雁列式第四纪盆地群和第四纪冲洪积物的分布。该断裂带各段对不同规模的水系分布和形态影响比较大,且北京-天津地区的华北平原段断裂对第四纪冲洪积扇和沿海地区的贝壳堤的形态和分布有一定的控制作用。地球物理深部数据和野外地质考察资料也证实了遥感解泽的结果,证明遥感技术在探查断裂构造空间展布和活动性鉴定中有着广泛的应用前景。  相似文献   

12.
基于实验结果讨论断层破裂与强震物理过程的若干问题   总被引:9,自引:0,他引:9  
基于断层摩擦滑动实验、含凹凸体断层的变形破坏实验、断层撕裂扩展的实验、交叉断层的变形实验等多种实验结果并结合前人的工作 ,讨论了与断层破裂与强震物理过程相关的若干问题。研究表明 ,断层的整体滑动引起其两侧块体弹性应变的释放 ,是强震发生的原因 ,因此构造活动区具有较大尺度、结构连续且简单、介质均匀的断层 (或断层段 )是产生强震必备的构造条件 ,深部新生断层(盲断层 )向上撕裂扩展产生强震 ,尚需“弱层”提供“解耦”条件以便断层发生整体滑动。强震孕育过程中包含着凹凸体的破裂 ,断层面上凹凸体的尺度、强度及数量决定着前震活动的特征、强震动态破裂过程以及前兆现象。由断层分割的块体通过边界断层的交替滑动、以“框动”的方式运动 ,因此块体周边的断层上强震活动具有交替性。  相似文献   

13.
We present in this paper some new evidence for the change during the Quaternary in kinematics of faults cutting the eastern margin of the Tibetan Plateau. It shows that significant shortening deformation occurred during the Early Pleistocene, evidenced by eastward thrusting of Mesozoic carbonates on the Pliocene lacustrine deposits along the Minjiang upstream fault zone and by development of the transpressional ridges of basement rocks along the Anninghe river valley. The Middle Pleistocene seems to be a relaxant stage with local development of the intra-mountain basins particularly prominent along the Minjiang Upstream and along the southern segment of the Anninghe River Valley. This relaxation may have been duo to a local collapse of the thickened crust attained during the late Neogene to early Pleistocene across this marginal zone. Fault kinematics has been changed since the late Pleistocene, and was predominated by reverse sinistral strike-slip along the Minshan Uplift, reverse dextral strike-slip on the Longmenshan fault zone and pure sinistral strike-slip on the Anninghe fault. This change in fault kinematics during the Quaternary allows a better understanding of the mechanism by which the marginal ranges of the plateau has been built through episodic activities.  相似文献   

14.
3D field data on mesoscale normal faults were collected to examine the geometries and growth of faults in multilayer systems. Observation and analysis of the fractures include the collection of geometric attributes such as fault dips and fault zone thicknesses, detailed mapping in cross-sections and plan views, and the construction of individual and cumulative displacement profiles. Fault zone growth is consistent with a “coherent model” and is strongly influenced by the multilayer system. In the limestone layers, faults grew in several steps, including opening and frictional sliding on 80° dipping segments. Faulting in clay layers was in the form of 40° dipping faults and sub-horizontal faults, the latter being mostly early features developed under the same extensional regime as normal faults and disturbing the fault architecture. The fault zone thickness increases with the limestone thickness and the presence of sub-horizontal faults in clay beds. Numerous connections occur in clay units. The moderate (≈0.08) and low (<0.03) mean displacement gradients in clays and in limestones respectively indicate that the vertical propagation of faults is inhibited in clay layers. Analysis of displacement along fault strike indicates that a 0.08 displacement gradient is associated with the horizontal propagation of fault segments in limestones. According to this value, the fault zones are much longer than expected. It is associated with ‘flat topped’ displacement profiles along some fault segments and connection between segments to form complex fault zones.  相似文献   

15.
Mapping the nucleation and 3D fault tip growth of the active Osaka-wan blind thrust provides an opportunity to asses how reactivated thrusts build slip from preexisting faults and the threat they pose as sources of large earthquakes. Analysis of folded growth strata, based on 2D trishear inverse modeling allows a range of best-fit models of the evolution of slip and propagation of the fault to be defined. The depth of the fault tip at 1200 ka varies between ∼1.5–4.5 km, suggesting the fault grew upward from high in the crust, and that it is reactivated. From its onset at ∼1500 ka, the fault grew rapidly along strike in ∼300 ky, and upwards with a P/S ratio of 2.5–3.0, but variable fault slip in space and time. Shallower depths of the fault tip at initiation and thinner basin fill correlates with slower propagation with time, contradicting models that argue for sediments as inhibitors of fault growth. Results also suggest the displacement profile of the currently active thrust is offset from its predecessor, assuming shallower depths to the original fault correlate with greater displacement in its prior history. These results suggest reactivated faults may accrue slip differently than newly developed ones, based on the history of upward fault propagation.  相似文献   

16.
琼东南盆地断裂活动性定量计算及其发育演化模式   总被引:1,自引:0,他引:1  
在地震剖面解释的基础上,运用断层活动速率法和位移-距离法对琼东南盆地主要断裂系统的活动性进行了定量计 算。结果表明,断裂的活动性与盆地的演化阶段相对应,同时可以在同裂陷阶段划分出始新世-早渐新世裂陷幕和晚渐新 世断坳转换幕,这两幕裂陷控制了盆地深部的基本构造格局。单条断层在早渐新世至晚渐新世期间断裂主要活动中心存在 由东向西迁移的过程,盆地断裂系统活动中心在晚渐新世至早中新世也存在由东向西迁移的过程,盆地内规模较大的复合 断裂带具有区段式活动的特征。将盆地内断裂系统发育模式总结为两种:以6号和11号断裂带为代表的简单生长模型,断裂 系统发育演化过程中表现为单一区段断层独立生长的特征,断层简单地由中间向两侧生长,断层位移距离曲线自始至终为 半椭圆型,且最大位移大致位于断层中部;以2号和5号断裂带为代表的生长连通型生长模式,断裂带由多条区段式活动的 断层生长连接形成,其生长发育过程表现为沿断层面纵向上最大滑移量由各个区段的中心向各个区段交汇处迁移,由此各 个区段断端破裂扩展,最终相互连接而形成一条大型断裂带。  相似文献   

17.
李细光  姚运生 《地学前缘》2003,10(4):365-371
在分析研究前人资料的基础上,结合野外实际工作和室内研究,从三峡九湾溪断裂带内各段断层泥的特征研究分析出发,探讨了九湾溪断裂带的分段性,结果发现:九湾溪断裂带存在明显的分段性,中段和南段地震活动频度和强度大,应变强度高,断层活动以粘滑为主,其分维值在2.2~2.6之间,石英碎砾表面发育各种撞击揳入现象、线状擦痕等显微构造;北段地震活动频度和强度较小,应变强度弱,断层活动以稳滑为主,兼具粘滑,其分维值在2.4~2.8之间,石英颗粒多为磨圆球砾,其刻蚀形貌以裂而不破现象为代表;中段是九湾溪断裂带最有可能发生诱发地震的地段和我们的重点监测地段。  相似文献   

18.
Altyn Tagh fault controls the deformation characteristics of the northern margin of the Qinghai-Tibet Plateau.The sinistral slip rate of the eastern segment of the fault reduces gradually where the reduction transforms into the deformation within Qilian Mountain,forming a series of thrust faults and strike-slip faults.Among them,the Yema River-Daxue Mountain fault is one of the important structural transform faults in the study area.Based on the differences of the geometrical characteristics and activities,the fault is divided into four segments,the Yema River segment,the Shibandun segment,the Liushapo segment and the Baishitougou segment,among which the former three are Holocene active faults,and the Baishitougou segment belongs to late Pleistocene fault.The excavated trenches imply a total of 6 paleoearthquake events,and at least 4 events have occurred during Holocene,whose occurrence times are 8300±700 yr BP,6605±140 yr BP,4540±350 yr BP,2098±47 yr BP,respectively.The recurrence interval is 2600±600 yr BP that is close to the lapsed time of the last one,2098±47 yr BP,which suggests that the Yema River-Daxue Mountain fault is in a high risk of major earthquakes in the future.The vertical coseismic displacements of the four Holocene paleoearthquake events are 100 cm,42 cm,40 cm and 50 cm,respectively,the horizontal coseismic displacements are 5 m,4.5-5.5 m,5-8 m and 4-5.5 m,separately,and then the reference magnitude of the paleoearthquake events is conjectured to be M7.6±0.1.  相似文献   

19.
Propagation of brittle failure triggered by magma in Iceland   总被引:1,自引:1,他引:1  
Tatiana Tentler   《Tectonophysics》2005,406(1-2):17-38
The architectures of normal faults at a divergent plate boundary in Iceland are examined by combining surface fault observations with cross-sectional studies at different structural levels to constrain a model of failure propagation. The structures of Holocene faults defining graben are analyzed to characterize the upper-most parts of ruptures. The shapes of faults resulting from growth and interaction of separate segments are used to better understand failure propagation inferred to occur in the intervening stages of displacement accumulation and lateral propagation. Pleistocene faults in volcanic sequences exhumed from 800 to 1000 m are analyzed to characterize deeper portions of failure that occurred beneath the central rift zone. Tertiary dikes exhumed from depths of 1300–1500 m are studied to infer how magma controls the failure initiation. Field studies in combination with a literature review indicate that the planar ruptures are likely to initiate at depth as magma-filled vertical fractures and lengthen upward and laterally. As failures propagate to higher crustal levels, they are likely to change into inclined normal faults. At near-surface levels, faults link with cooling joints and dilational fractures propagating downward from the surface. It is suggested that the inferred stages of fault propagation are characteristic for normal faults developed at spreading ridges.  相似文献   

20.
Dating of the Karakorum Strike-slip Fault   总被引:6,自引:0,他引:6  
This paper mainly discusses the timing of the Karakorum strike-slip fault, and gives a brief introduction of its structures, offset, and deformational style. This fault strikes NNW-SSE. Asymmetrical folds, stretching lineation, S-C fabrics, feldspar and quartz σ-porphyroclasts, domino structure, shear cleavages and faults in the fault zone are products of tectonic movements. They all indicate a dextral slip sense of faulting. Mylonitic bands are widely developed along this fault. Phengite appears, indicating rather high deformational pressure. Geochronological data indicate that the Karakorum strike-slip faulting occurred from 6.88±0.36 to 8.75±0.25 Ma. The cumulative displacement from Muztag Ata to Muji is about 135 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号