首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In the western part of Madagascar, the Morondava Basin shows the Malagasy Karoo series, made of Late Carboniferous-Mid-Permian (Sakoa), Late Permian-Mid-Triassic (Sakamena) and Late Triassic-Mid-Jurassic (Isalo) sequences. The sedimentary facies are mainly aerial and clastic in the series, and the marine conditions are fully established after Lower Jurassic times, when the strait between Africa and Madagascar was flooded.The Karoo basins where these series were deposited are mainly hemi-grabens. Their filling proceeded from west to east and from south to north. Distinction between the southern and northern part of the Morondava Basin suggests that development of the basin was controlled by old crustal weakness zones trending north-northwest-south-southeast and north-northeast-south-southwest.  相似文献   

2.
The depositional megasequence of the Tanzanian Karoo resulted from an intracratonic phase of sedimentation prevailing during the maximum extension of Pangea in Late Palaeozoic and Triassic times. Karoo rocks are contained in a number of basins, extending from northeastern-most Tanzania to Lake Nyasa and beyond into neighbouring countries. The type section of the Tanzanian Karoo is the Songea Group of the Ruhuhu Basin, situated at the NE-shoulder of the Nyasa Rift. The succession, which reaches a thickness of more than 3000 m, is of Late Carboniferous to Mid-Triassic age. It exhibits five distinctive sequences, each commencing with rudaceous sediments and fining up towards the top. A sixth sequence of Middle to Late Triassic age is recognized in the Selous Basin, NE of the Ruhuhu Basin. The climate ranged from cold, semi-arid conditions in the Stephanian and Asselian to generally warm to hot climates, with fluctuating precipitation in the remaining Permian and Triassic. A marked peak in precipitation is evidenced in the Early Triassic. Each of the sedimentary sequences reflects tectonic movements related to the formation of non-volcanic rift systems during the Permian, and to detachment faults and crustal foundering during the Triassic. The intracratonic Karoo rifts were part of the Malagassy Trough, a large chasm emanating from the Tethyan margin of Gondwana in early Permian times. The Karoo rifts were terminated by their transformation to a pericratonic, passive margin in the Early Jurassic.  相似文献   

3.
Between eastern Africa and the Indian Ocean, Madagascar was a part of the Gondwana at the end of the Proterozoic. Its evolution, from the Carboniferous through to the present times, displays successive stages of the Gondwana disintegration.The original location of Madagascar, close to present Kenya, is deduced from sedimentological, structural and palæomagnetic data. During Permo-Triassic times, it was submitted to a northeast-southwest regional extension, which resulted in the opening of the Karoo Basins. During the Mid-Late Jurassic, opening of the Somalian and Mozambican Oceanic Basins was accompanied by the translation of Madagascar along a north-south trending transform fault, located along the present Davie Ridge. The Late Cretaceous was characterised in the island by an acceleration of the subsidence in the coastal basins and by an important magmatic, essentially effusive, activity. This marked the beginning of a northeast-southwest extension, opening of the Mascarene Oceanic Basin and separation of India from Madagascar. Since the Neogene up to present times, another extensional regime developed, as in eastern Africa, characterised by a roughly east-west extensional horizontal direction, which results in the opening of faulted basins and the emission of Pliocene-Quaternary alkaline magmas.  相似文献   

4.
《International Geology Review》2012,54(11):1417-1442
ABSTRACT

The Ordos Basin, situated in the western part of the North China Craton, preserves the 150-million-year history of North China Craton disruption. Those sedimentary sources from Late Triassic to early Middle Jurassic are controlled by the southern Qinling orogenic belt and northern Yinshan orogenic belt. The Middle and Late Jurassic deposits are received from south, north, east, and west of the Ordos Basin. The Cretaceous deposits are composed of aeolian deposits, probably derived from the plateau to the east. The Ordos Basin records four stages of volcanism in the Mesozoic–Late Triassic (230–220 Ma), Early Jurassic (176 Ma), Middle Jurassic (161 Ma), and Early Cretaceous (132 Ma). Late Triassic and Early Jurassic tuff develop in the southern part of the Ordos Basin, Middle Jurassic in the northeastern part, while Early Cretaceous volcanic rocks have a banding distribution along the eastern part. Mesozoic tectonic evolution can be divided into five stages according to sedimentary and volcanic records: Late Triassic extension in a N–S direction (230–220 Ma), Late Triassic compression in a N–S direction (220–210 Ma), Late Triassic–Early Jurassic–Middle Jurassic extension in a N–S direction (210–168 Ma), Late Jurassic–Early Cretaceous compression in both N–S and E–W directions (168–136 Ma), and Early Cretaceous extension in a NE–SW direction (136–132 Ma).  相似文献   

5.
四川盆地具有演化历史长、沉积盖层厚度大、油气资源丰富等特点,是我国大型含油气盆地之一。上扬子地区中、晚二叠世之间的峨眉山地幔柱活动改变了四川盆地古地理格局,造成地壳的快速抬升,盆地西南地区地壳抬升幅度最大,呈现古剥蚀高地,往北东方向的影响逐渐减弱,从而导致沉积环境自西南向北东由单一的海相依次转变为陆相、海陆过渡相至海相沉积。本文讨论了峨眉山大火成岩省的形成过程及对四川盆地油气储层的影响,认为峨眉山大火成岩省对四川盆地油气储层的影响主要体现在两个阶段、3种影响作用方式。两个阶段是指中二叠世末期和晚二叠世—早三叠世时期。3种方式是指峨眉山地幔柱导致的地壳抬升对下伏中二叠统灰岩储层的改造作用,表现为地幔柱核心区(大理—永仁)中二叠世地层发育风化壳岩溶型储层;峨眉山大火成岩省的火山喷发旋回对火山岩储层的空间发育的控制作用,发育了火山岩储层;峨眉山地幔柱活动控制的晚二叠世盆地构造格架对上覆沉积储层的控制作用,导致了峨眉山地幔柱外围伸展区(川东北—西北)发育海槽,控制了晚二叠世礁滩相沉积的发育等。峨眉山大火成岩省的形成过程不仅形成了优质的火山岩储层,同时也影响了沉积岩相的空间分布、改造了下伏碳酸盐岩的孔隙特征,进而控制了四川盆地的油气储层。  相似文献   

6.
Increasing evidence of Permian volcanic activity along the South American portion of the Gondwana proto-Pacific margin has directed attention to its potential presence in the stratigraphic record of adjacent basins. In recent years, tuffaceous horizons have been identified in late Early Permian–through Middle Permian (280–260 Ma) sections of the Paraná Basin (Brazil, Paraguay, and Uruguay). Farther south and closer to the magmatic tract developed along the continental margin, in the San Rafael and Sauce Grande basins of Argentina, tuffs are present in the Early to Middle Permian section. This tuff-rich interval can be correlated with the appearance of widespread tuffs in the Karoo Basin. Although magmatic activity along the proto-Pacific plate margin was continuous during the Late Paleozoic, Choiyoi silicic volcanism along the Andean Cordillera and its equivalent in Patagonia peaked between the late Early Permian and Middle Permian, when extensive rhyolitic ignimbrites and consanguineous airborne tuffaceous material erupted in the northern Patagonian region. The San Rafael orogenic phase (SROP) interrupted sedimentation along the southwestern segment of the Gondwana margin (i.e., Frontal Cordillera, San Rafael Basin), induced cratonward thrusting (i.e., Ventana and Cape foldbelts), and triggered accelerated subsidence in the adjacent basins (Sauce Grande and Karoo) located inboard of the deformation front. This accelerated subsidence favored the preservation of tuffaceous horizons in the syntectonic successions. The age constraints and similarities in composition between the volcanics along the continental margin and the tuffaceous horizons in the San Rafael, Sauce Grande, Paraná, and Karoo basins strongly suggest a genetic linkage between the two episodes. Radiometric ages from tuffs in the San Rafael, Paraná, and Karoo basins indicate an intensely tuffaceous interval between 280 and 260 Ma.  相似文献   

7.
Increasing evidence of Permian volcanic activity along the South American portion of the Gondwana proto-Pacific margin has directed attention to its potential presence in the stratigraphic record of adjacent basins. In recent years, tuffaceous horizons have been identified in late Early Permian–through Middle Permian (280–260 Ma) sections of the Paraná Basin (Brazil, Paraguay, and Uruguay). Farther south and closer to the magmatic tract developed along the continental margin, in the San Rafael and Sauce Grande basins of Argentina, tuffs are present in the Early to Middle Permian section. This tuff-rich interval can be correlated with the appearance of widespread tuffs in the Karoo Basin. Although magmatic activity along the proto-Pacific plate margin was continuous during the Late Paleozoic, Choiyoi silicic volcanism along the Andean Cordillera and its equivalent in Patagonia peaked between the late Early Permian and Middle Permian, when extensive rhyolitic ignimbrites and consanguineous airborne tuffaceous material erupted in the northern Patagonian region. The San Rafael orogenic phase (SROP) interrupted sedimentation along the southwestern segment of the Gondwana margin (i.e., Frontal Cordillera, San Rafael Basin), induced cratonward thrusting (i.e., Ventana and Cape foldbelts), and triggered accelerated subsidence in the adjacent basins (Sauce Grande and Karoo) located inboard of the deformation front. This accelerated subsidence favored the preservation of tuffaceous horizons in the syntectonic successions. The age constraints and similarities in composition between the volcanics along the continental margin and the tuffaceous horizons in the San Rafael, Sauce Grande, Paraná, and Karoo basins strongly suggest a genetic linkage between the two episodes. Radiometric ages from tuffs in the San Rafael, Paraná, and Karoo basins indicate an intensely tuffaceous interval between 280 and 260 Ma.  相似文献   

8.
柴达木盆地侏罗系陆相地层记录了该时期一系列重大的构造-气候-环境耦合演化事件,然而针对该套地层的古气 候、古风化作用等方面研究还很薄弱。为了恢复柴达木盆地侏罗纪时期的古气候和古环境特征,文章研究对柴北缘大煤沟侏 罗系标准剖面的沉积岩样品开展了全岩主、微量元素测试,综合采用多种化学风化指数判定柴达木盆地侏罗纪古气候条件及 演变过程。元素比值(Rb/Sr、K/Na、Na/Al 和Na/Ti)和化学风化指数(CIA、CIW、PIA 和ICV)均显示,柴达木盆地侏罗纪化学风 化过程和古气候演化过程可划分为4 个阶段:早侏罗世早-中期和中侏罗世中期,化学风化作用强烈,古气候处于温带-亚热 带温暖、潮湿气候条件;早侏罗世晚期和中侏罗世晚期-晚侏罗世,受到区域降水减少影响,盆地化学风化作用显著减弱,整体 处于干旱、半干旱环境。以上结果与前人基于沉积物和植物群面貌研究得出的古气候变化过程相吻合,为盆地及区域陆相侏 罗纪古气候研究提供了相对完整而连续的地球化学证据和参考。  相似文献   

9.
柴达木盆地侏罗系陆相地层记录了该时期一系列重大的构造—气候—环境耦合演化事件,然而针对该套地层的古气 候、古风化作用等方面研究还很薄弱。为了恢复柴达木盆地侏罗纪时期的古气候和古环境特征,文章研究对柴北缘大煤沟侏 罗系标准剖面的沉积岩样品开展了全岩主、微量元素测试,综合采用多种化学风化指数判定柴达木盆地侏罗纪古气候条件及 演变过程。元素比值(Rb/Sr、K/Na、Na/Al 和Na/Ti)和化学风化指数(CIA、CIW、PIA 和ICV)均显示,柴达木盆地侏罗纪化学风 化过程和古气候演化过程可划分为4 个阶段:早侏罗世早—中期和中侏罗世中期,化学风化作用强烈,古气候处于温带—亚热 带温暖、潮湿气候条件;早侏罗世晚期和中侏罗世晚期—晚侏罗世,受到区域降水减少影响,盆地化学风化作用显著减弱,整体 处于干旱、半干旱环境。以上结果与前人基于沉积物和植物群面貌研究得出的古气候变化过程相吻合,为盆地及区域陆相侏 罗纪古气候研究提供了相对完整而连续的地球化学证据和参考。  相似文献   

10.
It generally is assumed that the Early Permian Gondwana deglaciation in South Africa started with a collapse of the marine ice‐sheet. The northeast part of the Karoo Basin became ice‐free as a result of this collapse. The deglaciation here probably took place under temperate glacial conditions. Three glacial phases have been identified. Phase 1: the marine ice retreat of 400 km over the northeast Karoo Basin, which may have been completed over a few thousand years. The glaciers grounded in the shallower areas around the shore of the basin. Phase 2: the smaller, now mainly continental ice‐sheet here re‐stabilised and remained more or less stationary for several tens of thousand years. During this phase, between 50 and 200 m of massive glaciomarine mud with dropstones accumulated in the open, marine basin that became ice‐free during Phase 1. Isostatic uplift, as a response to the first rapid deglaciation phase, can be traced in the inland part of the region. Phase 3: the final deglaciation may have taken 10 to 20 kyr. After this time no new ice sheet was built up over southern Africa. The entire Early Permian deglaciation of the northeast Karoo Basin was completed within thousands rather than millions of years. Phases 1 and 3 had lengths similar to typical Quaternary deglaciations, whereas Phase 2 was a long, stable phase, more similar to a full Quaternary glaciation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
利用二维地震和钻井、测井资料探讨了北波拿巴盆地东北部侏罗纪各时期的古地貌和沉积相特征。整个侏罗纪时期,研究区整体处于裂陷作用的构造环境,发育由陆相至海相的5个三级层序。早侏罗世早期的古地貌主要受控于北西向构造格局,沉积中心主要是北西走向的凹陷和向斜。早侏罗世晚期开始,北东向构造开始发育,同时盆地整体剧烈沉降,北西和北东走向的构造单元发生切割和冲突,导致其内部的构造分区十分零碎。中侏罗世末期盆地北部发生大面积抬升形成Callovian不整合,之后的构造活动比较稳定,同时北东向构造基本形成,研究区进入缓慢拗陷时期。在此构造演化背景下,北波拿巴盆地东北部在早—中侏罗世主要是陆相的河流相和冲积扇沉积,中侏罗世主要是海陆过渡相的扇三角洲和三角洲沉积,而晚侏罗世则主要是浅海和滨岸沉积。  相似文献   

12.
柳河盆地中生代地层发育有中侏罗统侯家屯组,下白垩统果松组、鹰嘴砬子组、林子头组、下桦皮甸子组和亨通山组。主要岩石类型为碎屑岩、火山碎屑沉积岩、火山碎屑岩和熔岩,沉积相为扇三角洲-湖泊相。根据岩性变化和岩相组合,将下白垩统划分为13个三级层序和8种充填类型。根据盆地构造和层序特征,划分为5个构造发育阶段,分别是中侏罗世初始凹陷阶段、晚侏罗世抬升剥蚀阶段和早白垩世的3个火山喷发-沉降阶段。柳河盆地是一个受走滑张扭-走滑压扭机制控制的走滑伸展盆地。  相似文献   

13.
松辽盆地北部隐伏二叠系和侏罗系的初步研究   总被引:9,自引:17,他引:9  
据50余口钻井揭露,松辽盆地北部隐伏的二叠系自下而上称杜尔伯特组(磨拉石)、一心组(残留海盆)、林甸组(火山弧)和四站组(大湖盆),是海西期阿尔泰型(增生弧型)造山带发育的记录,构造线为北东东向。侏罗系(主体为中侏罗统)大庆群由下部碎屑岩和上部蚀变火山岩组成,是古缝合线活化控制发育的燕山期陆内造山作用的磨拉石建造,构造线仍为北东东向,故侏罗系自内蒙东延入黑龙江省中-西部。晚侏罗世时松辽地区的磨拉石盆地闭合,中-酸性岩浆侵入活动仍十分活跃。据新的同位素年龄、化石和构造线方向等证据将火石岭组、沙河子组和营城组归为早白垩世早期,是北东向构造控制发育的松辽盆地断陷阶段的记录。文章列述了典型钻孔所见二叠系和侏罗系的岩石序列和地层分布,分析了其沉积—构造背景和演化,提出松辽盆地的基底是海西期增生弧型造山带,盆地早期的断陷伸展和火山作用是燕山造山带坍塌的地表反映。在此基础上讨论了早白垩世北东向新生构造在区域构造演化中的意义,探讨了前白垩系的油气远景。  相似文献   

14.
In this paper, we summarize results of studies on ophiolitic mélanges of the Bangong–Nujiang suture zone (BNSZ) and the Shiquanhe–Yongzhu–Jiali ophiolitic mélange belt (SYJMB) in central Tibet, and use these insights to constrain the nature and evolution of the Neo-Tethys oceanic basin in this region. The BNSZ is characterized by late Permian–Early Cretaceous ophiolitic fragments associated with thick sequences of Middle Triassic–Middle Jurassic flysch sediments. The BNSZ peridotites are similar to residual mantle related to mid-ocean-ridge basalts (MORBs) where the mantle was subsequently modified by interactions with the melt. The mafic rocks exhibit the mixing of various components, and the end-members range from MORB-types to island-arc tholeiites and ocean island basalts. The BNSZ ophiolites probably represent the main oceanic basin of the Neo-Tethys in central Tibet. The SYJMB ophiolitic sequences date from the Late Triassic to the Early Cretaceous, and they are dismembered and in fault contact with pre-Ordovician, Permian, and Jurassic–Early Cretaceous blocks. Geochemical and stratigraphic data are consistent with an origin in a short-lived intra-oceanic back-arc basin. The Neo-Tethys Ocean in central Tibet opened in the late Permian and widened during the Triassic. Southwards subduction started in the Late Triassic in the east and propagated westwards during the Jurassic. A short-lived back-arc basin developed in the middle and western parts of the oceanic basin from the Middle Jurassic to the Early Cretaceous. After the late Early Jurassic, the middle and western parts of the oceanic basin were subducted beneath the Southern Qiangtang terrane, separating the Nierong microcontinent from the Southern Qiangtang terrane. The closing of the Neo-Tethys Basin began in the east during the Early Jurassic and ended in the west during the early Late Cretaceous.  相似文献   

15.
南翼山-尖顶山地区位于柴达木盆地西北部,与阿尔金斜坡带毗邻,一系列北西向紧闭背斜和夹于其间的宽缓向斜构成了本区的构造格架.研究区自中生代以来主要经历了两个阶段的变形作用:(1)在早-中侏罗世,主要受到伸展作用控制,形成箕状断陷;(2)狮子沟期-现在,一直受到SW-NE向挤压作用.尖顶山背斜自狮子沟期开始形成,其下伏早期控陷正断层由于挤压发生反转作用,形成了大型断层传播褶皱;南翼山背斜自七个泉期开始形成,由深部、浅部两个背斜构造叠合而成,深部为一大型断层转折褶皱,浅部为构成Ⅰ型构造三角带的两个台阶状逆冲断层的相向逆冲作用在断层上部形成一个类似于滑脱褶皱的箱状背斜.南翼山背斜、尖顶山背斜的形态比较完整,构造形成时间与油气成熟、运移的时间匹配良好,具有十分有利的油气勘探前景.  相似文献   

16.
内蒙古中部石拐侏罗纪陆相含煤盆地构造变形   总被引:1,自引:1,他引:0  
对华北陆块北缘大青山推覆构造前缘石拐侏罗纪陆相含煤盆地的构造进行了分析。结果表明:早侏罗世早期,石拐盆地受NNE-SSW方向的拉张作用力,形成近东西走向的断陷盆地,而后沉积了早-中侏罗世五当沟组含煤沉积;中侏罗世末受近东西向挤压,在早先沉积地层中形成一套共轭节理;晚侏罗世受大青山推覆构造影响,盆地内侏罗系形成一系列代表推覆构造体系前缘带的紧闭同斜-直立宽缓褶皱及断层相关断层,具明显构造分带性。早侏罗世早期的拉张可能是印支造山后地壳的伸展垮塌,而晚侏罗世的挤压可能是板缘碰撞的板内响应。   相似文献   

17.
The Blue Nile Basin, situated in the Northwestern Ethiopian Plateau, contains ∼1400 m thick Mesozoic sedimentary section underlain by Neoproterozoic basement rocks and overlain by Early–Late Oligocene and Quaternary volcanic rocks. This study outlines the stratigraphic and structural evolution of the Blue Nile Basin based on field and remote sensing studies along the Gorge of the Nile. The Blue Nile Basin has evolved in three main phases: (1) pre‐sedimentation phase, include pre‐rift peneplanation of the Neoproterozoic basement rocks, possibly during Palaeozoic time; (2) sedimentation phase from Triassic to Early Cretaceous, including: (a) Triassic–Early Jurassic fluvial sedimentation (Lower Sandstone, ∼300 m thick); (b) Early Jurassic marine transgression (glauconitic sandy mudstone, ∼30 m thick); (c) Early–Middle Jurassic deepening of the basin (Lower Limestone, ∼450 m thick); (d) desiccation of the basin and deposition of Early–Middle Jurassic gypsum; (e) Middle–Late Jurassic marine transgression (Upper Limestone, ∼400 m thick); (f) Late Jurassic–Early Cretaceous basin‐uplift and marine regression (alluvial/fluvial Upper Sandstone, ∼280 m thick); (3) the post‐sedimentation phase, including Early–Late Oligocene eruption of 500–2000 m thick Lower volcanic rocks, related to the Afar Mantle Plume and emplacement of ∼300 m thick Quaternary Upper volcanic rocks. The Mesozoic to Cenozoic units were deposited during extension attributed to Triassic–Cretaceous NE–SW‐directed extension related to the Mesozoic rifting of Gondwana. The Blue Nile Basin was formed as a NW‐trending rift, within which much of the Mesozoic clastic and marine sediments were deposited. This was followed by Late Miocene NW–SE‐directed extension related to the Main Ethiopian Rift that formed NE‐trending faults, affecting Lower volcanic rocks and the upper part of the Mesozoic section. The region was subsequently affected by Quaternary E–W and NNE–SSW‐directed extensions related to oblique opening of the Main Ethiopian Rift and development of E‐trending transverse faults, as well as NE–SW‐directed extension in southern Afar (related to northeastward separation of the Arabian Plate from the African Plate) and E–W‐directed extensions in western Afar (related to the stepping of the Red Sea axis into Afar). These Quaternary stress regimes resulted in the development of N‐, ESE‐ and NW‐trending extensional structures within the Blue Nile Basin. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
右江盆地构造和演化及对卡林型金矿床的控制作用   总被引:1,自引:0,他引:1       下载免费PDF全文
右江盆地,又称南盘江盆地,是我国重要的多金属矿床富集地,广泛发育有Au-As-Sb-Hg低温热液矿床,也是我国 卡林型金矿大规模富集区之一。矿床地质特征表明,金矿床的形成明显受到构造的控制,因此,探讨盆地的构造演化对于 深入研究卡林型金矿的形成具有重要意义。通过结合前人大量研究认为:右江盆地内主要发育有NW和NE向两组构造, NW及NE向的边界断裂对盆地的演化及火成岩的发育起到重要作用;金矿床在平面上均分布于右江盆地范围内,具有明显 的岩性和构造控矿的特征;右江盆地形成及后续的构造演化可以分为六个阶段,即:早泥盆世中期滨浅海陆棚发育 (D2 1 ),中泥盆世-中二叠世裂陷洋盆发育(D2-P2),中二叠世末-中三叠世洋盆消失及前陆盆地发育(P3 2 -T2),晚三叠世 -早侏罗世盆地消亡及碰撞后伸展(T3-J1),中侏罗世-早白垩世中期NE向挤压构造发育(J2- K2 1 ) 和早白垩世晚期-古 近纪局部伸展作用(K3 1 -E);右江盆地内卡林型金矿的成矿期集中在前陆盆地发育结束而褶皱成山后,成矿过程与伸展环 境密切相关。  相似文献   

19.
于冬冬  汤良杰  余一欣  陈茜 《现代地质》2016,30(5):1085-1095
川西和川东北地区处于扬子地台西北缘,均具有褶皱冲断带-前陆盆地的二元结构,其构造特征具一定相似性。根据地震资料解释和典型气藏解剖,再结合前人研究成果,分析了川西和川东北地区构造演化差异性及其对各自成藏特征的影响,结果表明:川西地区主要受龙门山造山带影响,从印支期中晚期开始发育前陆盆地,之后主要受燕山中晚期和喜马拉雅期构造运动的影响;而川东北地区从燕山早期开始发育前陆盆地,之后在燕山中期和晚期受大巴山、米仓山和雪峰山联合作用影响,最后大巴山造山带在喜马拉雅期的强烈活动使其最终定型。上述差异构造演化对川西和川东北地区陆相层系的成藏特征的影响主要表现在4个方面:烃源岩的发育、输导体系的形成、气藏的保存和天然气成藏过程。川西地区主要发育须家河组烃源岩,形成了以NE向和SN向断裂及其伴生裂缝为主的输导体系,多期构造运动形成的大型通天断裂影响了山前断褶带气藏的保存,成藏经历了印支晚期、燕山中期、晚期和喜马拉雅期4个关键时刻。川东北地区发育须家河组和下侏罗统两套烃源岩,输导体系以NW向断裂为主,隆升剥蚀和大型断裂造成了山前断褶带较差的保存条件,成藏经历了燕山中期、燕山晚期和喜马拉雅期三个关键时刻。  相似文献   

20.
The modern Tianshan Mountains and their surrounding basins have mainly been shaped by the far field effects of the Cenozoic India-Asia collision. However, precollision topographic evolution of the Tianshan Mountains and its impacts on the Junggar and Turpan Basins remain unclear due to the scarcity of data. Detrital zircon U-Pb dating of 14 new and 23 published samples from Permian to Neogene strata in the northern Western Tianshan Mountains, northern and southern Bogda Mountains and Central Turpan Basin, are combined with sedimentary characteristics (lithofacies, petrofacies and paleocurrent data) to investigate the temporal and spatial changes in sediment provenances. Based on the age characteristics of the source rocks in the Tianshan Mountains, the detrital zircons are divided into three groups: pre-Carboniferous zircons, mainly from the Central Tianshan Mountains; Carboniferous to Permian zircons, mainly from the North Tianshan and Bogda Mountains; and Mesozoic zircons, mainly from syn-depositional volcanic activity. The topographic evolution of the Tianshan Mountains and their relation to the Junggar and Turpan Basins can be generally divided into six stages. (1) Positive-relief Tianshan and Bogda Mountains and a rifted marine basin formed during the Early Permian to early Middle Permian following late Carboniferous orogenesis, as evidenced by interbedded alluvial fan conglomerates and postcollisional extension-related volcanic rocks along the basin margins, by marine deposits far from the basin margins and by the predominance of Carboniferous to Permian detrital zircons. (2) Fluvial to lacustrine deposits in the modern southern Junggar and Turpan Basins are characterized by abundant pre-Carboniferous zircons and consistently northward-flowing paleocurrents, indicating the submergence of the Bogda Mountains and a contiguous Junggar-Turpan continental depression basin during the late Middle Permian to the Triassic. (3) The Bogda Mountains began to uplift in the Early Jurassic, resulting in opposing paleocurrent directions, a sudden increase in sedimentary lithic detritus and the dominance of Carboniferous to Permian detrital zircons along the southern and northern margins of this range. (4) In contrast to the uplift of the Bogda Mountains, the other parts of the Tianshan Mountains experienced gradual peneplanation from the Early Jurassic to the Middle Jurassic, as confirmed by widespread fluvial to lacustrine deposits, even inside the modern Tianshan Mountains, and by the dominance of pre-Carboniferous detrital zircons. (5) The dominance of Carboniferous to Permian zircons in the southern Junggar Basin suggests the West Tianshan Mountains were uplifted during the Late Jurassic, while the dominance of pre-Carboniferous zircons in the Central Turpan Basin indicates continuous peneplanation in the Eastern Tianshan Mountains. (6) The initial shape of the Tianshan Mountains-Junggar Basin-Turpan Basin system was constructed in the Late Jurassic but was modified in the Cenozoic by the India-Asia collision, resulting in much higher Western Tianshan and Bogda Mountains, low Eastern Tianshan Mountains and well-developed foreland basins. These Cenozoic changes were recorded by the rapid cooling of apatites, the dominance of Carboniferous to Permian zircons in the southern Junggar Basin and northern Turpan Basin, and the dominance of pre-Carboniferous zircons in the Central Turpan Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号