首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 580 毫秒
1.
西藏高原中南部地壳与上地幔导电性结构   总被引:2,自引:0,他引:2  
叶高峰  金胜  魏文博 《地球科学》2007,32(4):491-498
根据2001年国土资源部"十五"青藏专项研究计划项目"西藏高原南部岩石圈电性结构的大地电磁研究"所完成的吉隆-措勤剖面(800线)以及2004年教育部重大项目"藏南雅鲁藏布江缝合带地区地壳三维电性结构及其构造地质学与动力学意义的研究"所完成的定日-措迈剖面(900线)超宽频带大地电磁测深数据,研究西藏高原中南部地壳及上地幔电性结构特征及雅鲁藏布江缝合带导电性结构特征:800线和900线上地壳范围内主要为高阻区,电阻率在200~3000Ω.m之间,顶面大范围出露,底面一般在15~20km深度处,整体上,高阻区底面由南向北逐渐加深,再向北又逐渐变浅,900线高阻体底界深达30km,而800线高阻体底界更深达38km;地下15~45km深度范围内存在一组电性梯度带,该电性梯度带之下存在一组硕大的高导层,其电阻率小于5Ω.m,高导层由规模不等且不连续的高导体构成.雅鲁藏布江以南的中地壳高导体,规模较小,厚度在10km左右,产状略向北倾;雅鲁藏布江以北的高导体,规模较大,厚度在30km左右,产状向北缓倾;相比之下,900线的高导体厚度较小,顶面深度较浅.通过对岩石电阻率影响因素的讨论,推测高导体的成因是部分熔融或含水流体,判断藏南巨厚的中、下地壳的物质状态是热的、软弱的、塑性的.  相似文献   

2.
为了研究班公湖-怒江缝合带的壳幔电性结构及构造特征,并为其俯冲极性提供电性约束,对青藏高原中部申扎-双湖大地电磁测深剖面进行全面数据处理分析,获得了可靠的二维电性结构模型,研究表明:沿剖面上地壳分布的是规模不等的高阻体,底面埋深在10~25 km变化,高阻层之下发现由不连续的高导体构成的中下地壳高导层.通过对电性结构的分析,认为班公湖-怒江特提斯洋的俯冲消亡极性可能是双向的,随后拉萨-羌塘地体碰撞带处的上地壳高阻体发生拆沉,以上两次动力学事件可能共同作用于缝合带处的壳幔高导体,同时北拉萨地体的壳幔高导体还可能体现了构造作用、岩浆活动和成矿作用之间的关系.  相似文献   

3.
通过横穿青藏高原近 80 0 0km长的 4条天然地震层析剖面 ,获得 4 0 0km深度以上的地壳和地幔速度图像及地震波各向异性 ,揭示了青藏高原 4 0 0km深度范围内的地壳和地幔结构特征。地幔速度图像显示 ,青藏高原腹地的深地幔中存在以大型低速异常体为特征的地幔羽 ,其可能通过热通道与大面积分布的可可西里新生代高钾碱性火山作用有成因联系 ;阿尔金、康西瓦、金沙江、嘉黎及雅鲁藏布江等走滑断裂可下延至 30 0~ 4 0 0km深度 ,显示了低速高热物质组成的垂向低速异常带特征及大型超岩石圈或地幔剪切带的产出 ;发现康西瓦、东昆仑—金沙江、班公湖—怒江和雅鲁藏布缝合带下部存在不连续的高速异常带 ,可以解释为青藏高原地体拼合及碰撞过程中可能保留的加里东、古特提斯和中特提斯大洋岩石圈“化石”残片 ,是“拆沉”的地球物理证据。印度大陆岩石圈的巨厚俯冲板片以 15~ 2 0°倾角向北插入唐古拉山下 30 0km深处 ,并被高热物质组成的地幔剪切带分开。结合新的横穿喜马拉雅及青藏高原的地幔层析资料 ,提出青藏高原碰撞动力学新模式 :青藏高原南部印度岩石圈板片的翻卷式陆内超深俯冲 ,北缘克拉通向南的陆内俯冲 ,腹地深部的地幔羽上涌 ,以及地幔范围内的高原“右旋隆升”及物质向东及北东方向运动及挤出。  相似文献   

4.
周华伟  林清良 《地学前缘》2002,9(4):285-292
文中介绍有关西藏—喜马拉雅碰撞带的一项地震层析成像研究。根据一个用天然地震数据产生的全球波速模型 ,印度板块有可能以近水平状俯冲于整个西藏高原之下至 16 5~ 2 6 0km深度。西藏岩石圈具有低波速地壳和高波速下岩石圈 (75~ 12 0km深 )。在 12 0~ 16 5km深度范围 ,西藏岩石圈与俯冲的印度板块之间有一层低速软流圈物质。高原中部从地表到 310km深处有一低速体 ,说明地幔物质有可能穿过俯冲板块的脆弱部位上隆。这些结果以及野外实测的地壳缩短值说明高原的抬升得助于印度板块的近水平俯冲。我们推论俯冲印度板块的升温上浮以及上覆软流层的存在是造成西藏高原高海拔抬升以及内部地表仍相对平坦的主要原因。2 0 0 1年 1月 2 6日在印度西部发生的毁灭性大地震有可能是俯冲应力在印度板块后缘薄弱处引发的岩石圈大断裂。  相似文献   

5.
印度大陆板块北向碰撞及俯冲导致的青藏高原快速隆升,使得青藏高原内部的物质组成及构造演化更为复杂,其中之一高原内部的低速层分布特征及其构造成因尚不明确.藏北高原中部的班公湖—怒江缝合带两侧宽频带地震观测程度较高,为调查班公湖—怒江缝合带两侧低速层分布特征提供了良好的客观条件.本文选取了INDEPTH-III项目布置在班公怒江缝合带两侧的宽频带地震台站记录的远震数据,开展接收函数分析,通过时频域相位滤波提高信噪比,并利用接收函数复谱比非线性反演方法得到了台站下方一维S波速度结构.反演结果表明班公湖—怒江缝合带两侧地壳中低速层广泛分布,且横向不连续,埋深在20~40 km之间,部分地区在0~15 km的上地壳也出现低速层.上地壳内的低速层分布特征主要与地表区域构造及沉积层分布相关;中下地壳内的低速层分布不仅受到了地体边界的约束,且可能与后期青藏高原整体隆升相关.  相似文献   

6.
根据2004年在青藏高原东南部完成的下察隅—昌都(1000线)宽频带大地电磁探测剖面数据研究高原东南部地壳导电性结构及断裂构造特征,这有助于推进印度与亚洲岩石圈碰撞、俯冲构造模式的研究。研究结果表明,沿剖面上地壳大范围分布的是规模不等的高阻体,电阻率大约在90~3000Ω.m,厚度由南向北增加,底界面的深度大约在5~30km变化。高阻层之下发现由不连续高导体构成的中地壳低阻层,其电阻率小于10Ω.m;其结构与青藏高原中、西部的壳幔高导体相似,但规模小得多,底面埋深也浅得多。沿剖面的上地壳存在多组规模不等、产状不同的横向电性梯度带或畸变带,它们反映了沿剖面地区地壳的断裂分布。通过与该区高精度重力资料对比,在重要的电性梯度带上,均存在布格重力低异常和负重力均衡异常。结合区域地质资料分析推断了嘉黎—然乌、班公—怒江和甲桑卡—赤布张错等主要断裂构造带的空间格局。  相似文献   

7.
印度大陆板块北向碰撞及俯冲导致的青藏高原快速隆升,使得青藏高原内部的物质组成及构造演化更为复杂,其中之一高原内部的低速层分布特征及其构造成因尚不明确。藏北高原中部的班公湖—怒江缝合带两侧宽频带地震观测程度较高,为调查班公湖—怒江缝合带两侧低速层分布特征提供了良好的客观条件。本文选取了INDEPTH-Ⅲ项目布置在班公怒江缝合带两侧的宽频带地震台站记录的远震数据,开展接收函数分析,通过时频域相位滤波提高信噪比,并利用接收函数复谱比非线性反演方法得到了台站下方一维S波速度结构。反演结果表明班公湖—怒江缝合带两侧地壳中低速层广泛分布,且横向不连续,埋深在20~40 km之间,部分地区在0~15 km的上地壳也出现低速层。上地壳内的低速层分布特征主要与地表区域构造及沉积层分布相关;中下地壳内的低速层分布不仅受到了地体边界的约束,且可能与后期青藏高原整体隆升相关。  相似文献   

8.
班公湖—怒江缝合带作为青藏高原拉萨地块和羌塘地块的重要缝合带, 具有比较复杂的构造演化史, 然而其深部结构和俯冲极性仍存在较大争议。本文利用横穿班公湖—怒江缝合带中段的近南北向大地电磁测线, 处理和分析大地电磁测深曲线和相位张量特征, 并通过三维大地电磁反演获得了班公湖—怒江缝合带两侧的深部电性结构。三维大地电磁反演结果显示, 沿测线分布显著的中下地壳高导异常。大致以班公湖—怒江缝合带为界, 可将中下地壳高导异常分为两部分, 北拉萨地块近水平展布的高导异常层和南羌塘地块下方明显北倾的高导异常。结合早期的研究资料, 分析认为中下地壳高导异常应该为地壳部分熔融所致, 且深部电性结构符合沿测线观测的大地热流值变化。同时, 中下地壳高导异常可能指示了中生代班公湖—怒江洋的俯冲闭合痕迹, 北倾的中下高导异常支持大洋向北俯冲至羌塘地块之下, 而北拉萨地块下方的高导异常层可能为低角度俯冲的小洋盆。  相似文献   

9.
青藏高原岩石圈三维结构及高原隆升的液压机模型   总被引:5,自引:3,他引:5       下载免费PDF全文
青藏地区可以昆仑断裂和雅鲁藏布缝合线为界分为3个岩石圈地球物理特征各不相同的区域:青海高原、藏北高原和藏南高原。青海高原位于昆仑山脉以北,是重力高和重力低毗连出现的盆山结构。藏南高原位于雅鲁藏布江以南,是印度板块分布的地区,其上是印度板块的陆缘沉积。它的地壳结构是一个向南运动的逆冲推覆系统。INDEPTH反射剖面在藏南发现的主喜马拉雅逆冲断层(MHT)与宽角反射地震扇形剖面得到的T4震相反射面完全吻合。两种地震测深方法得到的结果之间不存在矛盾。T4震相在高喜马拉雅地区没有显示,MHT向南延伸到高喜马拉雅只是一个推论,因而MHT是否为印度板块的俯冲带仍有待于获取新的证据。在昆仑山脉以南到雅鲁藏布缝合带为藏北高原,是广泛发生局部熔融的强流变岩石圈。局部熔融地区呈漏斗状。在藏北广泛存在的深度为15~20km的上部地壳内的低速层是一个最富于流变性能的局部熔融层,它的埋藏深度平坦稳定,可能含大量水质流体。紧挨着上述上部壳内局部熔融层,在藏北岩石圈大范围出现分布不均匀的网状局部熔融。局部熔融体的底部从雅鲁藏布江地区的80km向北逐步加深到200km。漏斗的漏管处位于羌塘—可可西里。藏北局部熔融体的形成是由于印度板块向北运移,受到亚洲板块的阻挡,沿雅鲁藏布缝合带向青藏高原高角度俯冲,在弧后羌塘—可可西里地区产生高热流上升地幔所致。根据卫星重力异常、航空磁测、地震接收函数研究、地球化学资料以及地表地质均揭示,印度板块沿雅鲁藏布缝合带的俯冲仅发生在亚东—唐古拉一线以西的西藏西部。在亚东—唐古拉一线以东,印度板块与西藏块体间仅仅发生碰撞,但没有发生俯冲。高原的整体隆升是由液压效应所造成。青藏高原的隆升像一台液压机。印度板块对青藏俯冲过程中产生的各种应力,通过局部熔融体,传递到地壳深15~20km处的熔融层,在其下形成一个等压面。在这个等压面的驱使下,在低速层以上未被局部熔融的地壳的底部均匀受力,将它们同步向上抬升。高原隆升期后的跨塌,使上部地壳向四周流动。在青海高原,造成毗连阿尔金断裂的一系列由西南向北东方向推动的叠瓦构造。在雅鲁藏布江以南地区,形成一系列向南凸出的弧形逆冲断层。在昆仑山脉与雅鲁藏布缝合带之间,向东的流动便形成上部地壳的滑脱构造。虽然青藏高原的形成是由于印度板块的俯冲,但它的隆升机制不单纯是一个刚体力学问题,更重要的要考虑到流体的作用,简单的用以刚体假设为前提的板块学说去解释高原的隆升机制是青藏高原研究中的误区。西藏高原的深部是一个大热库,西藏热储的开发利用是一个重大的研究课题。  相似文献   

10.
喜马拉雅东构造结——南迦巴瓦构造及组构运动学   总被引:30,自引:13,他引:17  
喜马拉雅东端-南迦巴瓦构造结的构造格架总体呈现由叠置构造岩片构成的复式背形构造.自NW到SE由比鲁构造岩片、直白构造岩片、南派乡构造岩片和多雄拉变质穹隆组成,它们之间的界限分别是直白-丹娘-南伊沟韧性拆离断裂、直白-丹娘韧性逆冲断裂和多雄拉韧性逆冲断裂.由高压麻粒岩相组成的直白构造岩片被直白-丹娘-南伊沟韧性拆离断裂和直白-丹娘韧性逆冲断裂所夹持,为挤出构造岩片.根据印度斯-雅鲁藏布江大拐弯缝合带西侧和北侧的变形特征及石英组构运动学的EBSD测量结果,表明大拐弯缝合带存在各段的差异,并具有逐渐演化的特征.大拐弯缝合带的北端为拉月-迫隆乡韧性逆冲剪切带;西段为鲁朗-拉月左行走滑剪切带,西南段为嘎马-米林左行伸展转换剪切带,指示南迦巴瓦变质体相对拉萨地体的运动转为水平走滑运动.根据大拐弯缝合带东侧右行走滑和西侧左行走滑特征,推测在印度-亚洲碰撞之后,南迦巴瓦变质体受制于这两条走滑断裂,而相对喜马拉雅地体向北推移,并深深插入拉萨地体之下,形成东构造结.由于南迦巴瓦变质体的强烈上隆,其上部原存的特提斯喜马拉雅的古生代-中生代盖层沉积被俯冲和被剥蚀贻尽.南迦巴瓦变质体中直白组高压麻粒岩相中石榴石辉石岩形成的温压条件(T=800~900℃,P=2.6~2.8GPa)表明,岩石经历了相当于80km~100km深度的峰期榴辉岩变质作用的条件,印度板片深俯冲于拉萨地体之下又折返挤出到由派乡组和多雄拉组角闪岩相(混合岩化)组成的南迦巴瓦变质基底之中.  相似文献   

11.
《Gondwana Research》2014,26(4):1690-1699
The continental collision between the Indian and Asian plates plays a key role in the geologic and tectonic evolution of the Tibetan plateau. In this article we present high-resolution tomographic images of the crust and upper mantle derived from a large number of high-quality seismic data from the ANTILOPE project in western Tibet. Both local and distant earthquakes were used in this study and 35,115 P-wave arrival times were manually picked from the original seismograms. Geological and geochemical results suggested that the subducting Indian plate has reached northward to the Lhasa terrane, whereas our new tomography shows that the Indian plate is currently sub-horizontal and underthrusting to the Jinsha river suture at depths of ~ 100 to ~ 250 km, suggesting that the subduction process has evolved over time. The Asian plate is also imaged clearly from the surface to a depth of ~ 100 km by our tomography, and it is located under the Tarim Basin north of the Altyn Tagh Fault. There is no obvious evidence to show that the Asian plate has subducted beneath western Tibet. The Indian and Asian plates are separated by a prominent low-velocity zone under northern Tibet. We attribute the low-velocity zone to mantle upwelling, which may account for the warm crust and upper mantle beneath that region, and thus explain the different features of magmatism between southern and northern Tibet. But the upwelling may not penetrate through the whole crust. We propose a revised geodynamic model and suggest that the high-velocity zones under Lhasa terrane may reflect a cold crust which has interrupted the crustal flow under the westernmost Tibetan plateau.  相似文献   

12.
Based upon the deep seismic sounding profiles carried out in the Tengchong Volcano-Geothermal Area (TVGA), western Yunnan Province of China, a 2-D crustal P velocity structure is obtained by use of finite-difference inversion and forward travel-time fitting method. The crustal model shows that a low-velocity anomaly zone exists in the upper crust, which is related to geothermal activity. Two faults, the Longling–Ruili Fault and Tengchong Fault, on the profile extend from surface to the lower crust and the Tengchong Fault likely penetrates the Moho. Moreover, based on teleseismic receiver functions on a temporary seismic network, S-wave velocity structures beneath the geothermal field show low S-wave velocity in the upper crust. From results of geophysical survey, the crust of TVGA is characterized by low P-wave and S-wave velocities, low resistivity, high heat-flow value and low Q. The upper mantle P-wave velocity is also low. This suggests presence of magma in the crust derived from the upper mantle. The low-velocity anomaly in upper crust may be related to the magma differentiation. The Tengchong volcanic area is located on the northeast edge of the Indian–Eurasian plate collision zone, away from the eastern boundary of the Indian plate by about 450 km. Based on the results of this paper and related studies, the Tengchong volcanoes can be classified as plate boundary volcanoes.  相似文献   

13.
Field observations, deformation and fabric analyses, and precise age data acquired by zircon SHRIMP, LA-ICP-MS U-Pb and 40Ar-39Ar dating methods have yielded new constraints on the kinematics and dynamics of the Namche Barwa Syntaxis (NBS) which is the eastern corner of the Himalaya. A two-stage model has been established to explain the formation and evolution of the NBS. The northward indentation of the Indian plate beneath the Lhasa terrane began at 55-40 Ma, and crustal materials at this corner were subducted to depths > 70 km where they experienced HP (UHP?) metamorphism. Since 40 Ma, large-scale, right-lateral strike-slip along the Sagaing fault has accommodated the rapid northward movement of the eastern Indian plate corner with respect to the Indochina block. This caused significant and progressive bending of the Indus-Yarlung suture zone (IYSZ) such that it became the Dongjiu-Milin left-lateral, strike-slip, shear zone (DMSZ) in the west and the Aniqiao-Motuo right-lateral, strike-slip, shear zone (AMSZ) in the east. Both zones underwent strong mylonitization. Meanwhile, the HP (UHP?) metamorphic rocks were rapidly exhumed, first into the deep crust at 22-18 Ma and then to the shallow crust to form an antiformal dome at 6-2 Ma. Our model provides new insight into the processes of post-collisional crustal thickening related to the formation of the Himalayan orogenic belt.  相似文献   

14.
Christoffer Nielsen  H. Thybo   《Tectonophysics》2009,470(3-4):298-318
The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities of the crust and uppermost mantle. Previous interpretation and velocity modelling of P-wave arrivals in the BEST data has revealed a multi layered crust with smooth variation in Moho depth between the Siberian Platform (41 km) and the Sayan-Baikal fold belt (46 km). The lower crust exhibits normal seismic velocities around the rift structure, except for beneath the rift axis where a distinct 50–80-km wide high-velocity anomaly (7.4–7.6 ± 0.2 km/s) is observed. Reverberant or “ringing” reflections with strong amplitude and low frequency originate from this zone, whereas the lower crust is non-reflective outside the rift zone. Synthetic full-waveform reflectivity modelling of the high-velocity anomaly suggests the presence of a layered sequence with a typical layer thickness of 300–500 m coinciding with the velocity anomaly. The P-wave velocity of the individual layers is modelled to range between 7.4 km/s and 7.9 km/s. We interpret this feature as resulting from mafic to ultra-mafic intrusions in the form of sills. Petrological interpretation of the velocity values suggests that the intrusions are sorted by fractional crystallization into plagioclase-rich low-velocity layers and pyroxene- and olivine-rich high-velocity layers. The mafic intrusions were probably intruded into the ductile lower crust during the main rift phase in the Late Pliocene. As such, the intrusive material has thickened the lower crust during rifting, which may explain the lack of Moho uplift across southern BRZ.  相似文献   

15.
位于喜马拉雅东构造结西北部的南迦巴瓦复合体,是构造应力最强、隆升和剥蚀最快、新生代变质和深熔作用最强的地区。为厘定该地区早期的变质岩浆作用,本文对南迦巴瓦复合体北部的花岗片麻岩和混合岩进行了岩石学和年代学研究。花岗片麻岩原岩为富钾的偏铝质花岗岩,具有岩浆弧花岗岩的成分特征。花岗片麻岩中的锆石具有岩浆锆石的环带结构,记录了487.9±1.6Ma的一期构造岩浆事件;混合岩的锆石具有明显的核-边结构,核部和边部的不协和线交点年龄分别为1559±13Ma、1154±12Ma。对比印度大陆东部的西隆高原、东高止造山带,发现三者都经历了拉布拉多期、格林威尔期以及泛非期的造山作用。因此,我们认为喜马拉雅东构造结与这两个地区密切相关,可能是他们向北的延伸,这三者可能组成统一的印度大陆东部造山带,一起经历了哥伦比亚超大陆、Rodinia和冈瓦纳超大陆的聚合与裂解过程。  相似文献   

16.
The eastern syntaxis of the Himalaya, Namche Barwa, is dominated by a north-plunging antiform which began to decompress/grow at approximately 4 Ma. New fission-track analyses on both apatite and zircon, combined with previous geochronological ages, indicate that the Namche Barwa Dome also extended laterally while growing vertically. Zircon fission-track ages range from 17.6 to 0.2 Ma and have a strong relationship to the main faults of the region, including the Tertiary Tsangpo Suture, with the younger ages inside the fault bounds towards the syntaxis core on the Indian Plate and the older ages away from the fault. Apatite ages reveal that the dome has grown laterally and now impinges over the older faulted margin onto the Asian Plate. The dome is traversed by the Tsangpo which has followed the trace of the Suture for over 1300 km from its source to the entrance of the dome near Dania. As the Tsangpo crosses the dome it departs from the Suture but rejoins it some 60 km northeastwards. We construe that the Suture has been displaced by the growing antiform and as a consequence, the antecedent river has been “dragged” in a left-lateral sense along the exhuming north-plunging dome. Restoring the Suture to its position prior to 4 Ma reveals a path of the Tsangpo eastwards across the present southwestern position of the Namche Barwa indentation. This geometric reconstrunction implies that the Tsangpo and the Brahmaputra were always one and the same river. In addition, the Tsangpo was tectonically forced into juxtaposition with a tributary of the Jiali-Parlung which it probably then captured. The capture was due to tectonic forcing, in the last 4 Ma, rather than headward retreat of the paleo-Brahmaputra as has been previously suggested.  相似文献   

17.
华夏地块中部宽频地震剖面深部速度结构研究   总被引:1,自引:0,他引:1  
华夏地块处于欧亚板块、太平洋板块和菲律宾海板块相互作用的前沿。我国著名的南岭成矿带和武夷成矿带均位于华夏地块内。已有的研究认为,南岭和武夷的成矿作用可能与中生代晚期岩浆岩的底侵有关。为研究深部速度结构,本研究在2017年7月至2020年8月期间布设了一条横跨南岭成矿带与武夷成矿带的宽频地震测线。该测线共有81个流动台站组成,台站间距5-8 km,总长度约430 km。从连续波形中截取451个震级大于5.5级的远震事件波形,利用改进的互相关法直接从波形中计算得到7231条相对走时残差数据(误差小于0.1 s)。本研究采用远震走时层析成像方法反演相对走时残差数据,获得了高分辨率的速度结构。初步的成像结果表明:(1)华夏地块中部上地幔内存在一个明显的自西向东逐渐变深的低速异常体;(2)华夏地块岩石圈内速度结构具有很强的横向差异,且与断裂带分布存在一定的空间对应关系;(3)政和-大浦断裂带东侧下方200-300km处存在较明显的高速异常体。结合其它已有成果,本研究认为上地幔内的低速异常可能是上涌的软流圈热物质,抵达岩石圈底部引发岩石圈拆沉,可能继续沿深大断裂侵入地壳,形成金属矿藏;而拆沉的岩石圈冷物质下沉,所留痕迹即为软流圈内的高速异常体。  相似文献   

18.
利用冈底斯中-东部197个宽频带天然地震台站记录到的数据和远震P波走时层析成像方法,获得了该区域的P波速度扰动图像。层析成像结果显示研究区地壳和上地幔地震波速度结构存在着复杂的空间变化。首先,在藏南拆离系断层(STD)以北的特提斯喜马拉雅地壳中存在着较强的低速异常,但是该低速异常的北端在远离裂谷带的地方并没有明显越过雅鲁藏布江缝合线(YZS),这与前人的观测结果略有不同;在亚东-古露(YGR)和措美-桑日(CSR)裂谷带的下方存在低速异常,但异常强度都没有前者大;在两个裂谷带之间的拉萨地块中-南部,地壳表现为强高速特征。这些结果表明,影响青藏高原地壳构造演化的"地壳通道流(Crustal Channel Flow)"在藏南主要分布在特提斯喜马拉雅地区,在雅鲁藏布江缝合线以北的冈底斯地区,可能主要局限于沿裂谷带分布。其次,被解释为印度岩石圈地幔的上地幔高速异常,在研究区西部,抵达了雅鲁藏布江缝合线以北100km或更远的地方,而在研究区东部,并没有越过雅鲁藏布江缝合线,而是停留在缝合线以南~100km的高喜马拉雅下方,印证了前人给出的印度板块俯冲角度在研究区附近存在东西向变化的层析成像结果。此外,我们的层析成像结果还印证了冈底斯东南侧的上地幔低速异常根植于上地幔底部,我们认为该现象可能与巽他块体的顺时针旋转引起向东俯冲的缅甸弧向西后撤有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号