首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
全球气候变化下青藏公路沿线冻土变化响应模型的研究   总被引:16,自引:17,他引:16  
利用英国Hadley气候预测与研究中心GCM模型HADCM2预测的气温变化背景,分别提取青藏公路沿线地区在2009年,2049年和2099年的气温参数,考虑年平均气温和年平均地温的关系及年平均地温与海拔,纬度的关系模型,多年冻土下界分布模型和地温带分带,建立青藏公路沿线多年冻土下界分布的响应模型和多年冻土地温带的响应模型,研究结果表明,2009年青藏公路沿线的冻土变化较小,多年冻土极稳定带,稳定带和基本稳定带仅发生微弱的变化,基本稳定过渡带和不稳定带变化较大,多年冻土,逐渐退化,2049年青藏公路沿线多年冻土各地温带变化较大,但仍以基本稳定过渡带和不稳定带变化最大,多年冻土发生较大范围的退化;2099年后青藏公路沿线冻土发生了很大的变化,多年冻土发生大面积的退化,融区面积逐渐增大,多年冻土地温带也发生了较大的变化,其中多年冻土上带仅保留了稳定带,极稳定带全部消失,稳定带和基本稳定带全部转化为不稳定带。  相似文献   

2.
青藏铁路多年冻土区工程复杂性分析   总被引:1,自引:1,他引:1  
青藏铁路穿越550km多年冻土区,多年冻土地温、冻土类型以及沿线生态环境等存在较大的差异,使多年冻土区工程较为复杂。因此本文提出了冻土工程复杂性概念,建立冻土工程复杂性评价模型,并利用GIS平台对青藏铁路沿线唐古拉山越岭地段工程复杂性进行了分析和研究。研究结果表明,青藏铁路穿越的唐古拉山越岭地段工程复杂性相对较小,而青藏公路的工程复杂性相对较大。这表明了青藏公路沿线冻土工程比青藏铁路沿线更为复杂,在各种因素的影响下,青藏公路路基稳定性变化比青藏铁路更加复杂。  相似文献   

3.
青藏公路沿线冻土区域分布计算机模拟与制图   总被引:34,自引:22,他引:12  
吴青柏  李新  李文君 《冰川冻土》2000,22(4):323-326
通过对青藏公路沿线实测年平均地温多元回归统计,建立了年平均地温与海拔、纬度的关系模型。利用多年冻土分布下界的统计方程和关系模型及其于格网的地理信息分析系统,对青藏公路沿线多年冻土下界分和多年冻土地温带分布进行计算机模拟,结果表明,所建立的模拟模型能够反应青藏公路沿线多年冻土的区域分布特征,模拟结果基本上反映多年冻土分布状况。  相似文献   

4.
局地因素对青藏公路沿线多年冻土区地温影响分析   总被引:13,自引:9,他引:4  
庞强强  赵林  李述训 《冰川冻土》2011,33(2):349-356
气候是多年冻土形成与变化的动力,局地因素则通过改变地表辐射、对流和传导过程对多年冻土产生影响,导致多年冻土发生空间分异.应用青藏公路沿线大量的观测资料分析了局地因素对多年冻土区地温所产生的影响.结果表明:地形地貌、植被、积雪、土壤性质及含水量等局地因素,对青藏公路沿线地区多年冻土的发育和多年冻土热状况有显著影响.局地因...  相似文献   

5.
工程活动下多年冻土热稳定性评价模型   总被引:11,自引:7,他引:11  
提出了用季节融化层底板到潜在季节冻结深度区间沉积物融化所需要的热量与季节冻结层底板温度升高至0 ℃所需要的热量之和(Qt), 与夏半年土体吸收的热量(Q+)的比值来描述冻土热稳定性(ST=Qt/ Q+). 根据青藏公路沿线地温温度场的监测资料,对多年冻土热稳定性模型进行了计算,并分析了多年冻土热稳定性与年平均地温、多年冻土顶板温度和季节融化深度间的关系. 根据人类工程活动对多年冻土影响,将多年冻土热稳定性分为4类:热稳定型、热稳定过渡型、热不稳定型和热极不稳定型多年冻土.  相似文献   

6.
工程作用和气候转暖影响加剧了工程下部多年冻土的退化,导致冻土工程稳定性发生显著变化。本文从气候转暖和工程活动下多年冻土变化和冻融灾害的视角探讨了气候转暖与工程稳定性的关系,给出了青藏高原气候转暖下活动层厚度、冻土温度等变化和青藏公路和青藏铁路工程下部多年冻土上限、冻土温度和路基变形等特征。同时,系统梳理了青藏高原冻土工程防治冻土融化的工程技术措施,讨论了未来气候变暖下青藏高原多年冻土的变化特征及其对冻土工程服役性的影响。青藏高原多年冻土在过去数十年来发生了不同程度的退化,工程作用加速了工程下部多年冻土退化,严重影响工程稳定性。青藏铁路采取了冷却路基、降低多年冻土温度的技术措施,但冻土工程仅能适应气候变暖1 ℃的情况。未来气候变暖1.5 ℃,青藏铁路冻土工程的补强措施需尽早谋划。  相似文献   

7.
在全球气候转暖和人类活动影响下,使多年冻土地区公路工程地质产生了新的变化。为了研究这些变化对公路路基稳定性的影响,展开长期的预警观测研究,本文引入模糊数学理论,从影响多年冻土区公路路基病害的因素中选择冻土年平均地温、冻土类型(冻土含冰量)、人为上限的变化、路基排水状况、特殊措施调控效果等关键因子,建立其语言变量及模糊隶属度函数,并综合历年来病害调查研究成果,总结病害的形成机理和专家经验,形成37条由语言变量描述的路基病害影响因子与病害严重程度之间关系的逻辑规则。运用Matlab模糊逻辑工具箱建立青藏公路多年冻土区预警系统。  相似文献   

8.
路基施工对青藏高原多年冻土的影响   总被引:2,自引:2,他引:0  
青藏高原上施工会扰动其下多年冻土的存在状态. 近些年来, 高原上相继修建的大量的线性工程, 这些大型工程的建设必将进行多年冻土区的开挖和夯填, 从而会引起下伏多年冻土的结构发生很大变化. 研究了路基施工对青藏高原多年冻土的影响, 并以青藏铁路、青藏公路沿线典型实例进行分析. 结果表明: 开挖施工扰动最大, 可引起斜坡失稳滑塌、地表积水和热融湖塘等;填土路堤会引起其下伏多年冻土升温, 路基两侧形成的小气候往往起着提高地面温度的作用;挡水、排水设施施工也会导致多年冻土上限下降, 地表沉陷. 可见, 填土路基、开挖、地表工程扰动都会导致多年冻土发生变化, 这些冻土变化对路基稳定必将构成威胁.  相似文献   

9.
基于可靠度的多年冻土区路基稳定性评价及应用分析   总被引:2,自引:0,他引:2  
通过对多年冻土区道路路基稳定性的分析和研究,从冻土类型、温度、厚度、地质地貌单元以及工程条件5个方面选取了12项对多年冻土区路基稳定影响较大的因素作为评价指标,建立了冻土路基稳定性评价指标体系。基于安全可靠度并考虑各个影响因素之间的关系,运用层次分析法和模糊数学理论确定冻土区路基稳定状况的模糊综合评价模型,提出了基于安全可靠度的用于评价多年冻土区路基稳定的模糊综合评价方法,并结合青藏公路清水河段进行实例分析,结果表明,在该段公路实施热棒处理措施前后,其路基稳定性评价系统可靠度分别为0.48和0.55,与该段公路实际运营过程中路基稳定状态相一致,即由不稳定到稳定,进一步对布设热棒后路基稳定性进行二级模糊综合评价,其评价系统得分为63.74分。  相似文献   

10.
青藏公路沿线多年冻土对气候变化和工程影响的响应分析   总被引:10,自引:5,他引:5  
青藏公路沿线工程和气候变化影响下多年冻土变化监测表明,多年冻土对工程活动和气候变化的响应过程存在着较大差异,不同年平均地温的多年冻土使这种差异变得更为明显.分析结果表明:气候变化下低温多年冻土变化要大于高温多年冻土,工程状态下低温多年冻土变化要小于高温多年冻土;气候变化引起的低温多年冻土变化要大于工程对其的影响,而高温多年冻土正好相反.造成这一结果原因主要是由于在工程建设完成初期,相对于气候影响,工程作用对多年冻土的影响具有放大作用,这使得工程状态下多年冻土对气候变化基本没有响应.按照气候影响下多年冻土温度年变化速率来推测,低温多年冻土表面温度升温到工程状态需要50a左右时间,高温多年冻土需要20a左右.6m深的低温多年冻土温度升温到工程状态需要20a,高温多年冻土仅需要5~8a.  相似文献   

11.
青藏铁路块石路基冷却降温效果对比分析   总被引:2,自引:0,他引:2  
穆彦虎  马巍  孙志忠  刘永智 《岩土力学》2010,31(Z1):284-292
基于现场地温监测数据,对青藏铁路两种主要块石路基(块石护坡及U型块石路基)在不同年平均地温分区的冷却降温效果进行对比分析,发现不论是在低温基本稳定区(年平均温度-2.0 ℃≤TCP<-1.0 ℃)还是高温极不稳定区(TCP>-0.5 ℃),两种块石路基的应用都能够有效地提升路基下部多年冻土上限。但两种不同块石结构路基表现出不同的冷却降温效果,其中U型块石路基冷却降温效果较好,在路基下多年冻土上限提升及下伏浅层多年冻土降温的同时,深层多年冻土温度保持稳定;而块石护坡路基下人为多年冻土上限的提升及浅层多年冻土温度的降低一定程度上消耗了下伏深层多年冻土的冷量,从而导致其温度有所升高。同时,在不同的年平均地温分区块石路基表现出不同的冷却降温效果:年平均地温较低断面,块石路基冷却降温效果显著。在年平均地温较高的断面,尤其是高温极不稳定多年冻土区,块石护坡路基下伏深层多年冻土温度升高明显,路基长期稳定性难以得到保证。  相似文献   

12.
土工格栅在青藏铁路多年冻土区路基工程中的应用   总被引:3,自引:0,他引:3  
王引生 《冰川冻土》2003,25(3):355-358
以青藏铁路多年冻土区清水河冻土加筋路堤试验段为例,对土工格栅在铁路路基工程中的应用原理及设计思路进行了叙述.通过对路基裂缝进行调查、分析和比较,土工格栅对加强路基整体稳的作用是肯定的.在多年冻土区路堤中,使用土工格栅加筋层对防止路堤纵向裂缝的产生、抑制横向寒冻裂缝具有明显的作用.  相似文献   

13.
The permafrost on the Qinghai-Tibet Plateau(QTP) is unstable and sensitive to thermal disturbance due to the combined influences of anthropogenic forcing and global warming on the unique environmental background for permafrost development and preservation. Observations in about 40 years show natural and engineering environments of permafrost region along Qinghai-Tibet Highway(QTH)have changed significantly. The change of permafrost environments on the plateau will result in the remarkable shifts of physical geography and engineering geological environments. In addition, permafrost on the QTP responses actively and feedbacks to global climatic changes significantly. The study of permafrost on the plateau is no less important than the Arctic and Antarctic, and also provide a valuable linkage of climatic and environmental change studies between the other two poles. As the development of the plateau and adjacent areas in large scale is eminent, permafrost as the most important natural environmental factor, its stability and possible changes are extremely important in regional economical development. Therefore, the prediction of these changes and reasonable assessment of permafrost engineering conditions on the plateau based on permafrost monitoring are indispensable for the healthy and sustainable economical development in these regions.  相似文献   

14.
多年冻土地区公路筑路技术研究现状与新课题   总被引:13,自引:4,他引:9  
分析了中国多年冻土地区公路修筑技术的研究现状, 介绍了青藏公路沿线多年冻土三期科研工作、青藏高原东部退化性多年冻土的研究成果和小兴安岭岛状多年冻土的研究方向. 在总结科研与实践工作的基础上, 提出了多年冻土地区公路修筑技术的相关研究课题和新思路.  相似文献   

15.
马巍  牛富俊  穆彦虎 《地球科学进展》2012,27(11):1185-1191
青藏高原是我国乃至世界高海拔多年冻土区的典型代表。伴随着青藏铁路的建成通车,西藏自治区迎来了新一轮经济发展,迫切需要新建高速公路、输变电线路、输油气管道工程等。这些拟建工程与已建的青藏公路、青藏铁路、格拉输油管道、兰西拉光缆等工程均聚集于宽度不足10km范围内的青藏工程走廊。在这狭长的冻土工程走廊内,已修建或拟建的各种冻土构筑物相互影响,多因素耦合叠加,加速区域内的冻土退化,而冻土融化必将影响到工程的稳定性和生态环境退化。再加上全球气候变化的影响,其变化程度更加剧烈。面对国家需求,国家重点基础研究发展项目"青藏高原重大冻土工程的基础研究"于2012年4月正式启动。该项目旨在揭示气候变化与人类工程活动加剧背景下冻土变化及灾害时空演化规律,建立冻土工程稳定性和服役性能评价体系,提出冻土工程灾害防治理论与控制对策,为冻土构筑物群灾害应急预案和重大冻土工程建设提供科学决策依据。  相似文献   

16.
青藏高原北部铁路沿线移动冰丘的特征及其灾害效应   总被引:1,自引:0,他引:1  
青藏高原北部常年冻土地区部分断裂破碎带发育移动冰丘。青藏铁路沿线典型移动冰丘包括不冻泉活动断裂诱发移动冰丘、乌丽活动断裂诱发86道班移动冰丘、二道沟盆南断裂破碎带桥梁施工诱发雅玛尔河移动冰丘、断裂破碎带桥基施工诱发83道班移动冰丘和乌丽盆北断裂破碎带DK1202+668大桥中部桥墩施工诱发85道班移动冰丘。移动冰丘的形成演化与活动断裂、地下水运动、气温变化存在动力学成因联系,是青藏高原北部常年冻土地区内动力与外营力相互耦合的标志和产物。移动冰丘能够穿刺公路路基、拱曲破坏涵洞结构、导致桥梁墩台破裂和输油管道拱曲变形,产生显著的灾害效应,成为高寒环境地质灾害的重要类型。采用适当的工程措施,通过疏导、排放地下泉水,能够有效地防治移动冰丘及灾害效应。  相似文献   

17.
The distribution of permafrost and taliks is very complex in the Tuotuo River Basin(TRB), which is located in interior of the Qinghai-Tibet Plateau. Characterizing the spatial distribution and the thermal stability of permafrost and taliks is of great significance to community activities and engineering construction in TRB. Based on the zonation of permafrost and talik distribution around TRB conducted in the 1980s, the soil temperature and its variation process of permafrost and taliks in the south and north banks of the Tuotuo River were analyzed by using the observation data of five boreholes(N1~N5)along the Qinghai-Tibet Railway in the north bank and five boreholes(S1~S5)on the first terrace in the south bank. The results showed that, under the climate warming, permafrost and taliks in the north banks experienced significant degradation and warming process. From 2005 to 2020, the permafrost at the N1 borehole has undergone a significant down-draw degradation process, from extremely unstable and high-temperature permafrost to thawed zone. From 2005 to 2013, the annual average ground temperature of the talik at N2 increased at a rate of 0. 3~0. 4 °C·(10a)-1. At Maqutang on the south bank, permafrost prevails from the first-class terrace to the gentle slope of the Kaixinling Mountain, with both through and non-through taliks on the first-class terrace. The spatial distribution and the thermal stability of permafrost and talik in the TRB are further promoted by analyzing the changes in temperatures at boreholes in the basin. However, to meet the requirements of mapping and engineering construction of permafrost and taliks in the TRB, it is still necessary to carry out geological investigation with multiple methods and in-depth research on development mechanism of taliks in the future. © 2022 Nanjing Forestry University. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号