首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The northwest Zhejiang Province is a key domain for providing deep insight into the crust–mantle interaction and tectonic evolution of the South China block. In this paper, we collect geochemical, geochronological, and isotopic data of the Jurassic porphyries in this region, and investigated the Huangbaikeng ore-bearing porphyry in the Tongcun Mo–Cu deposit, using it as an example to uncover the porphyry petrogenesis and evaluate their metallogenic potential. Two varieties of the Huangbaikeng porphyry were distinguished: the medium- to coarse-grained type and medium- to fine-grained type. Zircon Sensitive High-Resolution Ion Microprobe U–Pb dating indicates that they were emplaced at 161.8 ± 2.8 and 162.7 ± 3.5 Ma, respectively, which are consistent with the molybdenite Re–Os ages of 163.9–161.8 Ma. The inherited zircons age spectrum significantly recorded a series of geological events, for example, assembly and breakup of the Columbia and Rodinia supercontinent, and the Triassic collision of Yangtze and North China blocks. Whole rock Sr–Nd and Jurassic zircon Hf isotopic data yield mostly negative εHf(t) values (0.5 to ?8.4) and εNd(t) values (?0.79 to ?4.82). Besides the Huangbaikeng porphyry, all the Jurassic porphyries in the northwest Zhejiang Province have a wide range of SiO2 contents (76.78–60.91 wt.%). They do not contain typical aluminous minerals (e.g. cordierite and garnet), and are mainly metaluminous to weakly peraluminous with high Na2O, low FeOT/MgO, and Zr + Nb + Ce + Y concentrations in composition. They thus fit the I-type granite definition. Some major and trace elements show strong correlations with SiO2, possibly indicating extensive fractional crystallization during their magma evolution. Tectonic discriminations imply that these plutons were likely formed in a volcanic arc regime possibly related to subduction of the Palaeo-Pacific plate. Sr–Nd–Hf isotopic data suggest a mixed source of the Mesoproterozoic crust and 30–50% mantle components. Compared with the adjacent Dexing Cu-bearing porphyies, which have more positive εHf(t) and εNd(t) values with more significant mantle components (55–70%), the Jurassic porphyries in the northwest Zhejiang Province probably lack metallogenic potential to form a giant porphyry copper deposit as Dexing.  相似文献   

2.
Mesozoic ore deposits in Zhejiang Province, Southeast China, are divided into the northwestern and southeastern Zhejiang metallogenic belts along the Jiangshan–Shaoxing Fault. The metal ore deposits found in these belts are epithermal Au–Ag deposits, hydrothermal‐vein Ag–Pb–Zn deposits, porphyry–skarn Mo (Fe) deposits, and vein‐type Mo deposits. There is a close spatial–temporal relationship between the Mesozoic ore deposits and Mesozoic volcanic–intrusive complexes. Zircon U–Pb dating of the ore‐related intrusive rocks and molybdenite Re–Os dating from two typical deposits (Tongcun Mo deposit and Zhilingtou Au–Ag deposit) in the two metallogenic belts show the early and late Yanshanian ages for mineralization. SIMS U–Pb data of zircons from the Tongcun Mo deposit and Zhilingtou Au–Ag deposit indicate that the host granitoids crystallized at 169.7 ± 9.7 Ma (2σ) and 113.6 ± 1 Ma (2σ), respectively. Re–Os analysis of six molybdenite samples from the Tongcun Mo deposit yields an isochron age of 163.9 ± 1.9 Ma (2σ). Re–Os analyses of five molybdenite samples from the porphyry Mo orebodies of the Zhilingtou Au‐Ag deposit yield an isochron age of 110.1 ± 1.8 Ma (2σ). Our results suggest that the metal mineralization in the Zhejiang Province, southeast China formed during at least two stages, i.e., Middle Jurassic and Early Cretaceous, coeval with the granitic magmatism.  相似文献   

3.
The geotectonic units of Zhejiang Province include the Yangtze Plate in the northwest juxtaposed against the South China fold system in the southeast along the Jiangshan–Shaoxing fault. The South China fold system is further divided into the Chencai–Suichang uplift belt and the Wenzhou–Linhai geotectogene belt, whose boundary is the Yuyao–Lishui fault. The corresponding metallogenic belts are the Mo–Au(–Pb–Zn–Cu) metallogenic belt in northwest Zhejiang, the Chencai–Suichang Au–Ag–Pb–Zn–Mo metallogenic belt, and the coastal Ag–Pb–Zn–Mo–Au metallogenic belt. The main Mesozoic metal ore deposits include epithermal Au–Ag(Ag), hydrothermal vein-type Ag–Pb–Zn(Cu), and porphyry–skarn-type Mo and vein-type Mo deposits. These ore bodies are related to the Mesozoic volcanic-intrusive structure: the epithermal Au–Ag(Ag) deposits are represented by the Zhilingtou Au–Ag deposit and Houan Ag deposit and their veins are controlled by volcanic structure; the hydrothermal vein-type Ag–Pb–Zn deposits are represented by the Dalingkou Ag–Pb–Zn deposit and also controlled by volcanic structure; and the porphyry–skarn-type Mo deposits are represented by the Tongcun Mo deposit and the vein-type Mo deposits are represented by the Shipingchuan Mo deposit, all of which are related to granite porphyries. These metal ore deposits have close spatio-temporal relationships with each other; both the epithermal Au–Ag(Ag) deposits and the hydrothermal vein-type Ag–Pb–Zn deposits exhibit vertical zonations of the metallic elements and form a Mo–Pb–Zn–Au–Ag metallogenetic system. These Jurassic–Cretaceous deposits may be products of tectonic-volcanic-intrusive magmatic activities during the westward subduction of the Pacific Plate. Favourable metallogenetic conditions and breakthroughs in the recent prospecting show that there is great resource potential for porphyry-type deposits (Mo, Cu) in Zhejiang Province.  相似文献   

4.
报道了浙西开化地区桐村含Cu、Mo花岗斑岩的LA-ICP-MS锆石U-Pb年龄,2个样品加权平均年龄介于167.6~155.6 Ma之间,反映花岗斑岩形成于中、晚侏罗世。该时期同时又是燕山运动活跃的时期,区域构造以北西—南东向挤压为特征,形成走向北东的压性断裂和配套的南东向张性断裂。2组断裂交会产生的应力薄弱区为燕山期发生的规模性岩浆活动提供了侵位通道。因此,浙西地区拥有良好的构造和岩浆成矿条件,成矿潜力巨大。  相似文献   

5.
We investigate the geology of Altar North (Cu–Au) and Quebrada de la Mina (Au) porphyry deposits located in San Juan Province (Argentina), close to the large Altar porphyry copper deposit (995 Mt, 0.35% Cu, 0.083 g/t Au), to present constraints on the magmatic processes that occurred in the parental magma chambers of these magmatic-hydrothermal systems. Altar North deposit comprises a plagioclase-amphibole-phyric dacite intrusion (Altar North barren porphyry) and a plagioclase-amphibole-biotite-phyric dacite stock (Altar North mineralized porphyry, 11.98 ± 0.19 Ma). In Quebrada de la Mina, a plagioclase-amphibole-biotite-quartz-phyric dacite stock (QDM porphyry, 11.91 ± 0.33 Ma) crops out. High Sr/Y ratios (92–142) and amphibole compositions of Altar North barren and QDM porphyries reflect high magmatic oxidation states (fO2 = NNO +1.1 to +1.6) and high fH2O conditions in their magmas. Zones and rims enriched in anorthite (An37–48), SrO (0.22–0.33 wt.%) and FeO (0.21–0.37 wt.%) in plagioclase phenocrysts are evidences of magmatic recharge processes in the magma chambers. Altar North and Quebrada de la Mina intrusions have relatively homogeneous isotopic compositions (87Sr/86Sr(t) = 0.70450–0.70466, εNd(t) = +0.2 to +1.2) consistent with mixed mantle and crust contributions in their magmas. Higher Pb isotopes ratios (207Pb/204Pb = 15.6276–15.6294) of these intrusions compared to other porphyries of the district, reflect an increase in the assimilation of high radiogenic Pb components in the magmas. Ages of zircon xenocrysts (297, 210, 204, 69 Ma) revealed that the magmas have experienced assimilation of Miocene, Cretaceous, Triassic and Carboniferous crustal rocks.Fluids that precipitated sulfides in the Altar deposit may have remobilized Pb from the host rocks, as indicated by the ore minerals being more radiogenic (207Pb/204Pb = 15.6243–15.6269) than their host intrusions. Au/Cu ratio in Altar porphyries (average Au/Cu ratio of 0.14 × 10?4 by weight in Altar Central) is higher than in the giant Miocene porphyry deposits located to the south: Los Pelambres, Río Blanco and Los Bronces (Chile) and Pachón (Argentina). We suggest that the increase in Au content in the porphyries of this region could be linked to the assimilation of high radiogenic Pb components in the magmas within these long-lived maturation systems.  相似文献   

6.
报道了浙西开化地区桐村含Cu、Mo花岗斑岩的LA-ICP-MS锆石U-Pb年龄,2个样品加权平均年龄介于167.6~155.6Ma之间,反映花岗斑岩形成于中、晚侏罗世。该时期同时又是燕山运动活跃的时期,区域构造以北西—南东向挤压为特征,形成走向北东的压性断裂和配套的南东向张性断裂。2组断裂交会产生的应力薄弱区为燕山期发生的规模性岩浆活动提供了侵位通道。因此,浙西地区拥有良好的构造和岩浆成矿条件,成矿潜力巨大。  相似文献   

7.
《International Geology Review》2012,54(14):1763-1785
Central Jilin Province lies along the eastern edge of the Xing–Meng orogenic belt of northeast China. At least 10 Mo deposits have been discovered in this area, making it the second-richest concentration of Mo resources in China. To better understand the formation and distribution of porphyry Mo deposits in the area, we investigated the geological characteristics of the deposits and applied zircon UPb and molybdenite Re–Os isotope dating to constrain the age of mineralization. Our new geochronological data show the following: the Jidetun Mo deposit yields molybdenite Re–Os model ages of 164.6–167.1 Ma, an isochron age of 168 ± 2.5 Ma, and a weighted mean model age of 165.9 ± 1.2 Ma; the Houdaomu Mo deposit yields molybdenite Re–Os model ages of 167.4–167.7 Ma, an isochron age of 168 ± 13 Ma, and a weighted mean model age of 167.5 ± 1.2 Ma; and the Chang’anpu Mo deposit yields a zircon U–Pb age for granodiorite porphyry of 166.9 ± 1.5 Ma (N = 16). These new age data, combined with existing molybdenite Re–Os dates, show that intense porphyry Mo mineralization was coeval with magmatism during the Middle Jurassic (167.8 ± 0.4 Ma, r > 0.999). The geotectonic mechanisms responsible for Mo mineralization were probably related to subduction of the Palaeo-Pacific plate beneath the Eurasian continent. Combining published molybdenite Re–Os and zircon U–Pb ages for northeast China, the Mo deposits are shown to have been formed during multiple events coinciding with periods of magmatic activity. We identified three phases of mineralization, two of which had several stages: the Caledonian (485–480 Ma); the Indosinian comprising the Early–Middle Triassic (248–236 Ma) and Late Triassic (226–208 Ma) stages; and the Yanshanian phase comprising the Early–Middle Jurassic (202–165 Ma), Late Jurassic–early Early Cretaceous (154–129 Ma), and Early Cretaceous (114–111 Ma) stages. Although Mo deposits formed during each phase/stage, most of the mineralization occurred during the Early–Middle Jurassic.  相似文献   

8.
The recently discovered Taolaituo porphyry Mo deposit and Aobaotu hydrothermal vein Pb–Zn deposit are both located in the Great Xing’an Range, Northeast China. Here we present new zircon U–Pb ages, whole-rock geochemical and Pb isotopic data, and molybdenite Re–Os ages for these two deposits. The Mo mineralization in the Taolaituo area occurred in quartz porphyry, which yields zircon U–Pb ages ranging from 138.5 ± 0.8 to 139.1 ± 0.5 Ma. Fine-grained granite representing pre-mineralization magmatic activity was formed at 145.2 ± 0.5 Ma. Molybdenite Re–Os dating indicates that Mo mineralization occurred at 133.8 ± 1.2 Ma. In the Aobaotu deposit, the ore-related granodioritic porphyry has a zircon U–Pb age of 140.0 ± 0.4 Ma. These geochronological data indicate that these magmatic and hydrothermal activities occurred during the Early Cretaceous. The mineralogical and geochemical features of the Taolaituo and Aobaotu granitoids suggest they can be classified as A1-type within-plate anorogenic granites and I-type granites, respectively. The Pb isotopic compositions suggest a mixed crust–mantle origin of the granitoids in these two deposits. The Taolaituo granitoids were formed by the partial melting of lower crust and crust–mantle interaction, with subsequent fractionation of apatite, feldspar, Ti-bearing phases and allanite or monazite. In contrast, the Aobaotu granites were derived primarily from lithospheric mantle that had been transformed or affected by the addition of subduction-related components. Combined with the regional geology, tectonic evolution and available age data from the literature, our results suggest that the Early Cretaceous (140–100 Ma) was likely to be the most important peak period for metallogenic mineralization in Northeast China. The Taolaituo and Aobaotu deposits formed under an extensional environment at an active continental margin in response to subduction of the Palaeo-Pacific oceanic plate.  相似文献   

9.
Whole‐rock geochemistry, zircon U–Pb and molybdenite Re–Os geochronology, and Sr–Nd–Hf isotopes analyses were performed on ore‐related dacite porphyry and quartz porphyry at the Yongping Cu–Mo deposit in Southeast China. The geochemical results show that these porphyry stocks have similar REE patterns, and primitive mantle‐normalized spectra show LILE‐enrichment (Ba, Rb, K) and HFSE (Th, Nb, Ta, Ti) depletion. The zircon SHRIMP U–Pb geochronologic results show that the ore‐related porphyries were emplaced at 162–156 Ma. Hydrothermal muscovite of the quartz porphyry yields a plateau age of 162.1 ± 1.4 Ma (2σ). Two hydrothermal biotite samples of the dacite porphyry show plateau ages of 164 ± 1.3 and 163.8 ± 1.3 Ma. Two molybdenite samples from quartz+molybdenite veins contained in the quartz porphyry yield Re–Os ages of 156.7 ± 2.8 Ma and 155.7 ± 3.6 Ma. The ages of molybdenite coeval to zircon and biotite and muscovite ages of the porphyries within the errors suggest that the Mo mineralization was genetically related to the magmatic emplacement. The whole rocks Nd–Sr isotopic data obtained from both the dacite and quartz porphyries suggest partial melting of the Meso‐Proterozoic crust in contribution to the magma process. The zircon Hf isotopic data also indicate the crustal component is the dominated during the magma generation.  相似文献   

10.
Jilin Province in NE China lies on the eastern edge of the Xing–Meng Orogenic Belt. Mineral exploration in this area has resulted in the discovery of numerous large, medium, and small sized Cu, Mo, Au, and Co deposits. To better understand the formation and distribution of both the porphyry and skarn types Cu deposits of the region, we examined the geological characteristics of the deposits and applied zircon U–Pb and molybdenite Re–Os isotope dating to constrain the age of the mineralization. The Binghugou Cu deposit yields a zircon U–Pb age for quartz diorite of 128.1 ± 1.6 Ma; the Chang'anpu Cu deposit yields a zircon U–Pb age for granite porphyry of 117.0 ± 1.4 Ma; the Ermi Cu deposit yields a zircon U–Pb age for granite porphyry of 96.8 ± 1.1 Ma; the Tongshan Cu deposit yields molybdenite Re–Os model ages of 128.7 to 130.2 Ma, an isochron age of 129.0 ± 1.6 Ma, and a weighted mean model age of 129.2 ± 0.7 Ma; and the Tianhexing Cu deposit yields molybdenite Re–Os model ages of 113.9 to 115.2 Ma, an isochron age of 114.7 ± 1.2 Ma, and a weighted mean model age of 114.7 ± 0.7 Ma. The new ages, combined with existing geochronology data, show that intense porphyry and skarn types Cu mineralization was coeval with Cretaceous magmatism. The geotectonic processes responsible for the genesis of the Cu mineralization were probably related to lithospheric thinning. By analyzing the accumulated molybdenite Re–Os, zircon U–Pb, and Ar–Ar ages for NE China, it is concluded that the Cu deposits formed during multiple events coinciding with periods of magmatic activity. We have identified five phases of mineralization: early Paleozoic (~476 Ma), late Paleozoic (286.5–273.6 Ma), early Mesozoic (~228.7 Ma), Jurassic (194.8–137.1 Ma), and Cretaceous (131.2–96.8 Ma). Although Cu deposits formed during each phase, most of the Cu mineralization occurred during the Cretaceous.  相似文献   

11.
《International Geology Review》2012,54(13):1532-1547
The Jitoushan W–Mo ore body is a typical skarn-type deposit with the potential for porphyry Mo mineralization at depth. As it is newly discovered, only a few studies have been conducted on the geochronology and ore genesis of this deposit. The ore district consists of Cambrian to Silurian sedimentary and low-grade metasedimentary strata, intruded by granodiorite, diorite porphyry, granite porphyry, and quartz porphyry. Skarn W–Mo ore bodies are hosted in the contact zone between the granodiorite and Cambrian limestone strata. Within the granodiorite near the contact zone, quartz vein type and disseminated sulphide mineralization are well developed. The Mo-bearing granite porphyry has been traced at depth by drilling. Our results reveal two discrete magmatic events at ca. 138 and ca. 127 Ma in the study area. The molybdenite Re–Os isochronal age of 136.6 ± 1.5 million years is consistent with the first magmatic event. The zircon Hf isotope (?Hf(t) =??12.55?3.91), sulphide isotopes (δ34S = 3.32–5.59‰), and Re content of molybdenite (Recontent = 6.424–19.07 μg) indicate that the ore-forming materials were mainly derived from the deep crust. The regional tectonic system switched from a Late Jurassic transpressive regime to an earliest Cretaceous extensional regime at ca. 145 Ma, and at ca. 138 Ma, the Jitoushan W–Mo deposit formed in an extensional setting.  相似文献   

12.
The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geochemical features of the granites in the Jinduicheng area can provide essential information for the exploration and development of the porphyry molybdenum deposit. In this study, we report LA–ICP–MS zircon U–Pb age and zircon Hf isotopic compositions of granite porphyries from the Jinduicheng area, and provide insights on the petrogensis and source characteristics of the granites. The results show that the zircon U–Pb ages of the Jinduicheng granite porphyry (143±1 Ma) and the Balipo granite (154±1 Ma), agree well with the Re–Os ages of molybdenite in the Jinduicheng molybdenum polymetallic deposit (139±3 Ma) and the Balipo molybdenum polymetallic deposit (156±2 Ma), indicating that the emplacement of granite porphyries occurred between Late Jurassic and Early Cretaceous. Zircons granite from the Jinduicheng area give the εHf(t) values mainly ranging from ?10 to ?16, and ?20 to ?24, respectively, corresponding to two–stage model ages (tDM2: mainly focused on 1.86–2.0 Ga, and 2.2–2.6 Ga, respectively) of zircons of the granite from the Jinduicheng values. The ore–forming materials are mainly derived from crust, with minor mantle substances. Zircons of the granite from the Balipo area give εHf(t) values ranging from ?18 to ?20, ?28 to ?38, and ?42 to ?44, respectively, corresponding to two–stage model ages (tDM2: mainly focused on 1.88–3.0 Ga, and 3.2–3.90 Ga, respectively). the εHf(t) values of the Jinduicheng porphyry more than that of the Balipo porphyry, and two–stage model ages (tDM2) less than that of the Balipo porphyry, shows that he source of the porphyries originated from ancient lower crustal materials in the Jinduicheng area, and mixed younger components, more younger components contributed for the source of the Jinduicheng porphyry.  相似文献   

13.
ABSTRACT

The magmatic generation for the Late Triassic–Early Jurassic (~215–200 Ma) and Early Cretaceous–Late Cretaceous (~108–79 Ma) post-collisional granites in the Sanjiang Tethys orogeny remain enigmatic. The Xiuwacu complex, located in the southern Yidun Terrane, consists of biotite granite with a weight mean 206Pb/238U age of 199.8 ± 2.5 Ma, aplite granite of 108.2 ± 2.3 Ma, monzogranite porphyry of 80.8 ± 1.0 Ma, and diorite enclaves of 79.2 ± 0.9 Ma and 77.9 ± 0.8 Ma. The Late Triassic biotite granites show I-type granite affinities, with high SiO2 contents, high Mg# values, high zircon δ18O values, and negative whole-rock ?Nd(t) values, indicating a predominant ancient crustal source with the input of juvenile materials. Their fractionated REE patterns and concave-upward middle-to-heavy REE patterns require garnet-bearing amphibolite as the melt source. The Cretaceous highly fractionated aplite granites and monzogranite porphyries have relatively high SiO2 contents, high (Na2O + K2O)/CaO ratios, high zircon δ18O values, and enriched whole-rock Sr–Nd isotopic signatures, suggesting that their parent magmas were likely originated from the ancient middle- to lower crust. Their significant negative Eu anomalies and obvious depletions in Nb, Sr, and Ti demonstrate that the Cretaceous granitic magmas had experienced more fractionation than the Late Triassic felsic magmas. The Late Cretaceous diorite enclaves show low SiO2 contents, high Mg# values, and high zircon δ18O values, suggesting that they were probably derived from the partial melting of subcontinental lithospheric mantle enriched by the Late Triassic subduction. The Late Triassic–Early Jurassic and Early Cretaceous–Late Cretaceous magmatism witnessed the post-collisional setting and intraplate extensional setting in response to the slab break-off and lithospheric-scale transtensional faulting, respectively. The partial melting of subduction-modified lithospheric mantle or/and residual sulphide cumulates within the lower crust during the origination of Late Cretaceous magmas could have provided metals for the formation of Xiuwacu deposit.  相似文献   

14.
黑龙江省岔路口超大型斑岩钼矿床位于大兴安岭北部,是目前我国东北地区最大的钼矿床,矿体赋存于中酸性杂岩体及侏罗系火山-沉积岩内,其中花岗斑岩、石英斑岩、细粒花岗岩与钼矿化关系密切.本文采用LA-ICP-MS锆石U-Pb定年方法,获得了矿区内二长花岗岩、花岗斑岩、石英斑岩、细粒花岗岩、流纹斑岩、闪长玢岩及安山斑岩的结晶年龄分别为162±1.6 Ma、149±4.6 Ma、148±1.6 Ma、148±1.2 Ma、137±3.3 Ma、133±1.7Ma和132±1.6 Ma.岔路口矿区内至少存在3期岩浆活动,其顺序为侏罗纪火山-沉积岩、二长花岗岩→晚侏罗世花岗斑岩、石英斑岩、细粒花岗岩→早白垩世流纹斑岩、闪长玢岩、安山斑岩.岔路口矿床成矿时代为晚侏罗世,是东北亚大陆内部构造-岩浆活化的产物,形成于古太平洋板块俯冲作用引起的挤压向伸展构造体制转折背景,与我国东部大规模钼矿化爆发期相对应.  相似文献   

15.
驱龙超大型斑岩铜矿床是冈底斯斑岩铜矿带上最为重要的矿床,矿区侵入岩较发育,但流纹斑岩及英安流纹斑岩的形成时代存在争议。在野外及岩相学观察基础上,结合LA-ICP-MS锆石U-Pb测年,获得流纹斑岩年龄值为169.9±0.61 Ma,英安流纹斑岩年龄值分别为166.0±1.8 Ma及173.8±0.56 Ma,黑云母花岗闪长岩年龄值为16.98±0.15 Ma。结合前人年代学研究,认为流纹斑岩及英安流纹斑岩可能在早侏罗世即开始活动,一直持续到晚侏罗世。而黑云母花岗闪长岩的形成时代与前人研究一致,皆为中新世。此外,驱龙矿区岩浆岩演化经历了早-晚侏罗世、中新世早期和中新世中期三个阶段,其中,中新世早期岩浆活动与成矿时代具有很好的一致性。最后认为,驱龙矿区岩浆岩活动时间与新特提斯洋俯冲阶段及印度-亚洲大陆碰撞后汇聚过程中发生的岩浆作用阶段相对应。岩浆活动与成矿受到这两大构造活动事件的影响。  相似文献   

16.
《International Geology Review》2012,54(15):1835-1864
The Yinshan deposit is a large epithermal-porphyry polymetallic deposit, and the timing and petrogenesis of ore-hosting porphyries have been hotly debated. We present new results from geochemical, whole-rock Sr–Nd and zircon U–Pb–Hf–O isotopic investigations. Zircon U–Pb data demonstrate that the quartz porphyry, dacitic porphyry, and quartz dioritic porphyry formed at ?172.2 ± 0.4 Ma, ?171.7 ± 0.5 Ma, and ?170.9 ± 0.3 Ma, respectively. Inherited zircon cores show significant age spreads from ?730 to ?1390 Ma. Geochemically, they are high-K calc-alkaline or shoshonitic rocks with arc-like trace element patterns. They have similar whole-rock Nd and zircon Hf isotopic compositions, yet an increasing trend in ?Nd(t) and ?Hf(t) values typifies the suite. Older (inherited) zircons of the three porphyries display Hf compositions comparable to those of the Jiangnan Orogen basement rocks. In situ zircon oxygen isotopic analyses reveal that they have similar oxygen isotopic compositions, which are close to those of mantle zircons. Moreover, a decreasing trend of δ18O values is present. We propose that the ore-related porphyries of the Yinshan deposit were emplaced contemporaneously and derived from partial melting of Neoproterozoic arc-derived mafic (or ultra-mafic) rocks. Modelling suggests that the quartz porphyries, dacitic porphyries, and quartz dioritic porphyries experienced ?25%, ?10%, and ?10% crustal contaminations by Shuangqiaoshan rocks. Our study provides important constraints on mantle–crust interaction in the genesis of polymetallic mineralization associated with Mesozoic magmatism in southeastern China.  相似文献   

17.
The Dexing porphyry copper deposit, part of the circum-Pacific porphyry copper ore belt, is the largest porphyry copper deposit in China. We present new LA–ICP–MS zircon U–Pb and molybdenite Re–Os dating, bulk-rock elemental and Sr–Nd–Pb isotopic as well as in situ zircon Hf isotopic geochemistry for these ore-bearing porphyries, in an attempt to better constrain their petrogenesis. LA–ICP–MS zircon U–Pb dating shows that the Dexing porphyries were emplaced in the early Middle Jurassic (~171 Ma); molybdenite Re–Os dating indicates that the associated Cu–Mo mineralization was contemporaneous (~171 Ma) with the igneous intrusion. The rocks are mainly high-K calc-alkaline and show adakitic affinities, including high Sr and low Y and Yb contents, high Sr/Y and La/Yb ratios, and high Mg# (higher than pure crustal melts). These porphyries have initial 87Sr/86Sr ratios of 0.7044?0.7047, ?Nd(T) values of –1.5 to?+0.6, and ?Hf(T) (in situ zircon) values of?+2.6 to?+4.6. They show unusually radiogenic Pb isotopic compositions with initial 206Pb/204Pb ratios up to 18.41 and 207Pb/204Pb up to 15.61. These isotopic compositions are distinctly different from either Pacific MORB or Yangtze lower crust but are similar to the subducting sediments in the western Pacific trenches. Detailed elemental and isotopic data suggest that the Dexing porphyries were emplaced in a continental arc setting coupled with westward subduction of the palaeo-Pacific plate. Partial melting involved the subducted slab (mainly the overlying sediments), with generated melts interacting with the lithospheric mantle wedge, thereby forming the investigated high-K calc-alkaline porphyry magmas.  相似文献   

18.
温泉斑岩钼矿床位于西秦岭东段,是该区发现的一个具有大型矿前景的斑岩型钼矿床。围岩温泉复式岩体发育5个岩相单元(Ⅰ~Ⅴ),钼矿体(化)主要赋存于复式岩体Ⅱ单元富含镁铁质包体的黑云母二长花岗斑岩和Ⅲ单元富含镁铁质包体的似斑状二长花岗岩及其接触带内,其余岩相(包括单元Ⅴ似斑状正长花岗岩)很少发育矿化。该研究使用全岩地球化学数据和锆石微量元素含量数据,计算得到不同岩相单元的氧逸度。Ⅱ单元和Ⅲ单元含矿斑岩相对氧逸度ΔFMQ分别为1.35和1.38。Ⅰ单元黑云母花岗岩和Ⅳ单元二长花岗斑岩相对氧逸度ΔFMQ分别为-0.61和-0.73,明显低于含矿斑岩。富集地幔物质的加入与否可能是造成不同岩相之间氧逸度差异的主要原因。高氧逸度的熔体可以将秦岭地区古生代富钼沉积物中的钼氧化萃取出来,并使钼与高价态硫络合,不断在熔体中高度富集,最终成矿。氧逸度较低的熔体很难萃取和保存足够的钼,因而很少发育矿化。  相似文献   

19.
Daheishan giant porphyry Mo deposit is located in the Lesser Xing’an–Zhangguangcai Ranges, Jilin Province, NE China. Mineralization is closely related to the Daheishan intrusive complex, which can be divided into Changganglin biotite granodiorite, Qiancuoluo biotite granodiorite, and Qiancuoluo granodioritic porphyry. Four stages of mineralization are distinguished, based on the cross-cutting relationships of mineralized veins. LA-ICPMS zircon U-Pb analysis yields 206Pb/238U ages of 177.9 ± 2.3 Ma for the Changganglin biotite granodiorite, 169.9 ± 2.3 Ma for the Qiancuoluo biotite granodiorite, and 166.6 ± 4.0 Ma for the Qiancuoluo granodioritic porphyry. Hydrothermal fluids responsible for mineralization evolved from different magmas. Six molybdenite samples yield Re-Os model ages of ~167 Ma. Muscovite from the last mineralization stage gives a 40Ar/39Ar plateau age of 163.6 ± 0.9 Ma. Geochronology data indicate that the entire magmatic system lasted for about 10 million years, and the total duration of hydrothermal activity was less than 4 million years. The εHf(t) values of zircons obtained from the Changganglin biotite granodiorite, Qiancuoluo biotite granodiorite, and Qiancuoluo granodioritic porphyry range from 4.5 to 9.1, 5.7 to 10.9, and 4.4 to 7.1, respectively, indicating that they were mainly derived from the depleted mantle, although contaminated by crustal materials to a greater or lesser extent. The formation of the Daheishan porphyry Mo deposit was temporally and spatially related to the amalgamation of Jiamusi Massif and Songliao terrane in the Palaeo-Pacific Ocean regime. Regional Hf isotopic compositions of zircon suggest an episode of crustal growth in the Phanerozoic in the Lesser Xing’an–Zhangguangcai Ranges. Regional Mo mineralization ages suggest a peak of porphyry Mo mineralization in the Jurassic in the Lesser Xing’an-Zhangguangcai Ranges.  相似文献   

20.
ABSTRACT

The Xilamulun Mo belt of Northeastern China, located in the southeastern segment of the Central Asia Orogenic Belt (CAOB), is composed of large deposits of porphyry Mo and quartz-vein-type Mo, which are related to Mesozoic granitoids. Previous studies led to the conclusion that all granitoids in the region formed during the Cretaceous and Triassic, but our new laser ablation inductively coupled plasma mass spectrometry U–Pb zircon dating of magmatic zircons from five samples of four mineralized plutons (Nailingou, Longtoushan, and Hashitu granites and Erbadi and Hashitu granite porphyries) reveals that these range in age from 143.8 ± 1.2 to 149.5 ± 1.0 Ma. These granites show post-collisional (A-type) geochemical characteristics (e.g. enrichment in total alkali, LILE, and LREE and depletion in Eu, Ba, P, and Nb). The Erbadi, Longtoushan, Hashitu, and Longtoushan granitoids exhibit moderately positive Hf isotopic compositions (εHf(t) = ?0.3 to 10.2), indicating that granitic magmas may reflect mixtures of mantle melts and continental crust. These mineralized granites were all emplaced along a major fault over a time span of ~6 million years during the Late Jurassic. We conclude that igneous activity and mineralization resulted from the rollback of the subducted Palaeo-Pacific plate beneath Eurasia. Confirming that the Late Jurassic granitic intrusives are related to the Mo mineralization is useful for understanding the Mesozoic tectonic evolution of the Xilamulun Mo belt and also has significant implications for the regional exploration of ores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号