首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Over-exploitation of groundwater in many evolving urban settings causes ground subsidence and permanent loss of aquifer storage capacity. DInSAR (differential interferometric synthetic aperture radar) time series data from 2016 to 2019 were used to monitor and model the surface deformation around Nairobi, Kenya, where the water demand has exceeded the supply without capacity augmentation for over two decades. The aquifer system constitutes hard rock to semiconfined ash beds in volcanic terrain. The Small Baseline DInSAR technique identified the spatial pattern of subsidence and magnitude (line-of-sight (LOS) velocity), which exceeds 41 mm/year in the semiconfined aquifer towards the western-central part of Nairobi. The spatial distribution of subsidence is consistent with the groundwater level drop and probable compaction modeled using aquifer characteristics for 1950–2015. The Global Navigation Satellite System (GNSS) data at a station from 2007 to 2018 indicate a cumulative 4-cm subsidence which is comparable to ~2.5-cm LOS subsidence from the present study for 2016–2019. The correlation with other hydrological data suggests the aquifer is experiencing inelastic subsidence due to unsustainable groundwater extraction, putting a massive strain on Nairobi’s aquifer system. The present DInSAR based study establishes its effectiveness in the monitoring of groundwater over-exploitation-based subsidence and associated hazard to the aquifer in emerging urban centers.

  相似文献   

2.
We performed a number of sensitivity experiments by applying a mapping technique, self-organizing maps (SOM) method, to the surface current data measured by high-frequency (HF) radars in the northern Adriatic and surface winds modelled by two state-of-the-art mesoscale meteorological models, the Aladin (Aire Limitée Adaptation Dynamique Développement InterNational) and the Weather and Research Forecasting models. Surface current data used for the SOM training were collected during a period in which radar coverage was the highest: between February and November 2008. Different pre-processing techniques, such as removal of tides and low-pass filtering, were applied to the data in order to test the sensitivity of characteristic patterns and the connectivity between different SOM solutions. Topographic error did not exceed 15 %, indicating the applicability of the SOM method to the data. The largest difference has been obtained when comparing SOM patterns originating from unprocessed and low-pass filtered data. Introduction of modelled winds in joint SOM analyses stabilized the solutions, while sensitivity to wind forcing coming from the two different meteorological models was found to be small. Such a low sensitivity is considered to be favourable for creation of an operational ocean forecasting system based on neural networks, HF radar measurements and numerical weather prediction mesoscale models.  相似文献   

3.
差分干涉雷达遥感在地质学中的应用研究   总被引:2,自引:1,他引:2       下载免费PDF全文
雷达差分干涉测量是当前雷达遥感的热点研究领域,对地质学特别是地震、火山、大地构造的研究具有极其重要的意义。文章对差分干涉雷达遥感的原理及具体实现进行了深入研究,并分析了差分干涉测量结果的误差,郑重阐述了差分干涉雷达遥感在地震、地表形变测量、火山监测、板块构造研究中的应用。  相似文献   

4.
This paper is addressed to readers without advanced knowledge of remote sensing. It illustrates some current and potential uses of satellite Synthetic Aperture Radar interferometry (InSAR) for landslide assessment. Data acquired by SAR systems can provide 3D terrain models and be used to assist in regional scale investigations, e.g. aimed at evaluation of susceptibility of slopes to failure. Under favourable environmental conditions, the innovative Permanent Scatterers (PS) technique, which overcomes several limitations of conventional SAR differential interferometry (DInSAR) applications in landslide studies, is suitable for monitoring slope deformations with millimetric precision. The PS technique combines the wide-area coverage typical of satellite imagery with the capability of providing displacement data relative to individual image pixels. With the currently available radar satellites, however, only very slow ground surface displacements can be reliably detected and measured. The presented case study of a landslide from the Liechtenstein Alps indicates that the most attractive and reliable contribution provided by this remote sensing technique lies in the possibility of (i.) wide-area qualitative distinction between stable and unstable areas and (ii.) qualitative (relative) hazard zonation of large, slow landslides based on the identification of segments characterised by different movement rates. Since only the radar line of sight projection of the displacements can be detected, a quantitative exploitation of the PS data is possible only where sufficient ground truth is available. In site specific or single landslide investigations the PS data can represent a very useful complementary data source with respect to the information acquired through ground based observations and in situ surveying. However, the difficulties associated with the feasibility assessments of the applicability of SAR data to local scale problems, as well as with the interpretation of PS results, require a close collaboration between landslide experts and specialists in advanced processing of radar satellite data. The interpretation of the exact geotechnical significance of small, radar sensed ground surface deformations is challenging, especially where ground truth is lacking. Although any ground deformation is potentially of interest to an engineering geologist, detection of movements in both vertical and horizontal directions is needed in the case of landslides to evaluate slope failure mechanisms. With their high radar viewing angles, however, the current space-borne systems can detect only a fraction of the horizontal component of movement. It is expected that the upcoming SAR dedicated missions with new sensors and different acquisition geometries, combined with the rapid developments in the field of advanced radar data processing, will allow a full 3D reconstruction of deformation data and help to further reduce the current limitations of the PS and similar DInSAR approaches.  相似文献   

5.
This paper explores the potential of using satellite radar inteferometry to monitor time-varying land movement prior to any visible tension crack signs. The idea was developed during dedicated geotechnical studies at a large open-pit lignite mine, where large slope movements (10–20 mm/day) were monitored and large fissures were observed in the immediate area outside the current pit limits. In this work, differential interferometry (DInSAR), using Synthetic Aperture Radar (SAR) ALOS images, was applied to monitor the progression of land movement that could potentially thwart mine operations. Early signs of land movements were captured by this technique well before their visual observation. Moreover, a qualitative comparison of DInSAR and ground geodetic measurements indicates that the technique can be used for the identification of high risk areas and, subsequently, for the optimization of the spatial distribution of the available ground monitoring equipment. Finally, quantitative land movement results from DInSAR are shown to be in accordance with simultaneous measurements obtained by ground means.  相似文献   

6.
Convection often produces severe weather which causes a great loss to human lives and properties. Precisely predicting the convection initiation process is crucial but challenging in operational convection nowcasting (0~2 h forecasting). Before the radar-defined CI occurring (e.g., the first occurrence of ≥35 dBZ echoes), observations at high spatial and temporal resolutions from weather radars and geostationary meteorological satellites can reveal precursor information such as the boundary-layer convergence lines and the rapid growth of newborn cumulus clouds. These radar- and satellite-observed precursor information are helpful for evaluating the pre-CI conditions and thus nowcasting the accurate CI timing and location. This paper reviewed the current status of radar- and satellite-based CI research and nowcasting techniques. The milestone works and the following studies in the last four decades were summarized to demonstrate how radar and satellite observations can be related to CI occurrence. The objectives and approaches of the CI research advance as the improvement in the capability of radars and were explained satellites. The research progress aids in the development of various CI nowcasting techniques. This paper introduced three well-established techniques that have been put into operational application, namely, ANC system, SATCAST algorithm, and UWCI algorithm. Some scientific issues with respect to radar- and satellite-based CI research and nowcasting were also presented.  相似文献   

7.
On December 24th, Mt. Etna volcano underwent a seismic crisis beneath the summit and upper southern flank of the volcano, accompanied by significant ash emission. Eruptive fissures opened at the base of summit craters, propagating SE‐wards. This lateral eruption lasted until December 27th. Despite the small eruption, seismic swarm and ground deformation were very strong. Sentinel‐1 interferograms show a wide and intense ground deformation with some additional features related to volcano‐tectonic structures. We inverted DInSAR data to characterise the magma intrusion. The resulting model indicates that a large dyke intruded but aborted its upraise at about the sea level; however, this big intrusion stretched the edifice, promoting the opening of the eruptive fissures fed by a shallower small dyke, and activating also several faults. This model highlights that a big intrusion beneath a structurally complex volcano represents a main issue even if the eruption is aborted.  相似文献   

8.
熊思婷 《地质学报》2021,95(9):2823-2842
在地球上,水是生命存在的基础之一.大量证据表明火星表面曾经存在液态水,而目前的火星表面环境不支持液态水的长期存在.因此,水可能以不同的状态赋存于火星的次表层.寻找火星次表层的水一直是火星探测的关键科学目标之一.次表层探测雷达,如探地雷达、探冰雷达,是了解地下物质结构的有效方法,近年来在地外天体上得到大量应用.在过去十余年,欧洲的火星快车(Mars Express)上搭载的火星次表层和电离层探测先进雷达(Mars Advanced Radar for Subsurface and Ionosphere Sounding,MARSIS)和美国火星勘测轨道飞行器(Mars Reconnaissance Orbiter,MRO)上搭载的浅表层雷达(Shallow Subsurface Radar,SHARAD)已在火星轨道上获取了大量数据,被广泛应用于研究火星的地下结构,尤其是地下水冰探测.我国的天问一号火星探测器也携带了高低频轨道探测雷达和高低频火星车探地雷达,有望在不同的顺轨向、交轨向和距离向分辨率上揭示火星次表层不同深部的结构.本文综述了轨道器次表层探测雷达的探测原理和优势,简要介绍了雷达数据的处理和解译方法,重点总结了 MARSIS和SHARAD近年来对火星水冰探测的最新进展,最后对天问一号环绕器雷达及其水冰探测作简要展望.  相似文献   

9.
The potential of differential SAR interferometry (DInSAR) to measure volcanic ground deformation is widely recognized, despite several limitations still hindering its use in operational volcano monitoring, one of the most critical being water vapor change in the troposphere. In this paper we investigate tropospheric influence on SAR interferograms for two African active volcanoes strongly affected by the oscillation of the Inter-tropical convergence zone (ITCZ). Fogo Island (∼40,000 inhabitants), located in the southwestern part of the Cape Verde archipelago, is a 30-km-wide active volcano that last erupted in 1995. Mount Cameroon, with approximately 300,000 people living in its immediate surroundings, is the most active volcanic center of the 1600 km-long Cameroon volcanic line, counting seven eruptions over the last century. We analyze 72 SLC ASAR images of Fogo, acquired by ENVISAT from June 2005 to December 2007, and 14 SLC ASAR images of Mount Cameroon, acquired from July 2004 to January 2008. A total of 274 two-pass interferograms, computed from the SLC images, were used for fringe counting and least-squares data adjustment, allowing the estimation of a relative phase delay for each image. We then compare the InSAR-retrieved phase delays with two independent calculations of precipitable water vapor (PWV) in the troposphere, using MODIS and GPS, and observe that all time-series, for both regions under study, match up the ITCZ seasonal oscillation. We conclude that most (if not all) of the phase delays observed are due to water vapor change in the troposphere.  相似文献   

10.
随着新一代天气雷达的组网建设,常用雷达产品逐渐在人工影响天气(以下简称"人影")工作中发挥了重要作用。如利用反射率因子产品分析降水系统的移向、移速、强度以及降水性质等特征为人影作业指挥提供参考;利用径向速度产品选择人影作业的最佳时机和部位;利用垂直积分液态水含量产品识别冰雹云并指导防雹作业;综合应用多种雷达产品建立人影...  相似文献   

11.
基于合成孔径雷达干涉测量技术的地面沉降研究综述   总被引:2,自引:0,他引:2  
综述了合成孔径雷达干涉测量(InSAR)技术的研究现状及其在监测地面沉降方面的优势和缺陷.与传统监测方法相比,InSAR技术在地面沉降监测方面主要具有全天候、大范围、高分辨率、高精度等优势,但在实际应用中则会产生去相关问题.探讨了利用该技术监测地面沉降的发展方向,认为应将InSAR与GPS及传统的水准测量等方法结合使用,合理利用各技术之间的互补性.  相似文献   

12.
A procedure is described for the simulation of rainfall radar reflectivity (absolute and differential) measurements by dual linear polarization meteorological radars. The basic requirement that the proposed procedure aims at satisfying is that radar data obtained at the end of the process be correlated in a physically plausible manner to the rainfall field at ground, the latter being generated by means of a stochastic space-time rainfall model. The main goal of the model is to give the possibility to easily check the accuracy of radar rainfall estimates derived by means of procedures and algorithms aimed at minimizing or compensating for the effects of measurement errors associated with several types of meteorological events, with particular reference to requirements of hydrogeological forecast systems. Within the limits imposed by the validity of the adopted model, an analysis was carried out indicating general criteria that may be adopted to achieve a better accuracy in rainfall estimates and a full exploitation of the advantages offered by the radar dual polarization measurement technique.  相似文献   

13.
In this work we analyse the performance of advanced land observing satellite (ALOS) phased array type L-band syntetic aperture radar (PALSAR) images for mapping and monitoring of very slow landslides using conventional differential interferometry in the Tena Valley (Central Pyrenees, Spain). These results are compared with those retrieved in previous works where multi-band advanced differential interferometric synthetic aperture radar (DInSAR) analysis was performed for the same area using PSI techniques. The study area is largely underlain by slates (ca. 80 %) where large deep-seated very slow earth flows are dominant. The results reveal that DInSAR analysis is able to measure displacements of landslides with a greater spatial coverage than PSI analysis, but for a lower amount of them (nine against 51). Overall, the combination of the DInSAR and multi-band PSI analysis permitted to map and monitor 68 % of the landslides in Tena Valley. From this amount, 63 landslides are considered as active. The main advantage of DInSAR with respect to PSI analysis is the capability to detect faster movements (up to 145 cm?year?1) derived from the 46 days interferograms. That is the case of Sextas and La Selva landslides where an acceleration of the moving mass was measured after intense rainfall periods producing major damages to linear infrastructures. The combination of measured displacement from ALOS interferograms, with the observed damages on the A-136 road, was useful to assess the potential damage that could cause these slow movements. In general, it is demonstrated that even though PSI analysis provides a better performance in terms of landslide mapping, L-band DInSAR analysis provides an added value for landslide hazard assessment through radar remote sensing. For this reason it is necessary to encourage the launch of new satellite missions similar to ALOS PALSAR that could operate with shorter revisiting time periods.  相似文献   

14.
15.
合成孔径雷达差分干涉测量技术(D-InSAR)可监测地球表面的微量形变,包括地震、火山活动、冰川漂移、地面沉降、活动断裂及山体滑坡等引起的地表位移,是近年来发展起来并得到日益重视的新方法,与其他监测方法(如GPS监测等)相比,用D-InSAR进行地面微位移监测具有全天时、全天候、精度高、覆盖范围大且空间连续的巨大优势。采用D-InSAR技术对阿尔金东段构造变形特征进行了研究,结果表明,阿尔金断裂带是青藏高原东北缘地壳变形的重要分界线。界线以北地区变形均匀,而且变形量较小;以南地区变形强烈且不均匀,变形强度的总体趋势为西高东低,中间受北祁连断裂带西段的影响,在断裂带中出现约为1.0cm的变形低值。另外,南区存在N65°W和近NW两个方向的线性强变形带,前者与阿尔金走滑断裂带次一级的压扭面方向一致,后者与北祁连断裂带西段的展布方向一致。  相似文献   

16.
Interferometric synthetic aperture radar (InSAR) analysis is a radar technique for generating large-area maps of ground deformation using differences in the phase of microwaves returning to a satellite. In recent years, high-resolution SAR sensors have been developed that enable small-scale slope deformation to be detected, such as the partial block movement of a landslide. The L-band SAR (PALSAR-2) is mounted on Advanced Land Observing Satellite-2 (ALOS-2), which was launched on 24 Mar. 2014. Its main improvements compared with ALOS are enhanced resolution of as high as 3 m with a high-frequency recurrence period (14 days). Owing to its high resolution and the use of the L-band, PALSAR-2 can obtain reflective data passing through a tree canopy surface, unlike the other synthetic aperture radars. Therefore, the coherence of InSAR in mountainous forest areas is less likely to decrease, making it advantageous for the extraction of slope movement. In this study, to verify the accuracy of InSAR analysis using PALSAR-2 data, we compared the results of InSAR analysis and the measurement of the displacement in a landslide by global navigation satellite system (GNSS) observation. It was found that the average difference between the displacements obtained by InSAR analysis and the field measurements by GNSS was only 15.1 mm in the slant range direction, indicating the high accuracy of InSAR analysis. Many of the areas detected by InSAR analysis corresponded to the locations of surface changes due to landslide activity. Additionally, in the areas detected by InSAR analysis using multiple datasets, the ground changes due to landslide movement were confirmed by site investigation.  相似文献   

17.
We have jointly applied microwave remote sensing imaging and ground-based geophysical methodologies for investigating ground deformation. In particular, the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique referred to as Small BAseline Subset (SBAS) algorithm and the Electrical Resistivity Tomography (ERT) method have been applied. The former is a tool for investigating large areas, allowing us to detect deformation phenomena and to analyse their spatial patterns and temporal evolution; the latter permits us to reconstruct, with high spatial resolution, the geometry of near-surface geological structures and to estimate the electrical resistivity of outcropping terrains. The starting point of our analysis has been a DInSAR survey carried out on an area of about 400 km2 centred around the town of Potenza (Basilicata region, Italy), for which SAR data acquired by the ERS-1/2 sensors in the time interval 1992–2000 were available. The DInSAR analysis allowed us to detect an unknown ground deformation effect which involves the urban area of Satriano di Lucania, located close to Potenza. An on-site ERT survey was then carried out in order to characterize in detail the physical properties of the terrains involved in the main deformation pattern detected via the DInSAR processing. The integration of the DInSAR and ERT measurements permitted us to investigate areas where the deformation have space-variant characteristics and allowed us to formulate a hypothesis on the origin of the detected displacement processes that, although not fully conclusive, is consistent with the overall DInSAR and ERT analysis.  相似文献   

18.
机载多普勒天气雷达及应用研究进展   总被引:1,自引:1,他引:0  
机载多普勒天气雷达由于其灵活机动性,在台风、暴雨等灾害性天气系统中尺度三维精细结构研究中发挥着重要作用.对机载多普勒天气雷达技术及其资料应用进行了概要性综述,主要从机载多普勒天气雷达发展历程、4种主要机载多普勒雷达技术特点、雷达天线扫描策略、单多普勒雷达风场反演技术、双多普勒雷达风场反演技术、雷达资料同化以及目标观测等方面进行阐述和分析;着重讨论了应用中需要解决的问题.最后,指出发展具有快速扫描和双偏振功能的机载相控阵多普勒雷达是机载天气雷达的发展方向,它可以获取高时空分辨率的探测数据,能够对云和降水系统的三维精细动力结构、热力结构以及微物理结构等进行综合研究.  相似文献   

19.
A general approach for the estimation of tsunami height and hazard in the vicinity of active volcanoes has been developed. An empirical relationship has been developed to estimate the height of the tsunami generated for an eruption of a given size. This relationship can be used to estimate the tsunami hazard based on the frequency of eruptive activity of a particular volcano. This technique is then applied to the estimation of tsunami hazard from the eruption of the Augustine volcano in Alaska. Modification of this approach to account for a less than satisfactory data base and differing volcanic characteristics is also discussed with the case of the Augustine volcano as an example. This approach can be used elsewhere with only slight modifications and, for the first time, provides a technique to estimate tsunami hazard from volcanic activity, similar to a well-established approach for the estimation of tsunami hazard from earthquake activity.  相似文献   

20.
PS技术及其在地表形变监测中的应用现状与发展   总被引:10,自引:0,他引:10  
合成孔径雷达干涉测量技术(InSAR)为地表形变监测提供了极具应用潜力的手段,具有大面积、高空间分辨率、全天候及成本低的优点。但由于大气条件变化、地表覆被等时间空间去相干的影响,其精度和普适性受到极大限制。 近几年发展的永久散射体(PS)技术在传统差分干涉测量(DInSAR)中引入时间维,分析长时间内保持稳定的像元集相位变化,获得毫米级的地表形变测量精度,同时有效地解决了时间空间去相关和大气非均质性影响的问题,目前在滑坡、地面沉降和地质灾害监测等领域得到了广泛的应用。PS技术具有高精度、高时间分辨率、能极大提高影像利用率的优点;但只适用较小区域、需要大量影像、且不适于分析快速突变的地表形变。为克服PS应用中的问题,近年来出现了三角反射体技术、多平台PS技术及相关性像元分析(CPT)技术,使PS技术应用具有更广泛的适应性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号