首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
西天山琼阿乌孜超基性岩体的稀土元素和Sr,Nd同位素研究   总被引:5,自引:3,他引:5  
对西天山琼阿乌孜超基性岩体和围岩片麻岩作了Sm、Nd、Rb、Sr同位素和稀土元素的研究,获得岩体的形成年龄为314±19Ma,∑REE约为4.0~7.6μg/g。其主体岩石是由来源于未亏损地幔较高程度熔融而产生的岩浆在结晶分异作用中形成。其岩体的边缘[εNd=-5,(87Sr/86Sr)=0.7055,∑REE=111.56μg/g]同化了围岩[εNd=-16.7,(87Sr/86Sr)i=0.7537,∑REE=196μg/g],并同时发生结晶作用,经历了AFC过程,形成了特有的琼阿鸟孜超基性岩侵入体。  相似文献   

2.
嵩山A型花岗岩的地质地球化学特征和构造环境   总被引:8,自引:0,他引:8  
薛良伟  尉向东 《岩石学报》1996,12(1):137-144
从岩石学、岩石化学、微量元素、REE等方面讨论了嵩山古元古代钾长花岗岩体的地质地球化学特征,结果表明这些岩体属于A型花岗岩,其SiO2、K2O、K2O/Na2O、F、Ga、Hf、Rb、Y、Co、Ga/Al、REE高,Al2O3、MgO、CaO、Na2O、Ba、Sr、V、Th低,Eu为0.15~0.27,A/CNKM<1.10,这些岩体是与古元古代熊耳群火山岩相伴生的钾质侵入岩,两者均形成于非造山的大陆裂谷环境,表明华北陆台南缘在古元古代晚期处于拉张的非造山构造环境。  相似文献   

3.
赣南寨背A型花岗岩体的地球化学特征及其构造地质意义   总被引:86,自引:9,他引:77  
陈培荣 《岩石学报》1998,14(3):289-298
赣南寨背岩体主要为黑云母钾长花岗岩,黑云母结晶晚于长石和石英,锆石群型地温测量标尺显示其结晶温度为800℃~900℃,表明寨背岩体形成于一种高温贫水的花岗质岩浆。岩石的化学成分特点为准铝质(Al2O3为12.21%~12.62%),富硅(SiO2为75.66%~76.74%),偏碱(Na2O+K2O为7.93%~8.90%),FeOT/MgO值高(59~148),CaO和MgO含量低(分别为0.10%~0.65%和0.01%~0.02%),富含REE(Eu除外,ΣREE平均为500μg/g),Y、Ga、Nb等高场强元素(HFSE)以及F,Sr和Ba较低。这些特点与本区的I型和S型花岗岩有明显差别,是一种典型的A2型花岗岩。寨背岩体Rb-Sr等时线年龄为176Ma,与辉长岩、双峰式火山岩有密切的时空关系,表明赣南地区在燕山早期即进入拉张裂解阶段。  相似文献   

4.
高加索Eldjurti花岗岩体的生成环境及岩浆演化特征   总被引:4,自引:0,他引:4  
朱永峰 Sobo.  RN 《地质论评》1994,40(6):554-564
Eldjurti岩体是俄罗斯内高加索地区阿尔卑斯造山活动晚期形成的花岗岩体。笔者研究了岩体中部由钻孔构成深达5000m的垂直剖面中岩石的岩石化学特征及岩体的生成环境和岩浆演化特征,结果表明Eldjurti花岗岩体分异成两个岩石化学特征不同的单元,相对偏在性,岩浆分异程度较左的浅部和偏酸性,岩浆分异程度较高的深部。浆结晶分异作用使熔体中Al,Mg,Fe,Ca,Na不断被消耗,Si,K相对富集于残余熔  相似文献   

5.
张宏飞  骆庭川 《现代地质》1994,8(4):453-458
扬子克拉通北缘的铁船山岩体形成于新元古代,其岩石类型为霓石-钠铁门石花岗岩,岩石富碱质、St、Fe、REE和高场强元素,而贫Al、Ca、Mg、Sr、Ba、Co、Ni等组分,δEu=0.20,A/KNC=0.85,K2O+Na2O/Al2O3=1.09,A·R=9.28,岩石属典型的A型花岗岩,Nd、Sr和O同位素示踪反映其成岩物质来自于壳幔混合源区。根据区域地质背景的综合分析,岩体形成于活动陆缘的张裂构造环境,属活动板块边缘拉张型花岗岩。  相似文献   

6.
赣南陂头A型花岗岩的地质地球化学特征及其形成的构造环境   总被引:59,自引:10,他引:49  
范春方  陈培荣 《地球化学》2000,29(4):358-366
赣南陂头岩体主要钾长花岗岩组成,岩石为准铝质(ANKC=0.94~1.07,平均0.98),富硅(SiO2:71.06%~76.28%),富碱(Na2O+K2O:8.1%~9.8%),FeO^T/MgO(%)较高(9.60~22.00),CaO和MgO含量低(分别为0.58%~1.16%和0.07%~0.25%),富含稀土元素(∑REE=271.36~717.75μg/g)和高场强元素(Y、Zr、  相似文献   

7.
吉乃县塔斯特岩体地质地球化学特征及含矿性评价   总被引:5,自引:0,他引:5  
周刚 《新疆地质》2000,18(1):79-84
塔斯特岩体由石英闪长岩、英云闪长岩、二长花岗岩和钾长花岗岩组成。岩石均具有高Na低K,Na2O、Fe2O3、Hf、K/Rb偏高,K2O、CaO、FeO、Rb、Sr、Nb、∑REE、δ^18O、Rb/Sr明显偏低的特点。岩石化学和地球化学特征表明该岩体为形成于火山弧环境的“I”型花岗岩。岩体中Au、Ag、As、Bi、Cu等成矿元素明显富集,并与该岩体中金矿床、矿点的元素组合一致,说明该岩体与Au的成  相似文献   

8.
出露于加拿大苏必利尔罗灵河杂岩体中的含角闪石斑晶和单斜辉石斑晶的煌斑岩,具有碱性,含霞石标准矿物的玄武岩质成分(SiO2<50wt%),成分变化从原始岩浆到分异岩浆[Mg/Mg+∑Fe)=0.66-0.40;Ni=200-35ppm],岩石富含LREE[Ce/Yb)m=16-26,Cen=60-300;n=球粒陨石标准化],Sr(870-1800ppm),P2O5(0.4-1.3wt%)和Ba(1  相似文献   

9.
大兴安岭中南段花岗岩中黑云母的矿物学和地球化学特征研究表明,海西晚期花岗岩体黑云母Mg高Fe^2+低,Mg原子数〉0.6,Fe^2+原子数〈1.1,而燕山期γ^2-25岩体黑云母Mg原子数〈0.6,Fe^2+原子数〉1.1,燕山晚期γ^3-15岩体黑云母Mg原子数〈0.4,Fe^2+原子数〉1.9,本区黑云母成分特征介于华南二成因系列之间,兼具二系列的某些特点,表明本区花岗岩的壳幔混源特点,本区南  相似文献   

10.
院桥桩和皆山岩体是燕山期花岗岩类杂岩体。前者呈株状、岩体与围岩界线清晰,为似斑装花岗岩,亲铁元素富集,δEu0.91,是板缘岛弧同溶型花岗岩;后者为黑云母花岗岩岩基,具片麻状构造,含交代结构,亲减玫轻稀土元素富集,δEu0.78,为I+S混合型花岗岩。  相似文献   

11.
About seven hundred gravity stations were established 2–3 miles apart over the Precambrian terrain of Singhbhum that lies between latitude 22° 15′ to 23°°15′N and longitude 85° to 87°E. Bouguer anomalies ranging from +4 to −62 mGal are found in the area. The observed Bouguer anomaly map was analyzed into regional and residual components. The residual anomaly map shows an excellent correlation with geology. The Singhbhum granite batholith is associated with several gravity lows. The residual anomaly map outlines nine plutonic granitic masses within the Singhbhum batholith. Negative residuals are also observed over some intrusive granites outside the batholith. Residual gravity highs are noted over the Dalma hill as well as over the Dhanjori lava complex on the eastern part of the Singhbhum batholith.Two-dimensional models suggestive of subsurface configuration of several major geologic units in the area are presented. These indicate that some of the plutonic granites within the Singhbhum batholith are of relatively large dimensions. The basin containing the Iron Ore Group of rocks to the west of the batholith, as well as the basin containing Singhbhum Group of rocks outside the Copper Belt thrust, may have sedimentary thicknesses of the order of 6–7 km. The Dalma lavas attain their maximum thickness of about 2.5 km in the form of a syncline, underneath which the Singhbhum Group of rocks is also found to be the thickest. The Copper Belt thrust, a major Precambrian fracture around the Singhbhum batholith, is moderately north-dipping near the surface but possibly attains a steeper slope at depth. The thrust appears to be quite deep seated. A threedimensional computer-based model for the Dhanjori lava—gabbro complex on the eastern part of the Singhbhum batholith has been deduced. Maximum thickness of these basic rocks is found to exist underneath a thin cap of granophyre. The geological implication of these results is discussed.Variation in the regional anomalies seems to be attributable to a mass deficiency under the Singhbhum batholith. The batholith may extend subsurfacially towards the north across the Copper Belt thrust. The northern tip of the batholith probably became dissected along the line of intersection of the two orogenic trends in the area and subsided. Over this subsided part, the Singhbhum Group of rocks was deposited at a later stage. Gravity data suggest a fairly large amount of subsidence in the area.  相似文献   

12.
Twenty samples of hornblendes from rocks of 14 plutonic unitsin the central Sierra Nevada and Inyo Mountains, California,have been studied in detail. Optical, density, single-crystaland powder X-ray diffraction, and major and minor element chemicaldata are reported. The compositions of the hornblendes show only limited correlationwith the chemistry of the rocks in which they occurred. Hornblendesfrom granitic rocks of the eastern Sierra Nevada and Inyo Mountainshave a wide range of tetrahedral aluminum content which is oftenas low as three-quarters of an atom per formula unit, whereashornblendes from younger granitic rocks elsewhere in the SierraNevada batholith contain more than one atom of tetrahedral aluminumper formula unit. Because an increase of aluminum in tetrahedralco-ordination is considered indicative of higher temperaturesof crystallization, the observed differences in the hornblendessuggest that older plutonic rocks of the batholith may havebeen metamorphosed regionally or may have been affected by widespreadhydrothermal action prior to consolidation of later graniticrocks.  相似文献   

13.
Geobarometric studies have documented that most of the metasedimentary wall rocks and plutons presently exposed in the southernmost Sierra Nevada batholith south of the Lake Isabella area were metamorphosed and emplaced at crustal levels significantly deeper (~15 to 30 km) than the batholithic rocks exposed to the north (depths of ~3 to 15 km). Field and geophysical studies have suggested that much of the southernmost part of the batholith is underlain along low-angle faults by the Rand Schist. The schist is composed mostly of metagraywacke that has been metamorphosed at relatively high pressures and moderate temperatures. NNW-trending compositional, age, and isotopic boundaries in the plutonic rocks of the central Sierra Nevada appear to be deflected westward in the southernmost part of the batholith. Based on these observations, in conjunction with the implicit assumption that the Sierra Nevada batholith formerly continued unbroken south of the Garlock fault, previous studies have inferred that the batholith was tectonically disrupted following its emplacement during the Cretaceous. Hypotheses to account for this disruption include intraplate oroctinal bending, W-vergent overthrusting, and gravitational collapse of overthickened crust. In this paper, new geologic data from the eastern Tehachapi Mountains, located adjacent to and north of the Garlock fault in the southernmost Sierra Nevada, are integrated with data from previous geologic studies in the region into a new view of the Late Cretaceous-Paleocene tectonic evolution of the region. The thesis of this paper is that part of the southernmost Sierra Nevada batholith was unroofed by extensional faulting in Late Cretaceous-Paleocene time. Unroofing occurred along a regional system of low-angle detachment faults. Remnants of the upper-plate rocks today are scattered across the southern Sierra Nevada region, from the Rand Mountains west to the San Emigdio Mountains, and across the San Andreas fault to the northern Salinian block.

Batholithic rocks in the upper plates of the Blackburn Canyon fault of the eastern Tehachapi Mountains, low-angle faults in the Rand Mountains and southeastern Sierra Nevada, and the Pastoria fault of the western Tehachapi Mountains are inferred to have been removed from a position structurally above rocks exposed in the southeastern Sierra Nevada and transported to their present locations along low-angle detachment faults. Some of the granitic and metamorphic rocks in the northern part of the Salinian block are suggested to have originated from a position structurally above deep-level rocks of the southwestern Sierra Nevada. The Paleocene-lower Eocene Goler Formation of the El Paso Mountains and the post-Late Cretaceous to pre-lower Miocene Witnet Formation in the southernmost Sierra Nevada are hypothesized to have been deposited in supradetachment basins that formed adjacent to some of the detachment faults.

Regional age constraints for this inferred tectonic unroofing and disaggregation of the southern Sierra Nevada batholith suggest that it occurred between ~90 to 85 Ma and ~55 to 50 Ma. Upper-plate rocks of the detachment system appear to have been rotated clockwise by as much as 90° based on differences in the orientation of foliation and contacts between inferred correlative hanging-wall and footwall rocks. Transport of the upper-plate rocks is proposed to have occurred in two stages. First, the upper crust in the southern Sierra Nevada extended in a south to southeast direction, and second, the allochthonous rocks were carried westward at the latitude of the Mojave Desert by a mechanism that may include W-vergent faulting and/or oroclinal bending. The Late Cretaceous NNW extension of the upper crust in the southernmost Sierra Nevada postulated in this study is similar to Late Cretaceous, generally NW-directed, crustal extension that has been recognized to the northeast in the Funeral, Panamint, and Inyo mountains by others. Extensional collapse of the upper crust in the southern Sierra Nevada batholith may be closely linked to the emplacement of Rand Schist beneath the batholith during Late Cretaceous time, as has been suggested in previous studies.  相似文献   

14.
Lead isotope ratios of ores of the Candelaria-Punta del Cobre iron oxide Cu-Au deposits and associated Early Cretaceous volcanic and batholithic rocks have been determined. For the igneous rocks, a whole-rock acid attack technique based on the separate analyses of a leachate and the residual fraction of a sample was used. The lead isotope systematics of leachate–residue pairs are significantly different for unaltered and altered igneous rocks of the Candelaria-Punta del Cobre district. Residues of unaltered igneous rocks likely represent the common lead. In contrast, residues of all the altered igneous rocks except two samples have higher Pb isotope ratios than those of unaltered magmatic rocks and cannot represent common lead. We suggest that this is a result of the hydrothermal alteration suffered by these rocks and that the common lead composition of the altered igneous (volcanic and plutonic) rocks must have been similar to that of the unaltered batholith rocks. The conclusion that the altered volcanic rocks originally had a similar common lead isotope composition as the batholith is consistent with geological and geochemical arguments (e.g., setting, regional geologic evolution, ages and relative distribution of volcanic and intrusive rocks, magmatic affinities), which indicate that these rocks were derived from similar Early Cretaceous parent magmas. The modification of the leachate–residue pair lead isotope systematics of most altered igneous rocks is consistent with a selective removal of lead and uranium from these rocks by an oxidized hydrothermal fluid. The result of the hydrothermal leaching has been to alter magmatic rocks in a way that (1) their leachable fraction is presently a mix of common lead similar to that of the ore event and of radiogenic lead evolved from a source with a consistently high Th/U, and that (2) their residual fraction has less common lead than unaltered rocks. The outcrop area with altered volcanic rocks displaying anomalously high lead isotope ratios extends over 25 km along the eastern margin of the batholith. Since lead of the ores in the Candelaria-Punta del Cobre district has the same isotopic composition as the common lead of unaltered magmatic rocks of the area, the lead isotope data are consistent with a derivation of the ore lead (and by inference of other metals like Cu) both directly from a magmatic fluid exsolved during crystallization of the batholith and/or from hydrothermal leaching of the volcanic rocks originally having similar isotopic compositions as the batholith.Editorial handling: B. Lehmann  相似文献   

15.
Abstract: Plutonic rocks of the Coastal Batholith of Peru were evaluated in terms of the granitoid-series classification using the bulk ferric/ferrous ratio from the literature and new measurements of magnetic susceptibility. The batholith is largely composed of magnetite-series plutonic rocks; the magnetite series make up 85% by number of chemical analyses (n=130) and 80% by measurement of magnetic susceptibility (n=210). The ilmenite-series rocks are mostly found in the felsic facies of the batholith. Asymmetrical distribution of magnetic susceptibility is not clear as in the Japanese Islands and Peninsular Range Batholith, but the magnetic susceptibility may decreases continentward (i. e., Peninsular Range type).
The Cordillera Blanca Batholith and stocks are also composed of mainly magnetite series plutonic rocks, but ilmenite-series rocks may be more predominant than in the Coastal Batholith, which is also indicated by the presence of Sn and W mineralizations.  相似文献   

16.
The paper reports geological, chemical, and geochronological data on the Early Paleozoic granitoid and gabbro-granite associations, which compose the Kozhukhovskii and Dudetskii batholiths in the northern part of the Kuznetsk Alatau. The Kozhukhovskii batholith located in the Alatau volcanoplutonic belt is made up of tholeiitic, calc-alkaline, and subalkaline rocks that were formed in two stages. The first stage corresponded to the formation of granitoids of the Tylinskii quartz diorite-tonalite-plagiogranite complex (~530 Ma, Tylinskii Massif, tholeiitic type) in an island arc setting. The second stage (~500 Ma) produced the Martaiga quartz diorite-tonalite-plagiogranite complex (Kozhukhovskii Massif, calc-alkaline type) and the Krasnokamenskii monzodiorite-syenite-granosyenite complex (Krasnokamenskii Massif, subalkaline type) in an accretionary-collisional setting. The Dudetskii batholith is situated in the Altai-Kuznetsk volcanoplutonic belt and contains widespread subalkaline intrusive rocks (Malodudetskii monzogabbro-monzodiorite-syenite and Karnayul’skii granosyenite-leucogranite complexes) and less abundant alkaline rocks (Verkhnepetropavlovskii carbonatite-bearing alkaline-gabbroid complex), which were formed within the age range of 500–485 Ma. Our Nd isotopic studies suggest mainly a subduction source of the rocks of the Kozhukhovskii batholith (εNd from + 4.8 to + 4.2). Subalkaline rocks of the Dudetskii batholith exhibit wide isotopic variations. The Nd isotopic composition of monzodiorites and monzogabbro of the Malodudetskii Complex (εNd = + 6.6), in association with the elevated alkalinity and high Nb and Ta contents of these rocks, testifies to the predominant contribution of an enriched mantle source at the participation of a depleted mantle source. The lower εNd (from + 3.2 to + 1.9) in its syenites possibly indicates their generation through melting of metabasic rocks derived from enriched mantle protolith. The rocks of the Karnayul’skii Complex have lower Nb and Ta contents at similar εNd (+3.6), which suggests some crustal contribution to their formation.  相似文献   

17.
The Bathurst batholith is a complex of massive granitic intrusions cutting across deformed early and middle Palaeozoic rocks of the Lachlan Fold Belt of New South Wales. An adamellite from Dunkeld, near the western edge of the batholith, has yielded K‐Ar ages of 304 ± 4 m.y. (total‐rock) and 301 ± 6 m.y. (biotite).

Recalculated radiometric ages on rocks from the eastern end (Hartley) and northern edge (Yetholme), together with the new data from the western end (Dunkeld) of the Bathurst batholith yield a mean age of emplacement of 310 m.y. (8 values, standard deviation = 6.8 m.y.). This age is supported by Re‐Os data from molybdenite at Yetholme. As yet these data do not allow establishment of temporal relationships between separate intrusive phases of the Bathurst batholith, although the Durandal Adamellite at Yetholme appears to be the oldest phase yet dated.  相似文献   

18.
Sulfide minerals in the Boulder batholith occur 1. as disseminated grains, visible in hand specimens; 2. in aplitic-pegmatitic pods and masses; 3. along joint and shear surfaces; 4. in hydrothermal veins; and 5. as minute masses within pyrite and silicate minerals and along intergranular sites. Hydrothermally altered rocks have an average sulfide content of 0.8 weight per cent, compared to an average of 0.01 per cent for unaltered rocks. Unaltered rock of the batholith may contain as much as 0.7 weight per cent sulfide. Sulfide inclusions in pyrite, the most abundant sulfide of the batholith, are common and represent a captured iss-phase which later changed to chalcopyrite plus pyrrhotite or mackinawite. Inclusions are most abundant, and more complex, in pyrites of hydrothermally altered and ore rocks. Electron-probe analyses show that pyrites of the Boulder batholith have very similar compositions to those found for pyrites from other ore deposits around the world.  相似文献   

19.
The Mount Stuart batholith is a Late Cretaceous calc-alkaline pluton composed of rocks ranging in composition from two-pyroxene gabbro to granite. Quartz diorite is most abundant. This batholith may represent the plutonic counterpart of the high-alumina basalt association. A petrogenetic model is developed in which this intrusive series evolved from one batch of magnesian high-alumina basalt, represented by the oldest intrusive phase, by successive crystal fractionation of ascending residual magma. However, the possibility that this intrusive suite originated from an andésite (quartz diorite) parent by fractionation cannot be excluded.Computer modeling of this intrusive sequence provides a quantitative evaluation of the sequential change of magma composition. These calculations clearly indicate that the igneous suite is consanguineous, and that subtraction of early-formed crystals from the oldest rock is capable of reproducing the entire magma series with a remainder of 2–3% granitic liquid. This model requires that large amounts of gabbroic cumulate remain hidden at depth- an amount equal to approximately 8–10X the volume of the exposed batholith. Mass balances between the amounts of cumulate and residual liquid calculated compare favorably with the observed amounts of intermediate rocks exposed in the batholith, but not with the mafic rocks.Mafic magmas probably fractionated at depth by crystal settling, whereas younger quartz diorite and more granitic magmas underwent inward crystallization producing gradationally zoned plutons exposed at present erosional levels.  相似文献   

20.
胡培远  李才  苏犁  张红雨 《地质通报》2012,31(6):843-851
本松错岩基是羌塘中部规模最大的花岗岩复合岩基,面积超过1800km2,由石炭纪、三叠纪和侏罗纪3个不同时代的花岗岩岩体组成,记录了羌塘中部不同时期的岩浆活动,是研究羌塘盆地构造演化的重要窗口。蜈蚣山花岗岩位于本松错复合岩基北部,前人认为其时代为侏罗纪,但是近期在蜈蚣山地区侏罗纪花岗岩中发现有少量印支期花岗岩出露,岩性主要为花岗片麻岩和二长花岗岩,可能为侏罗纪花岗岩的捕虏体。地球化学研究表明,二长花岗岩属高钾钙碱性过铝质花岗岩,形成于同碰撞环境,与区域内其它印支期中酸性岩浆岩类似,共同构成龙木错-双湖-澜沧江板块缝合带同碰撞—后碰撞岩浆弧。此外还对花岗片麻岩片麻理中的黑云母做了40Ar-39Ar测年,获得了175.8Ma±1.1Ma的定年结果,与其围岩侏罗纪花岗岩年龄相近,推测花岗片麻岩是印支期花岗岩受后期侵入的侏罗纪岩浆改造后的产物,本松错复合岩基应当是中酸性岩浆岩多期侵入的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号